- **1.** (a) Suppose that $g \circ f$ is onto and g is one-to-one. Let $b \in B$. Then $c = g(b) \in C$, and $g \circ f : A \to C$ is onto, so there is some $x \in A$ with $(g \circ f)(x) = c$. Then g(f(x)) = c = g(b), and g is one-to-one, so f(x) = b. Hence f is onto.
 - (b) Let $f: [0, \infty) \to \mathbb{R}$ and $g: \mathbb{R} \to [0, \infty)$ be given by $f(x) = \sqrt{x}$ and $g(x) = x^{2.1}$ Then, for any $x \in [0, \infty), (g \circ f)(x) = (\sqrt{x})^2 = x$. Hence $g \circ f$ is onto. However, f is not onto as there is no $x \in [0, \infty)$ with $\sqrt{x} = -1$.
- **2.** Suppose f is order preserving. Let $x, y \in \mathbb{R}$ with f(x) = f(y). Then $f(x) \leq f(y)$ and $f(y) \leq f(x)$, so $x \leq y$ and $y \leq x$, so x = y. Hence f is one-to-one.

The converse does not hold: for example, the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = -x is one-to-one but is not order-preserving.

3. (a) Suppose f and g are both foo functions. Let $x \in R$. Then

$$(f \circ g)(x+1) = f(g(x+1))$$

= $f(g(x)+1)$ since g is a foo function
= $f(g(x)) + 1$ since f is a foo function
= $(f \circ g)(x) + 1$,

so $f \circ g$ is a foo function.

- (b) Suppose first that f is a foo function. Let $x \in \mathbb{R}$. Then $x 1 \in \mathbb{R}$, so since f is a foo function we have f((x-1)+1) = f(x-1)+1, in other words f(x) = f(x-1)+1, so f(x-1) = f(x)-1. Conversely, suppose that for every $x \in \mathbb{R}$ we have f(x-1) = f(x) - 1. Let $x \in \mathbb{R}$. Put t = x + 1. Then, by hypothesis, f(t-1) = f(t) - 1, so f((x+1)-1) = f(x+1) - 1, in other words f(x) = f(x+1) - 1, so f(x+1) = f(x) + 1. Hence f is a foo function. [Note: if may be tempting to say that, because f(x+1) = f(x) + 1, we have f(x + (-1)) =f(x) + (-1). In other words, we have f(x+1) = f(x) + 1, so "obviously" for any a we have f(x + a) = f(x) + a. This is not OK, however: while x is a variable which can be replaced with any value in \mathbb{R} , 1 is a fixed number, which we can't just vary freely.]
- (c) Suppose f is a foo function and g is a bar function. Then

$$(f \circ g)(x+1) = f(g(x+1))$$

= $f(g(x) - 1)$ since g is a bar function
= $f(g(x)) - 1$ by part (b), since f is a foo function
= $(f \circ g)(x) - 1$.

Hence $f \circ g$ is a bar function.

¹Note that \sqrt{x} always denotes the *positive* square root of x.

4. For $n \in \mathbb{N}$ let P_n be the statement that $n^3 + 5n$ is a multiple of 6.

Base: P_1 is the statement that 1+5 is a multiple of 6, which is true.

Inductive step: Suppose $n \in \mathbb{N}$ and P_n is true. So there is some $k \in \mathbb{Z}$ such that $n^3 + n = 6k$. Then

$$(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5$$

= $(n^3 + 5n) + 3n^2 + 3n + 6$
= $(n^3 + 5n) + 3(n^2 + n) + 6.$

Now, $n^2 + n$ is even, so $n^2 + n = 2l$ for some $l \in \mathbb{Z}$, so we have

$$(n+1)^3 + 5(n+1) = (n^3 + 5n) + 3(n^2 + n) + 6$$

= $6k + 3 \cdot 2l + 6$
= $6(k+l+1),$

so $(n+1)^3 + 5(n+1)$ is also a multiple of 6, in other words P_{n+1} is also true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.