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1. Suppose that 0 1< <a  and that xn{ }  is a sequence satisfying x x an n
n

+ − ≤1 , prove that xn{ }  is 
      Cauchy and hence convergent.

2. Let I be a real interval and f I I: →  satisfy f x f y a x y x y I( ) ( ) ,  ,− ≤ − ∈ ,  0 1< <a .  
Such a function is  called a contraction mapping .
(i) Prove that f is continuous on I.
(ii) Let x I1 ∈  and define x f x nn n+ = =1 1 2( ),  , ,  ....  Use 1 above to prove that xn{ }  converges and that
    its limit l is a fixed point satisfying l f l= ( ).

3. Suppose that f is continuous at every point and that f x( ) → 0 as x → ±∞ . Prove that f attains a 
   maximum or a minimum value on R.

4. A function f is continuous on the interval I and for each rational number, r in I f r r( ) = 2.
   Prove f x x x I( )  = ∀ ∈2 .
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.  Find any x where f is (i) continuous, (ii) differentiable.

Contraction Mappings and Fractals.

You can define a metric space ( , )X h as follows: X is the set of all compact subsets of R2 .
d x A d x a a A( , ) glb( ( , ),  )= ∈ , d B A d x A x B( , ) lub( ( , ),  )= ∈ , h B A d B A d A B( , ) max( ( , ), ( , ))= .
This distance, the Hausdorff metric is the greatest distance either set protrudes from the other.

Now we can define a contraction mapping on this space by defining a set of piecewise contraction
mappings taking the unit square to a union of contracted images.  The function is multiple valued on
points but maps a compact set to a unique compact set.  The limit of the sequence of recursive iterations
is a fixed set which the function preserves under iteration.  This is called the fractal attractor of the
iterated function system.  For example the contraction mapping consisting of three affine contractions 
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define the Sierpinski Gasket shown below.


