THE UNIVERSITY OF AUCKLAND 445.255 sc

EXAMINATION FOR BA BSc ETC 2000

MATHEMATICS

Principles of Mathematics

(Time allowed: THREE hours)

NOTE: Answer ALL the questions. All questions carry equal marks.

- **1.** Let $f : \mathbb{N} \to \mathbb{N}$ be given by $f(x) = x^2 + 2x$.
 - (a) Use a **direct proof** to show that if n is even then f(n) is even.
 - (b) Use a **proof by contraposition** to show that if f(n) is even then n is even.
 - (c) Use a **proof by contradiction** to show that if f(n+k) is odd then n is odd or k is odd.
 - (d) Prove that f is one-to-one. [Hint: show first that if n < k then f(n) < f(k).]
- **2.** (a) Let S be a set with at least two elements. Define a relation ρ on $\mathcal{P}(S) \setminus \{\emptyset\}$ by declaring that, for $A, B \subseteq S$ with $A, B \neq \emptyset$,

 $A \rho B$ if and only if $A \cap B \neq \emptyset$.

Show that ρ is reflexive and symmetric but not transitive.

- (b) Let $f : A \to B$ and $g : B \to C$ be functions. Show that if $g \circ f$ is one-to-one then f is one-to-one.
- **3.** (a) Prove that for all integers $m \neq 1$ and for all $n \in \mathbb{N}$,

$$m - 1 \mid m^n - 1$$

- (b) Let $S = \{1\} \cup \{1 + \frac{1}{n} : n \in \mathbb{N}\}$. Prove that S is not well-ordered.
- (c) Let $T = \{1\} \cup \{1 \frac{1}{n} : n \in \mathbb{N}\}$. Prove that T is well-ordered.
- 4. (a) Find $d = \gcd(1330, 662)$ and find integers u and v such that d = 1330u + 662v.
 - (b) Find a solution to the equation $\overline{662} \cdot_{1330} \overline{x} = \overline{6}$ in \mathbb{Z}_{1330} .
 - (c) Prove that if f(x) is a polynomial with f(a) = f'(a) = 0 then $(x a)^2 | f(x)$.

- 5. (a) Find the least upper bound and the greatest lower bound of the set $S = \{ (\frac{1}{2})^n + (-\frac{1}{3})^n : n \in \mathbb{N} \}.$
 - (b) Let B be a nonempty subset of \mathbb{R} which is bounded above. Define a second subset A of \mathbb{R} by $A = \{ kb : b \in B \}$ for a fixed $k \in \mathbb{R}$ with k > 0. Prove that lub A = k lub B.
 - (c) Suppose $\{s_n\}$ and $\{t_n\}$ are real-valued sequences such that $s_n \to s$ and $t_n \to t$ as $n \to \infty$. Suppose further that there exists a fixed integer N such that $s_n < t_n$ for all n > N. Is it true that s < t? Give a proof or a counterexample.
- 6. (a) Let $S = (-1,0] \cup \{1,\frac{1}{2},\frac{1}{3},\dots\}$ and define $f: S \to \mathbb{R}$ by $f(x) = \begin{cases} x & x < 0 \\ x+1 & x \ge 0. \end{cases}$

Prove (from the definition) that f is not continuous at x = 0. [Hint: Choose an appropriate ϵ and show that there is no corresponding δ . It might help to draw a picture.]

- (b) If $g(x) \to l$ as $x \to a$ prove that $|g(x)| \to |l|$ as $x \to a$. Is the converse true? Give a proof or a counterexample.
- (c) Suppose h is continuous on [0, 1], h(x) is rational for every $x \in [0, 1]$ and h(0) = 0. Find $h(\frac{\sqrt{2}}{2})$. [Hint: Suppose first that $h(\frac{\sqrt{2}}{2}) > 0$ and make use of the Intermediate Value Theorem.]
- **7.** Consider $(\mathbb{Z}, +)$, the group of integers.
 - (a) Let $S = \{4z : z \in \mathbb{Z}\}$. Prove that (S, +) is a subgroup of $(\mathbb{Z}, +)$.
 - (b) Prove that $\varphi : n \mapsto 4n$ is an isomorphism from \mathbb{Z} to S.
 - (c) Describe the kernel of φ .
- 8. (a) Let G be a group and assume that $a^2 = e$ for all $a \in G$ (as usual, e denotes the identity of G). By considering $(ab)^2$, show that G is abelian.
 - (b) Give an example of a group G with more than 2 elements which has the property that $a^2 = e$ for all $a \in G$.