- 1. (a) (i) $(1, 1) \sqsubseteq (2, 3)$.
	- (ii) $(1, -1) \not\sqsubseteq (2, -2)$.
	- (iii) $(1, 2) \not\sqsubseteq (2, 1)$.
	- (iv) $(2, 1) \not\sqsubset (1, 2)$.
	- (b) We must cheke that \subseteq is reflexive, antisymmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then $x \leq x$ and $y \leq y$, so $(x, y) \sqsubseteq (x, y)$.

- Antisymmetric: Let $(x, y), (u, v) \in \mathbb{R}^2$ with $(x, y) \sqsubseteq (u, v)$ and $(u, v) \sqsubseteq (x, y)$. Then $x \leq u$ and $y \leq v$, and $u \leq x$ and $v \leq y$. Since $x \leq u \leq x$ we have $x = u$, and since $y \leq v \leq y$ we have $y = v$. So $(x, y) = (u, v)$.
- **Transitive:** $(x, y), (u, v), (s, t) \in \mathbb{R}^2$ with $(x, y) \sqsubseteq (u, v)$ and $(u, v) \sqsubseteq (s, t)$. Then $x \leq u$ and $y \leq v$, and $u \leq s$ and $v \leq t$. So $x \leq u \leq s$ and $y \leq v \leq t$, so $x \leq s$ and $y \leq t$, so $(x, y) \sqsubseteq (s,t).$
- (c) \subseteq is not a total order on \mathbb{R}^2 : from (a)(iii) and (iv) we see that (1, 2) and (2, 1) are not comparable under \sqsubseteq .
- 2. We must show that \sim_f is reflexive, symmetric and transitive.

Reflexive: Let $x \in A$. Then $f(x) = f(x)$, so $x \sim_f x$. **Symmetric:** Let $x, y \in A$ with $x \sim_f y$. Then $f(x) = f(y)$, so $f(y) = f(x)$, so $y \sim_f x$. **Transitive:** Let $x, y, z \in A$ with $x \sim_f y$ and $y \sim_f z$. Then $f(x) = f(y)$, and $f(y) = f(z)$, so $f(x) = f(z)$, so $x \sim_f z$.

3. (a) We must show that \sim is reflexive, symmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then $3x - y = 3x - y$, so $(x, y) \sim (x, y)$. **Symmetric:** Let $(u, v), (x, y) \in \mathbb{R}^2$ with $(u, v) \sim (x, y)$. Then $3u - v = 3x - y$, so $3x - y = 3u - v$, so $(x, y) \sim (u, v)$. **Transitive:** Let $(u, v), (x, y), (z, w) \in \mathbb{R}^2$ with $(u, v) \sim (x, y)$ and $(x, y) \sim (z, w)$. Then 3u−v = 3x − y and 3x − y = 3z − w, so 3u − v = 3z − w, so $(u, v) \sim (z, w)$.

$$
3x - y
$$
 and $3x - y = 3z - w$, so $3u - v = 3z - w$, so $(u, v) \sim (z, w)$.

(b) For all $(x, y) \in \mathbb{R}^2$ we have

 $(x, y) \in T_{(0, 0)} \iff (0, 0) \sim (x, y) \iff 3 \cdot 0 - 0 = 3x - y \iff y = 3x.$

Thus $T_{(0,0)}$ is the line $y = 3x$ with slope 3, passing through the origin.

(c) Similarly, for all $(x, y) \in \mathbb{R}^2$ we have

 $(x, y) \in T_{(u,v)} \iff (u, v) \sim (x, y) \iff 3u - v = 3x - y \iff y = 3x + (v - 3u) \iff y = 3x + c$ where $c = v - 3u$. Thus $T_{(u,v)}$ is the line $y = 3x + (v - 3u)$ with slope 3 and y-intercept $v - 3u$.

- (d) The set \mathcal{R}_{\sim} of equivalence classes under \sim is the set of all lines with slope 3.
- 4. Suppose that $g \circ f$ is onto and g is one-to-one. Let $b \in B$. We want to use the fact that $g \circ f$ is onto, and to do that we need to get an element of C. We can get one by applying g to b.] Then $g(b) \in C$, and $q \circ f$ is onto, so there is some $x \in A$ with $(q \circ f)(x) = q(b)$, in other words $q(f(x)) = q(b)$. Then, since g is one-to-one, we have $f(x) = b$, as required. Hence f is onto.