```
\overline{445.255} SC
```

Solutions to Term Test

- 1. (a) The contrapositive of A(n) is "If n is even then n is not prime".
 - (b) The converse of A(n) is "If n is odd then n is prime".
 - (c) The negation of A(n) is "n is prime but n is not odd".
 - (d) A(n) is true for some $n \in \mathbb{N}$, for example A(5) is true.
 - (e) A(n) is not true for every $n \in \mathbb{N}$, for a counterexample A(2) is false.
 - (f) By (d) and (e) we know that the contrapositive of A(n) is true for some n but not for every n.
 - (g) The converse of A(n) is true for some n but not for every n. For example the converse of A(5) is true, but the converse of A(9) is false.
- 2. We must show that \sim is reflexive, symmetric and transitive.

Reflexive: Let $x \in S$. Then, since ρ is reflexive, $x \rho x$ (and $x \rho x$), so $x \sim x$.

Symmetric: Let $x, y \in S$ with $x \sim y$. Then $x \rho y$ and $y \rho x$, so $y \rho x$ and $x \rho y$, so $y \sim x$.

Transitive: Let $x, y, z \in S$ with $x \sim y$ and $y \sim z$. Then $x \rho y$ and $y \rho x$, and $y \rho z$ and $z \rho y$. Since $x \rho y$ and $y \rho z$ and ρ is transitive, $x \rho z$. Similarly, since $z \rho y \rho x$ we have $z \rho x$. So $x \rho z$ and $z \rho x$, so $x \sim z$.

3. (a)
$$n = 2: \sum_{i=2}^{2} \frac{1}{i(i+1)} = \frac{1}{2(3)} = \frac{2-1}{2(2+1)}$$
. True for $n = 2$.
Assume $k \ge 2$ and that $\sum_{i=2}^{k} \frac{1}{i(i+1)} = \frac{k-1}{2(k+1)}$. Then

$$\begin{split} \sum_{i=2}^{k+1} \frac{1}{i(i+1)} &= \frac{k-1}{2(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{(k-1)(k+2)+2}{2(k+1)(k+2)} = \frac{k^2+k-2+2}{2(k+1)(k+2)} \\ &= \frac{(k+1)(k)}{2(k+1)(k+2)} = \frac{k}{2(k+2)}. \end{split}$$

By Principle of Mathematical Induction, true for all $n \geq 2$.

- (b) Let $\emptyset \neq B \subseteq \mathbb{Z}$ and assume B is bounded below by c. We may assume c < b for all $b \in B$. Let $B' = \{b c : b \in B\}$. (that is, we subtract c from everything to get a subset of \mathbb{N}). Then $\emptyset \neq B' \subseteq \mathbb{N}$, so B' has a smallest element, say b'. Then $b = b' + c \in B$, and b is smallest in B since b' is smallest in B'.
- 4. (a) $a|b \Rightarrow b = na$ for some $n \in \mathbb{Z}$.

 $a|c \Rightarrow c = ma$ for some $m \in \mathbb{Z}$. Suppose $d = \gcd(b, c)$, say d = bx + cy for some $x, y \in \mathbb{Z}$. Then d = nax + may = a(nx + my) so a|d.

- (b) $a \equiv b \mod n \Rightarrow n | b a \Rightarrow b a = nr$. $c \equiv d \mod n \Rightarrow n | c - d \Rightarrow c - d = ns$. ac - bd = ac - ad + ad - bd = a(c - d) + (a - b)d = ans - nrd = n(as - rd). So n|ac - bd and $ac \equiv bd \mod n$.
- (c) Solving $\overline{21} \cdot_{50} \overline{x} = \overline{1}$ is the same as solving $21x \equiv 1 \mod 50$, or finding x, y such that 21x + 50y = 1. 50 1 0

210 1 -28 1 So 1 = (21)(-19) + (50)(8). The solution is $\overline{x} = -\overline{19} = \overline{31}$. 5-253 3 -7212-51 8 -19