445.255	SC	

NB: Please deposit your solutions in the appropriate box by **4 p.m. on the due date.** Late assignments or assignments placed into incorrect boxes will not be marked. Use a Mathematics Department cover sheet: these are available from the Resource Centre.

- 1. Prove from first principles (i.e. directly from the definition) that the sequence $\left\{\frac{5n}{3n+1}\right\}$ converges.
- **2.** Let $\{x_n\}$ be a bounded sequence of real numbers and let

$$s_n = \text{lub}\{x_n, x_{n+1}, \ldots\}$$
 $n = 1, 2, \ldots$

- (a) Show that the sequence $\{s_n\}$ is bounded.
- (b) If $x_n \to l$ as $n \to \infty$ show that $s_n \to l$ as $n \to \infty$.
- **3.** $\{x_n\}$ is a sequence in \mathbb{R} for which $x_1 = 1$ and $x_n = \sqrt{2x_{n-1}}$ for n > 1. Show that $\{x_n\}$ converges and find its limit.
- 4. Show that every convergent sequence is a Cauchy sequence.
- 5. If $\{x_n\}$ is a Cauchy sequence which has a subsequence that converges to a limit l show that $\{x_n\}$ also converges to l.