

- 1. (a) Let $X = \{a + b\}$ $\sqrt{2}$: $a, b \in \mathbb{Z}$ }. We will show that X is a smallest subring of R containing $\sqrt{2}$.
	- X is a subring of \mathbb{R} : we certainly have $X \subseteq \mathbb{R}$, so there are two conditions to check:
		- Λ is a subring of \mathbb{R} : we certainly have $\Lambda \subseteq \mathbb{R}$, so
(1) let $a \in \mathbb{Z}$. Then $a = a + 0\sqrt{2} \in X$. So $\mathbb{Z} \subseteq X$.
		- (2) let $x, y \in X$. Then $x = a + b\sqrt{2}$ and $y = c + d$ $\overline{2}$ for some $a, b, c, d \in \mathbb{Z}$. But then

 $x + y = (a + b)$ $(2) + (c + d)$ $(2) = (a + c) + (b + d)$ $\overline{2} \in X$,

since $a + c, b + d \in \mathbb{Z}$. Similarly we have

$$
xy = (a + b\sqrt{2})(c + d\sqrt{2})
$$

= ac + ad $\sqrt{2}$ + bc $\sqrt{2}$ + bd($\sqrt{2}$)²
= (ac + 2bd) + (ad + bc) $\sqrt{2}$ \in X, and
-x = (-a) + (-b) $\sqrt{2}$ \in X.

- $\sqrt{2} \in X$: we have $\sqrt{2} = 0 + 1\sqrt{2} \in X$.
- $\sqrt{2} \in X$: we nave $\sqrt{2} = 0 + 1\sqrt{2} \in X$.
• if S is a subring of R with $\sqrt{2} \in S$ then $X \subseteq S$: let S be a subring of R with $\sqrt{2} \in S$. Let $x \in X$. Then $x = a + b\sqrt{2}$ for some $a, b \in \mathbb{Z}$. Since $\mathbb{Z} \subseteq S$ we have $a, b \in S$. Since Let $x \in X$. Then $x = a + b\sqrt{2}$ for some $a, b \in \mathbb{Z}$. Since $\mathbb{Z} \subseteq S$ we have $a, b \in S$. Since we also have $\sqrt{2} \in S$ we have $b\sqrt{2} \in S$, so we have $a + b\sqrt{2} \in S$, in other words $x \in S$. Thus $X \subseteq S$.
- (b) Let X and Y be smallest subrings of R contining $\sqrt{2}$. Then $X \subseteq S$ for any subring of R Let X and Y be smallest subrings of $\mathbb R$ contining $\sqrt{2}$. Then $X \subseteq S$ for any subring of $\mathbb R$ containing $\sqrt{2}$: in particular, $X \subseteq Y$. Similarly, $Y \subseteq S$ for any subring of $\mathbb R$ containing $\sqrt{2}$: in particular, $Y \subseteq X$. Hence $X = Y$.
- 2. (1) \implies (2): Suppose $A \subseteq B$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. **Case 1:** $x \in A$. Then since $A \subseteq B$ we have $x \in B$. **Case 2:** $x \in B$. Then we have $x \in B$. So in either case we have $x \in B$. Thus $A \cup B \subseteq B$. Conversely, let $y \in B$. Then $y \in A$ or $y \in B$, so $y \in A \cup B$. Thus $B \subseteq A \cup B$. Combining these, we have $A \cup B = B$.
	- (2) \implies (3): Suppose $A \cup B = B$. Suppose, for a contradiction, that $A \setminus B \neq \emptyset$. Let $x \in A \setminus B$. Then $x \in A$ and $x \notin B$. Since $x \in A$, we have $x \in A \cup B = B$, so $x \in B$. But this contradicts the earlier assertion that $x \notin B$. So there is no such x, i.e. $A \setminus B = \emptyset$.
	- (3) \implies (1): We'll prove the contrapositive. Suppose that $A \not\subseteq B$. Then it is not true that every element of A is an element of B, in other words, there exists some $x \in A$ such that $x \notin B$. But then $x \in A \setminus B$, so $A \setminus B \neq \emptyset$. Hence, by contraposition, if $A \setminus B = \emptyset$ then $A \subseteq B$.
- 3. (a) Let $x \in C \setminus (A \cup B)$. Then $x \in C$ and $x \notin A \cup B$. Since $x \notin A \cup B$ we have $x \notin A$ and $x \notin B$. So we have $x \in C$ and $x \notin A$, so $x \in C \setminus A$. We also have $x \in C$ and $x \notin B$, so $x \in C \setminus B$. Putting these together we have $x \in (C \setminus A) \cap (C \setminus B)$. Hence $C \setminus (A \cup B) \subseteq (C \setminus A) \cap (C \setminus B)$. Conversely, let $y \in C \setminus A \cap (C \setminus B)$. Then $y \in C \setminus A$ and $y \in C \setminus B$, so $y \in C$ and $y \notin A$, and $y \in C$ and $y \notin B$. Since $y \notin A$ and $y \notin B$, $y \notin A \cup B$, so we have $y \in C$ and $y \notin A \cup B$, so $y \in C \setminus (A \cup B)$. Hence $(C \setminus A) \cap (C \setminus B) \subseteq C \setminus (A \cup B)$. Combining these, we have $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.
	- (b) Let $x \in B \setminus (B \setminus A)$. Then $x \in B$ and $x \notin B \setminus A$. Since $x \notin B \setminus A$, it is not true that $x \in B$ and $x \notin A$, so we have $x \notin B$ or $x \in A$. We already know that $x \in B$, so we must have $x \in A$. Thus we have $x \in A \cap B$. Hence $B \setminus (B \setminus A) \subseteq A \cap B$. Conversely, let $y \in A \cap B$. Then $y \in A$ and $y \in B$. Since $y \in A$, $y \notin B \setminus A$, so $y \in B \setminus (B \setminus A)$. Hence $A \cap B \subseteq B \setminus (B \setminus A)$. Combining these, we have $B \setminus (B \setminus A) = A \cap B$.
- 4. (a) Let $X \in \mathcal{P}(A \cap B)$. Then $X \subseteq A \cap B$. Let $x \in X$. Then $x \in A \cap B$, so $x \in A$ and $x \in B$. Thus every element of X is an element of A, so $X \subseteq A$, and also every element of X is an element of B, so $X \subseteq B$. Thus $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$, so $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Hence $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B).$

Conversely, let $Y \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then $Y \in \mathcal{P}(A)$ and $Y \in \mathcal{P}(B)$, so $Y \subseteq A$ and $Y \subseteq B$. Let $y \in Y$. Then $y \in A$ (since $Y \subseteq A$), and $y \in B$ (since $Y \subseteq B$), so $y \in A \cap B$. Thus $Y \subseteq A \cap B$. Hence $P(A) \cap P(B) \subseteq P(A \cap B)$.

Combining these, we get $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(b) Let $A = \{1, 2\}$ and $B = \{3\}$. Then $\{1, 3\} \in \mathcal{P}(A \cup B)$, but $\{1, 3\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$, so in this example we have $P(A \cup B) \neq P(A) \cup P(B)$.