445.	255	SC

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

1. Prove by induction that for all $n \in N$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

2. Prove by induction that for all $n \in N$,

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = 2 - \frac{n+2}{2^{n}}.$$

- **3.** Prove that if A, B are sets with n, m elements respectively, then there are exactly m^n distinct possible functions $f: A \to B$. [Hint: Use induction on n.]
- 4. Suppose that in a pile of 2 or more coins it is known that one is heavier than the rest but all the others are the same weight. Prove that four weighings with a balance are sufficient to discover which coin is heavier. [Hint: Set one coin aside and consider the possibilities for the rest.]