1. Prove that for all $n \in \mathbb{N}$,

 $3 \nvert 2^{2^n} - 1.$

Proof: [Induction on *n*.] P_n : $3 \nvert 2^{2^n} - 1$

 P_1 is true:

Proof: $2^{2^1} - 1 = 4 - 1 = 3$ and $3 \mid 3$.

For all $k \geq 1$ $P_k \Rightarrow P_{k+1}$ is true.

Proof: Assume $k \ge 1$ and that $3 \mid 2^{2^k} - 1$, so that $2^{2^k} - 1 = 3x$ for some $x \in \mathbb{Z}$.

$$
2^{2^{k+1}} - 1 = 2^{2(2^k)} - 1 = (2^{2^k})^2 - 1^2
$$

= $(2^{2^k} + 1)(2^{2^k} - 1)$
= $(2^{2^k} + 1)(3x)$ by induction hypothesis
= $3x(2^{2^k} + 1)$. Hence $3 | 2^{2^{k+1}} - 1$.

By PMI, P_n is true for all $n \in \mathbb{N}$.

2. Prove that if r, s are relatively prime integers, then so are $r + s$ and s.

Proof: Suppose $0 < a \in \mathbb{Z}$ and $a \mid r + s$ and $a \mid s$. We show $a = 1$.

 $r + s = ax$ and $s = ay$ for some $x, y \in \mathbb{Z}$. So $r = ax - s = ax - ay = a(x - y)$. So a | r (and of course $a \mid s$ still).

a is a common divisor of r, s which are relatively prime so $a \mid 1$, so that $a = 1$. Hence $r + s$ and s are relatively prime.

relatively primer.
Advised by the state α at α , b are relatively prime if and only if α is a linear combination on α is a linear combination on α

of a, b: $rx + sy = 1$ for some $x, y \in \mathbb{Z}$. So $rx + sy + sx - sx = 1$. Hence $(r + s)x + s(y - x) = 1$. So $r + s, s$ are relatively prime relatively prime.

- **3.** Suppose that a, b are non-zero integers and that m is a positive common multiple of a, b. Prove that the following statements are equivalent:
	- (i) $m \leq c$ for every positive common multiple c of a, b.
	- (ii) $m \mid c$ for all common multiples c of a, b.

Proof: $m > 0$ and $a \mid m$ and $b \mid m$.

Assume (i), that is, assume $m \leq c$ for all positive common multiples c of a, b.

Let c be a common multiple of a, b. We show $m \mid c$. We may assume $c > 0$ since $m \mid c$ if and only if $m \mid -c$.
By the Division Algorithm,

 B_{ν} the Division Algorithm,

 $c = mq + r$ for some $q, r \in \mathbb{Z}, 0 \leq r < m$.

Suppose $r \neq 0$. Since c and m are common multiples of a, b, then so is $c - mq = r$. But then from (i), $m \leq r$, a contradiction. Hence $r = 0$ and $m \mid c$. (i) \Rightarrow (ii) is proved.

Assume (ii), that is $m | c$ for all common multiples c of a, b. If c is positive and $m | c$, then $m \leq c$. Hence $(ii) \Rightarrow (i)$ is proved.

4. Prove that if a, b are relatively prime integers and a $|c$ and b $|c$ then ab $|c$.

Proof: a, b relatively prime means $ax + by = 1$ for some integers x, y. Suppose a | c and b | c. Then $au = c$ and $bv = c$ for some integers u, v .

$$
ax + by = 1 \Rightarrow axc + byc = c
$$

$$
\Rightarrow axbv + byau = c
$$

$$
\Rightarrow ab(xv + yu) = c
$$

$$
\Rightarrow ab \mid c
$$