- **1.** Let A and B be sets. Show that the following are equivalent:
 - (1) $A \subseteq B$.
 - (2) $A \cap B = A$.
 - (3) $A \setminus B = \emptyset$.
- **2.** Show that for any sets A and B, $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- **3.** Let $A = \{1, 2, 3\}$ and let $B = \{1, 4\}$. Find
 - (a) $\mathcal{P}(A)$.
 - (b) $\mathcal{P}(B)$.
 - (c) $\mathcal{P}(A \cap B)$.
 - (d) $\mathcal{P}(A \cup B)$.
- **4.** (a) Show that for any sets A and B, $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
 - (b) Give an example of sets A and B such that $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.