DEPARTMENT OF MATHEMATICS
MATHS 255 FC Solutions to Assignment 2 Due: 14 March 2001

1. (a) Let X = {a+bv2:a,b € Z}. We will show that X is a smallest subring of R containing v/2.
e X is a subring of R: we certainly have X C R, so there are two conditions to check:
(1) let a € Z. Thena=a+0v2€ X. So Z C X.
(2) let z,y € X. Then # = a + bv/2 and y = ¢ + dv/2 for some a,b,c,d € Z. But then

r+y=(a+bV2)+ (c+dV2)=(a+c)+ (b+dV2E€ X,
since a + ¢, b+ d € Z. Similarly we have

zy = (a+bvV2)(c + dV2)

= ac + adv/'2 4 bev'2 + bd(V2)?

= (ac + 2bd) + (ad + be)V2 € X, and
—x = (—a) + (-b)V2 € X.

e V2€ X: wehave vV2=0+1V2 € X.

e if S is a subring of R with v/2 € S then X C S: let S be a subring of R with v/2 € S.
Let x € X. Then z = a + bv/2 for some a,b € 7Z. Since Z C S we have a,b € S. Since
we also have v/2 € S we have bv/2 € S, so we have a + by/2 € S, in other words z € S.
Thus X C S.

(b) Let X and Y be smallest subrings of R contining v/2. Then X C S for any subring of R
containing v/2: in particular, X C Y. Similarly, Y C S for any subring of R containing v/2:
in particular, ¥ C X. Hence X =Y.

2. (1) = (2): Suppose AC B. Let t € AUB. Thenz € Aor x € B.

Case 1: z € A. Then since A C B we have x € B.
Case 2: ¢ € B. Then we have z € B.

So in either case we have x € B. Thus AU B C B.
Conversely, let y € B. Theny € Aory e B,soye€ AUB. Thus BC AU B.
Combining these, we have AU B = B.
(2) = (3): Suppose AU B = B. Suppose, for a contradiction, that A\ B # &. Let x € A\ B.

Then z € A and = ¢ B. Since z € A, we have z € AU B = B, so x € B. But this contradicts
the earlier assertion that x ¢ B. So there is no such z, i.e. A\ B = @.

(3) = (1): We'll prove the contrapositive. Suppose that A ¢ B. Then it is not true that every
element of A is an element of B, in other words, there exists some x € A such that = ¢ B.
But then z € A\ B, so A\ B # @. Hence, by contraposition, if A\ B = @& then A C B.
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3.

(a)

Let z € C\ (AUB). Then z € C' and x ¢ AU B. Since x ¢ AU B we have x ¢ A and z ¢ B.
So we have z € C and x ¢ A, so x € C'\ A. We also have x € C and x ¢ B, so x € C'\ B.
Putting these together we have z € (C'\ A)N(C'\ B). Hence C'\ (AUB) C (C\ A)N(C\ B).
Conversely, let y € C\ A)N(C\ B). Thenye C\Aandye€ C\ B,soy € C and y ¢ A, and
yeCandy ¢ B. Sincey ¢ Aandy ¢ B,y ¢ AUB, so we have y € C and y ¢ AU B, so
ye C\(AUB). Hence (C\A)N(C\B)CC\ (AUB.

Combining these, we have C'\ (AU B) = (C'\ A)n (C'\ B).

Let x € B\ (B\ A). Then x € Band z ¢ B\ A. Since z ¢ B\ A, it is not true that z € B
and x ¢ A, so we have x ¢ B or x € A. We already know that = € B, so we must have z € A.
Thus we have v € AN B. Hence B\ (B\ A) C AN B.

Conversely, let y € ANB. Theny € Aandy € B. Sincey € A,y ¢ B\ A,soy € B\ (B\A).
Hence ANB C B\ (B\ A4).

Combining these, we have B\ (B\ A) = AN B.

Let X € P(ANB). Then X C ANB. Let z € X. Thenx € ANB,sox € Aand z € B.
Thus every element of X is an element of A, so X C A, and also every element of X is an
element of B, so X C B. Thus X € P(A) and X € P(B), so X € P(A) NP(B). Hence
P(ANB) CPA)NP(B).

Conversely, let Y € P(A)NP(B). ThenY € P(A) and Y € P(B),soY C Aand Y C B. Let
y €Y. Theny € A (since Y C A),andy € B (since Y C B),soy€ ANB. ThusY C AN B.
Hence P(A)NP(B) C P(ANB).

Combining these, we get P(AN B) = P(A) N P(B).

Let A ={1,2} and B = {3}. Then {1,3} € P(AU B), but {1,3} ¢ P(A) UP(B), so in this
example we have P(AU B) # P(A) UP(B).
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