- **1.** (1) \implies (2): Suppose $A \subseteq B$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. In particular, $x \in A$. Thus $A \cap B \subseteq A$. Conversely, let $y \in A$. Since $A \subseteq B$, we also have $y \in B$, so $y \in A \cap B$. Thus $A \subseteq A \cap B$. Combining these, we have $A \cap B = A$.
 - (2) \implies (3): Suppose $A \cap B = A$. Suppose, for a contradiction, that $A \setminus B \neq \emptyset$. Let $x \in A \setminus B$. Then $x \in A$ and $x \notin B$. Since $x \in A = A \cap B$, we have $x \in A$ and $x \in B$. But this contradicts the earlier assertion that $x \notin B$. So there is no such x, i.e. $A \setminus B = \emptyset$.
 - (3) \implies (1): We'll prove the contrapositive. Suppose that $A \setminus B \neq \emptyset$. Then there is some $x \in A \setminus B$. Then $x \in A$ and $x \notin B$, so it is not true that every element of A is an element of B. Thus $A \notin B$.
- **2.** Suppose that $A \subseteq B$. Let $x \in \mathcal{P}(A)$. Then $x \subseteq A \subseteq B$, so $x \subseteq B$, so $x \in \mathcal{P}(B)$. Thus $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Conversely, suppose that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Since $A \subseteq A$, we have $A \in \mathcal{P}(A) \subseteq \mathcal{P}(B)$. Thus $A \in \mathcal{P}(B)$, so $A \subseteq B$.

- **3.** (a) $\mathcal{P}(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}.$
 - (b) $\mathcal{P}(B) = \{ \emptyset, \{1\}, \{4\}, \{1, 4\} \}.$
 - (c) $\mathcal{P}(A \cap B) = \mathcal{P}(\{1\}) = \{\varnothing, \{1\}\}.$
 - (d) $\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 2, 3, 4\})$, so

 $\begin{aligned} \mathcal{P}(A\cup B) &= \{ \varnothing, \{1\}, \{2\}, \{3\}, \{4\}, \\ & \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \\ & \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}. \end{aligned}$

4. (a) Let A and B be sets. Let x ∈ P(A ∩ B). Then x ⊆ A ∩ B. For any a ∈ x we have a ∈ A ∩ B, so a ∈ A and a ∈ B. Thus every element of x is an element of A, so x ⊆ A, and every element of x is an element of B, so x ⊆ B. So x ∈ P(A) and x ∈ P(B), so x ∈ P(A) ∩ P(B). Hence P(A ∩ B) ⊆ P(A) ∩ P(B).
Conversely, let y ∈ P(A) ∩ P(B). Then y ∈ P(A) and y ∈ P(B), so y ⊆ A and y ⊆ B. Let a ∈ y. Then a ∈ A (since y ⊆ A) and a ∈ B (since y ⊆ B), so a ∈ A ∩ B. Thus y ⊆ A ∩ B, so y ∈ P(A ∩ B). Hence P(A ∩ B). Hence P(A) ∩ P(B) ⊆ P(A ∩ B).

Combining these, we get $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(b) Let $A = \{1, 2, 3\}$ and let $B = \{1, 4\}$. From Question 3(d) we know that $\{1, 2, 3, 4\} \in \mathcal{P}(A \cup B)$. However, from 3(a) we know that $\{1, 2, 3, 4\} \notin \mathcal{P}(A)$, and from 3(b) we know that $\{1, 2, 3, 4\} \notin \mathcal{P}(B)$. Thus $\{1, 2, 3, 4\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$, so in this example we have $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.