- **1.** (a) (i) $(1,1) \sqsubseteq (2,3)$.
 - (ii) $(1, -1) \not\sqsubseteq (2, -2).$
 - (iii) $(1,2) \not\sqsubseteq (2,1).$
 - (iv) $(2,1) \not\sqsubseteq (1,2)$.
 - (b) We must check that \sqsubseteq is reflexive, antisymmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then $x \leq x$ and $y \leq y$, so $(x, y) \sqsubseteq (x, y)$.

- **Antisymmetric:** Let $(x, y), (u, v) \in \mathbb{R}^2$ with $(x, y) \sqsubseteq (u, v)$ and $(u, v) \sqsubseteq (x, y)$. Then $x \le u$ and $y \le v$, and $u \le x$ and $v \le y$. Since $x \le u \le x$ we have x = u, and since $y \le v \le y$ we have y = v. So (x, y) = (u, v).
- **Transitive:** $(x, y), (u, v), (s, t) \in \mathbb{R}^2$ with $(x, y) \sqsubseteq (u, v)$ and $(u, v) \sqsubseteq (s, t)$. Then $x \le u$ and $y \le v$, and $u \le s$ and $v \le t$. So $x \le u \le s$ and $y \le v \le t$, so $x \le s$ and $y \le t$, so $(x, y) \sqsubseteq (s, t)$.
- (c) \sqsubseteq is not a total order on \mathbb{R}^2 : from (a)(iii) and (iv) we see that (1, 2) and (2, 1) are not comparable under \sqsubseteq .
- **2.** We must show that \sim_f is reflexive, symmetric and transitive.

Reflexive: Let $x \in A$. Then f(x) = f(x), so $x \sim_f x$. **Symmetric:** Let $x, y \in A$ with $x \sim_f y$. Then f(x) = f(y), so f(y) = f(x), so $y \sim_f x$. **Transitive:** Let $x, y, z \in A$ with $x \sim_f y$ and $y \sim_f z$. Then f(x) = f(y), and f(y) = f(z), so f(x) = f(z), so $x \sim_f z$.

3. (a) We must show that \sim is reflexive, symmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then 3x - y = 3x - y, so $(x, y) \sim (x, y)$. **Symmetric:** Let $(u, v), (x, y) \in \mathbb{R}^2$ with $(u, v) \sim (x, y)$. Then 3u - v = 3x - y, so 3x - y = 3u - v, so $(x, y) \sim (u, v)$. **Transitive:** Let $(u, v), (x, y), (z, w) \in \mathbb{R}^2$ with $(u, v) \sim (x, y)$ and $(x, y) \sim (z, w)$. Then 3u - v = 3u - v.

3x - y and 3x - y = 3z - w, so 3u - v = 3z - w, so $(u, v) \sim (z, w)$.

(b) For all $(x, y) \in \mathbb{R}^2$ we have

$$(x,y)\in T_{(0,0)}\iff (0,0)\sim (x,y)\iff 3\cdot 0-0=3x-y\iff y=3x.$$

Thus $T_{(0,0)}$ is the line y = 3x with slope 3, passing through the origin.

(c) Similarly, for all $(x, y) \in \mathbb{R}^2$ we have

 $(x,y) \in T_{(u,v)} \iff (u,v) \sim (x,y) \iff 3u-v = 3x-y \iff y = 3x+(v-3u) \iff y = 3x+c,$ where c = v - 3u. Thus $T_{(u,v)}$ is the line y = 3x + (v - 3u) with slope 3 and y-intercept v - 3u.

- (d) The set \mathcal{R}_{\sim} of equivalence classes under \sim is the set of all lines with slope 3.
- **4.** Suppose that $g \circ f$ is onto and g is one-to-one. Let $b \in B$. [We want to use the fact that $g \circ f$ is onto, and to do that we need to get an element of C. We can get one by applying g to b.] Then $g(b) \in C$, and $g \circ f$ is onto, so there is some $x \in A$ with $(g \circ f)(x) = g(b)$, in other words g(f(x)) = g(b). Then, since g is one-to-one, we have f(x) = b, as required. Hence f is onto.