$445.255 \ SC$

1. Define the relation \sqsubseteq on the Cartesian plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ by

 $(x,y) \sqsubseteq (u,v)$ if and only if $x \le u$ and $y \le v$.

- (a) Which of the following are true?
 - (i) $(1,1) \sqsubseteq (2,3)$.
 - (ii) $(1, -1) \sqsubseteq (2, -2)$.
 - (iii) $(1,2) \sqsubseteq (2,1).$
 - (iv) $(2,1) \sqsubseteq (1,2)$.
- (b) Prove that \sqsubseteq is a partial order on \mathbb{R}^2 .
- (c) Is \sqsubseteq a total order on \mathbb{R}^2 ? Give a brief reason for your answer.
- **2.** Let $f: A \to B$ be a function. Define a relation \sim_f on A by declaring that, for $x, y \in A$,

 $x \sim_f y$ if and only if f(x) = f(y).

Show that \sim_f is an equivalence relation on A.

3. Define a relation ~ on the Cartesian plane \mathbb{R}^2 by declaring that, for $(u, v), (x, y) \in \mathbb{R}^2$,

 $(u, v) \sim (x, y)$ if and only if 3u - v = 3x - y.

- (a) Show that \sim is an equivalence relation on \mathbb{R}^2 .
- (b) Give a geometric description of the equivalence class $T_{(0,0)}$ of the point (0,0).
- (c) Give a geometric description of the equivalence class $T_{(u,v)}$ of the point (u, v).
- (d) Give a geometric description of the set \mathcal{R}_{\sim} of equivalence classes under \sim .
- **4.** Let $f: A \to B$ and $g: B \to C$ be functions. Suppose that $g \circ f$ is onto and g is one-to-one. Show that f is onto.