Solutions to Assignment 1

Due: 7 March 2001

- 1. (a) "17 is an even number" is a statement.
 - (b) "n is a prime number" is a predicate (with n as a free variable).
 - (c) "If n is a prime number then n is odd" is a predicate (with n as a free variable).
 - (d) "Is 13 a prime number?" is neither a statement nor a predicate.
 - (e) "Every even number is the sum of two odd numbers" is a statement.
- **2.** (a) We have the following truth table:

A	B	$A \Longrightarrow B$	$\sim B$	$A \implies \sim B$	$(A \implies B) \lor (A \implies \sim B)$
Τ	Τ	Т	F	F	T
${ m T}$	\mathbf{F}	F	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	${\rm T}$	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$	${\rm T}$	${ m T}$	${ m T}$

Thus $(A \Longrightarrow B) \lor (A \Longrightarrow \sim B)$ is a tautology.

(b) We have the following truth table:

A	B	$A \Longrightarrow B$	$\sim A$	$\sim A \implies B$	$(A \implies B) \lor (\sim A \implies B)$
T	Τ	Τ	F	Τ	T
${ m T}$	\mathbf{F}	F	\mathbf{F}	${ m T}$	${f T}$
\mathbf{F}	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	F	${ m T}$	${ m T}$	\mathbf{F}	${ m T}$

Thus $(A \Longrightarrow B) \lor (\sim A \Longrightarrow B)$ is a tautology.

(c) We have the following truth table:

A	B	$A \implies B$	$\sim A$	$\sim B$	$\sim A \implies \sim B$	$(A \implies B) \land (\sim A \implies \sim B)$
T	Τ	Τ	F	F	Τ	T
${ m T}$	F	${ m F}$	\mathbf{F}	${ m T}$	${ m T}$	${f F}$
\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}	${f F}$
\mathbf{F}	\mathbf{F}	${ m T}$	${\rm T}$	\mathbf{T}	${ m T}$	${ m T}$

Thus $(A \Longrightarrow B) \land (\sim A \Longrightarrow \sim B)$ is neither a tautology nor a contradiction.

(d) We have the following truth table:

A	B	$A \implies B$	$\sim (A \implies B)$	$A \wedge \sim (A \implies B)$
Τ	Τ	T	F	F
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
F	${ m T}$	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${ m T}$	${ m F}$	${ m F}$

Thus $A \wedge \sim (A \implies B)$ is neither a tautology nor a contradiction.

- **3.** (a) The contrapositive of A(n) is "If n+1 is prime then n is not prime".
 - (b) The converse of A(n) is "If n+1 is not prime then n is prime".
 - (c) The negation of A(n) is "n is prime and n+1 is prime".
 - (d) Yes, A(n) is true for some n: for example, A(5) is true.
 - (e) No, A(n) is not true for every natural number n: as a counterexample, A(2) is false.
 - (f) Since the contrapositive is equivalent to A(n) itself, from (d) and (e) we see that the contrapositive is true for some $n \in \mathbb{N}$ but not for all $n \in \mathbb{N}$.
 - (g) The converse is true for some but not all $n \in \mathbb{N}$: for example the converse of A(5) is true, while the converse of A(8) is false.
- **4.** (a) Suppose n is even. Then n = 2k for some natural number k, so

$$f(n) = (2k)^2 + 2(2k)$$
$$= 2(2k^2 + 2k),$$

and $2k^2 + 2k \in \mathbb{N}$, so f(n) is even.

(b) Suppose n is not even. Then n is odd, so n = 2k + 1 for some $k \in \mathbb{Z}$. But then

$$f(n) = (2k+1)^2 + 2(2k+1)$$
$$= 4k^2 + 4k + 1 + 4k + 2$$
$$= 2(2k^2 + 4k + 1) + 1,$$

and $(2k^2 + 4k + 1) \in \mathbb{Z}$, so f(n) is odd, so f(n) is not even. Hence, by contraposition, if f(n) is even then n is even.

(c) Suppose, for a contradiction, that f(n+k) is odd and (n is odd or k is odd) is false, in other words n and k are both even. But then n+k is even, so by part (a) we have f(n+k) is even, a contradiction. Hence, by contradiction, if f(n+k) is odd then n is odd or k is odd.