MATHS 255 FC	Assignment 3	Due: 21 March 2001

1. Let (A, \leq) be a poset. Define a relation \preccurlyeq on $A^2 = A \times A$ by declaring that

 $(a,b) \preccurlyeq (c,d)$ iff $(a \le c \land b \le d)$.

Show that \preccurlyeq is a partial order on A^2 .

- **2.** Let $A \subseteq \mathbb{R}$, and let l be an upper bound for A. Show that l is least upper bound for A iff for every $\varepsilon \in \mathbb{R}$ with $\varepsilon > 0$ we have $(l \varepsilon, l] \cap A \neq \emptyset$. [Hint: think about what it means for $l \varepsilon$ to fail to be an upper bound for A.]
- **3.** Let $A = \mathbb{Z} \times \mathbb{N}$. Define a relation \sim on A by declaring that

 $(a,b) \sim (c,d)$ iff ad = bc.

Show that \sim is an equivalence relation on A.

4. Let $f: A \to B$ be a function. Define a new function $F: \mathcal{P}(B) \to \mathcal{P}(A)$ by declaring that, for $C \subseteq B$,

$$F(C) = \{ a \in A : f(a) \in C \}.$$

Show that F is one-to-one if and only if f is onto.