- (a) Let (G, *) be a group and H and K be subgroups of G. Prove that H ∩ K is a subgroup of G.
 (b) Give two reasons why H∪K is not a subgroup of (Z₆, +₆), where H = {0, 2, 4} and K = {0, 3} are subgroups of Z₆.
- **2.** Define * on $\mathbb{Z} \times \mathbb{Z}$ by (a, b) * (c, d) = (a + c, b + d) for all $a, b, c, d \in \mathbb{Z}$. Prove that the map $\varphi : (\mathbb{Z} \times \mathbb{Z}, *) \to (\mathbb{Z}, +)$ defined by $\varphi((a, b)) = 3a 6b$ is a homomorphism. What is the kernel of φ ?
- **3.** Let (G, *) be an abelian group and $H = \{ x \in G \mid x^3 = e \}$. Show that H is a subgroup of G.
- 4. (a) Prove that $G = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \}$ is a group together with matrix multiplication.
 - (b) Show that $(\mathbb{C} \smallsetminus \{0\}, \cdot)$, the group of non-zero complex numbers together with multiplication, is isomorphic to (G, \cdot) .
- 5. The general linear group under matrix multiplication is defined by

$$GL(2,F) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in F, ad - bc \neq 0 \right\},\$$

where F is any field.

- (a) Let $G = GL(2, \mathbb{R})$ and $H = \{ A \in G \mid \det(A) = 7^j, j \in \mathbb{Z} \}$. Show that H is a subgroup of G.
- (b) Find the inverse of $A = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}$ in $GL(2, \mathbb{Z}_7)$.