MATHS 255 FC	Assignment 5	Due: 4 April 2001

- **1.** Show that, for every $n \in \mathbb{N}$, $7 \mid 8^n 1$.
- **2.** Let a and b be natural numbers. Put

 $S = \{ n \in \mathbb{N} : \text{for some } x, y \in \mathbb{Z}, n = ax + by \}$

Notice that $S \neq \emptyset$ (since $a = a \cdot 1 + b \cdot 0$ so $a \in S$), and therefore S has a least element, d say. We will show that $d = \gcd(a, b)$.

- (a) Show that $d \mid a$. [Hint: write a = qd + r with $q, r \in \mathbb{Z}$ and $0 \le r < d$. Show that if 0 < r then $r \in S$, and say why this is impossible.]
- (b) Show that $d \mid b$. [Use a similar method to (a).]
- (c) Show that if c is a common divisor of a and b then $c \mid d$.
- **3.** Let $a, b \in \mathbb{N}$. Suppose a = qb + r, with $q, r \in \mathbb{Z}, 0 \le r < b$.
 - (a) Suppose r > 0. Show that the common divisors of a and b are the same as the common divisors of b and r.
 - (b) Suppose instead that r = 0. Show that gcd(a, b) = b.
- 4. (a) Find the greatest common divisor of 55 and 15.
 - (b) Find integers x and y such that gcd(55, 15) = 55x + 15y.
 - (c) Find all integer solutions to the equation 55a + 15b = 20.
 - (d) Find all integer solutions to the equation 55a + 15b = 23.