THE UNIVERSITY OF AUCKLAND 445.255 sc

TERMS TEST

MATHEMATICS

Principles of Mathematics

(Time allowed: 90 MINUTES)

1. Let n be a natural number, and let A(n) be the statement

"If n is prime then n is odd".

- (a) Write down the contrapositive of A(n).
- (b) Write down the converse of A(n).
- (c) Write down the negation of A(n).
- (d) Is A(n) true for some $n \in \mathbb{N}$? If so, give an example, if not give a proof.
- (e) Is A(n) true for every $n \in \mathbb{N}$? If so, give a proof, if not give a counterexample.
- (f) Is the contrapositive of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- (g) Is the converse of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- 2. Let S be a set and let ρ be a binary relation on S. Suppose that ρ is both reflexive and transitive. Define a new relation \sim on S by declaring that

 $x \sim y$ if and only if $x \rho y$ and $y \rho x$.

Show that \sim is an equivalence relation on S.

3. (a) Prove that for all integers $n \ge 2$,

$$\sum_{i=2}^{n} \frac{1}{i(i+1)} = \frac{n-1}{2(n+1)}$$

- (b) Assume that \mathbb{N} is well-ordered, that is, every non-empty subset of \mathbb{N} has a least element. Prove that every non-empty subset of \mathbb{Z} that has a lower bound has a least element.
- 4. (a) Recall that the greatest common divisor of positive integers b, c is the smallest positive integer of the form bx + cy, $x, y \in \mathbb{Z}$. Suppose that a, b, c are positive integers and that a|b and a|c. Prove that $a| \gcd(b, c)$.
 - (b) Prove that if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.
 - (c) Solve the equation $\overline{21} \cdot_{50} \overline{x} = \overline{1}$ for $\overline{x} \in \mathbb{Z}_{50}$.