1. For $n \in \mathbb{N}$ let P_n be the statement that $7 \mid 8^n - 1$.

Base: P_1 is the statement that $7 \mid 8^1 - 1$, which is true because $8^1 - 1 = 7 = 7 \cdot 1$.

Inductive step: Suppose $n \in \mathbb{N}$ and P_n is true, in other words there is some $k \in \mathbb{Z}$ with $8^n - 1 = 7k$. Then

$$8^{n+1} - 1 = 8^{n+1} - 8^n + 8^n - 1$$

= 8ⁿ(8 - 1) + 7k
= 7(8ⁿ + k).

so 7 | 8^{n+1} , in other words P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

2. (a) We know that $d \in S$, so there are some $x, y \in \mathbb{Z}$ with d = ax + by. We also know that we can find $q, r \in \mathbb{Z}$ with $0 \le r < d$ such that a = qd + r. Suppose, for a contradiction, that 0 < r. Then we have $r \in \mathbb{N}$

$$r = a - qd$$

= $a - q(ax + by)$
= $a(1 - qx) + b(-qy)$,

and $1-qx, -qy \in \mathbb{Z}$. Hence $r \in S$. But this is impossible since r < d and d is the least element of S. So we cannot have 0 < r, so r = 0. Thus a = qd, so $d \mid a$.

(b) As with part (a), we can find integers x, y, a' and r' with $0 \le r' < d$ so that d = ax + by and b = q'd + r'. If 0 < r' we have

$$r = b - q'd = b - q'(ax + by) = a(-q'x) + b(1 - q'y),$$

so we would have $r' \in S$, contradicting the minimality of d. So r' = 0, so b = q'd, so $d \mid b$.

(c) Suppose $c \mid a$ and $c \mid b$. Then there exist $z, w \in \mathbb{Z}$ with a = cz and b = cw. We also have d = ax + by for some $x, y \in \mathbb{Z}$. So d = (cz)x + (cw)y = c(zx + wy), and $zx + wy \in \mathbb{Z}$, so $c \mid d$.

3. (a) [In effect we are supposed to be showing that two sets are equal: the set of common divisors of *a* and *b*, and the set of common divisors of *b* and *r*. So our proof resembles a proof that two sets are equal.]

Let c be a common divisor of a and b. Then we can find $x, y \in Z$ with a = cx and b = cy. Substituting these into a = qb + r we get cx = qcb + r, so r = c(x - qb), so $c \mid r$. Since we already knew that $c \mid b, c$ is a common divisor of b and r.

Conversely, let d be a common divisor of b and r. Then there exist $z, w \in \mathbb{Z}$ with b = dz and r = dw. Then a = qb + r = qdz + dw = d(qz + w), and $qz + w \in \mathbb{Z}$, so $d \mid a$. Since we already knew that $d \mid b, d$ is a common divisor of a and b.

- (b) We must show that b is a common divisor of a and b, and that if c is a common divisor of a and b then $c \mid b$.
 - We have a = qb + 0, so a = qb, so $b \mid a$;
 - We have $b = b \cdot 1$, so $b \mid b$;
 - If $c \mid a$ and $c \mid b$, then certainly $c \mid b$.

Thus $b = \gcd(a, b)$ as required.

4. (a) Euclid's Algorithm gives the following results:

55	1	0
15	0	1
10	1	-3
5	-1	4
0	3	-11

Thus gcd(55, 15) = 5.

- (b) From the working in (a) we see that $5 = 55 \cdot (-1) + 15 \cdot 4$. So a = -1, b = 4 is a solution.
- (c) $20 = 5 \cdot 4$, so multiplying our solution of (c) by 4 gives $20 = 55 \cdot (-4) + 15 \cdot 16$. Thus a = -4, b = 16 is one solution. Also, from the working in (a) we see that $lcm(55, 15) = 3 \cdot 55 = 11 \cdot 15$, so the general solution is

$$a = -4 + 3t, \qquad b = 16 - 11t,$$

for $t \in \mathbb{Z}$.

(d) We have $5 \mid 55$ and $5 \mid 15$, so $5 \mid 55a+15b$ for any $a, b \in \mathbb{Z}$. However, $5 \nmid 23$. Thus 55a+15b = 23 has no integer solutions.