- **1.** A subring of \mathbb{R} is a subset S of \mathbb{R} such that
 - (1) $\mathbb{Z} \subseteq S$; and
 - (2) if $x, y \in S$ then $x + y \in S$, $xy \in S$ and $-x \in S$.

We define $\mathbb{Z}[\sqrt{2}]$ to be the smallest subring of \mathbb{R} containing $\sqrt{2}$, in other words by declaring that

- $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} ;
- $\sqrt{2} \in \mathbb{Z}[\sqrt{2}];$ and
- if S is a subring of \mathbb{R} with $\sqrt{2} \in S$ then $\mathbb{Z}[\sqrt{2}] \subseteq S$.

To justify this definition, we have to give an existence proof and a uniqueness proof.

(a) Show that there exists a smallest subring of \mathbb{R} containing $\sqrt{2}$. [To do this, we must provide a candidate, and show that it has the properties we want. The candidate is

$$X = \{ a + b\sqrt{2} : a, b \in \mathbb{Z} \}.$$

Show that this set has all the properties we want.]

(b) Show that the smallest subring of \mathbb{R} containing $\sqrt{2}$ is unique. [To do this, we must show that if X and Y both satisfy the conditions then X = Y. This is not a trick question: once you understand what is required, you can write down your answer in a few lines.]

2. Let *A* and *B* be sets. Show that the following are equivalent:

- (1) $A \subseteq B$.
- $(2) \ A \cup B = B.$
- (3) $A \setminus B = \emptyset$.
- **3.** Let A, B and C be sets. Show that the following hold.
 - (a) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B).$
 - (b) $B \setminus (B \setminus A) = A \cap B$.
- **4.** (a) Show that for any sets A and B, $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (b) Give an example of sets A and B such that $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.