- **1.** Suppose a > b, i.e. a-b > 0 and take $\epsilon = 1/n$. Then 0 < a-b < 1/n or n < 1/(a-b). But n can be any positive integer. So 1/(b-a) is an upper bound for the positive integers. This is a contradiction since we have shown that the positive integers are unbounded above. so the asumption that a > b is false, i.e. $a \le b$.
- **2.** (a) Recall that if a > 0 then $|x| \le a \iff -a \le x \le a$. Now $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. So by addition $-(|a| + |b|) \le a + b \le |a| + |b|$. So $|a + b| \le |a| + |b|$.

(b)
$$\left|\frac{x+3}{3x-2}\right| < 5 \iff -5 \le \frac{x+3}{3x-2} \le 5.$$

Case 1 3x - 2 > 0, i.e. x > 2/3. Then $-5(3x - 2) \le x - 3 \le 5(3x - 2)$ and so $-15x + 10 \le x + 3 \le 15x - 10$ giving $7 \le 16x$ or $13 \le 14x$. So $x \ge 7/16, 13/14$ and 2/3. To satisfy these conditions simultaneously we need $x \ge 13/14$.

Case 2 3x - 2 < 0, i.e. x < 2/3. Then $-5(3x - 2) \ge x - 3 \ge 5(3x - 2)$ and so $-15x + 10 \ge x + 3 \ge 15x - 10$ giving $7 \ge 16x$ or $13 \ge 14x$. So $x \le 7/16, 13/14$ and 2/3. To satisfy these conditions simultaneously we need $x \le 7/16$.

So the solution set is $(-\infty, 7/16] \cup [13/14, \infty)$.

3. $\frac{n-1}{2n} = \frac{1}{2} - \frac{1}{2n} < \frac{1}{2}$ for all $n \in \mathbb{N}$. So \mathbb{N} is bounded above by 1/2.

This is the least upper bound since if $\epsilon > 0$ then $\frac{1}{2} - \frac{1}{2n} > \frac{1}{2} - \epsilon$ for $\frac{1}{2n} < \epsilon$, i.e. for $n > \frac{1}{2\epsilon}$. S has no maximum since $\frac{1}{2} - \frac{1}{2(n+1)}$ is always greater than $\frac{1}{2} - \frac{1}{2n}$ for any $n \in \mathbb{N}$.

4. $A + B = \{a + b : a \in A, b \in B\}$. If m = lubA and n = lubB then $a \leq m$ for all $a \in A$ and $b \leq n$ for all $b \in B$. So $a + b \leq m + n$ for all $a + b \in A + B$, i.e. m + n is an upper bound for A + B. Now given $\epsilon > 0$ there are elements $a_0 \in A$ and $b_0 \in B$ such that $a_0 > m - \epsilon/2$ and $b_0 > n - \epsilon/2$ (since m, n are least upper bounds for A, B respectively). Then $a_0 + b_0 \in A + B$ and $a_0 + b_0 > m + n - \epsilon$. So m + n is the lub for A + B.

If $A \subset B$ then clearly n is an upper bound for A. So (by the definition of a least upper bound) $lubA \leq n$.

- **5.** Firstly $a \le x$ for all $a \in A$. So x is an upper bound for A. But $x \in A$ and $x > x \epsilon$ for any $\epsilon > 0$. So $x - \epsilon$ is not an upper bound. Hence x is the least upper bound for A.
- 6. y x > 0 and since the positive integers are unbounded above there is an integer $n > \sqrt{2}/(y x)$, i.e. $0 < \sqrt{2}/n < y - x$. Now $\sqrt{2}/n$ is irrational since if $\sqrt{2}/n = p/q$ then $\sqrt{2} = np/q$, etc. Let *m* be the smallest multiple of $\sqrt{2}/n$ which is $\geq x$. (Such multiples exist by the Archimedean property and there is a smallest by the well-ordering property of the positive integers.) If $m\sqrt{2}/n =$

x take $s = (m+1)\sqrt{2}/n$. Then s is irrational and clearly x < s < y. If $m\sqrt{2}/n > x$ then $(m-1)\sqrt{2}/n < x$ and we have $x < \frac{(m-1)+1}{n}\sqrt{2} < x + \frac{\sqrt{2}}{n} < y$. Now take $s = m\sqrt{2}/n$.