MATHS 255 FC	Assignment 4	Due: 28 March 2001

- **1.** Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Suppose that $g \circ f$ is onto and g is one-to-one. Show that f is onto.
 - (b) Give an example to show that we cannot omit the hypothesis that g is one-to-one in the previous part.
- **2.** A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *order-preserving* if, for all $x, y \in \mathbb{R}$,

$$x \le y$$
 iff $f(x) \le f(y)$.

Show that if f is order-preserving then it is one-to-one. Does the converse hold?

- **3.** A function $f : \mathbb{R} \to \mathbb{R}$ is said to be a *foo* function if f(x+1) = f(x) + 1 for every $x \in \mathbb{R}$, and a *bar* function if f(x+1) = f(x) 1 for all $x \in \mathbb{R}$.
 - (a) Show that if f and g are both foo functions then $f \circ g$ is a foo function.
 - (b) Prove that $f : \mathbb{R} \to \mathbb{R}$ is a foo function if and only if for every $x \in \mathbb{R}$ we have f(x-1) = f(x)-1.
 - (c) Show that if f is a foo function and g is a bar function then $f \circ g$ is a bar function.
- **4.** Prove by induction that, for every $n \in \mathbb{N}$, $n^3 + 5n$ is a multiple of 6. [You may assume that $n^2 + n$ is even for all $n \in \mathbb{N}$.]