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1 Groups

In Section 5.5 of the textbook, we learned about binary operations, and some of the properties that
an operation on a set might have, such as associativity and commutativity. In these notes we will
learn about sets which have a binary operation with three particular properties (associativity, an
identity, and inverses). We call a set with such an operation a group. It turns out that groups occur
in many situations in mathematics.

Definition 1.1
Let ∗ be a binary operation on a set A. An element e of A is an identity element if a ∗ e = e ∗ a = a
for all a ∈ A.

Example 1.2
The element 0 is an identity element for the operation + on R: for any x ∈ R we have x + 0 =
0 + x = x.

Exercise 1.3
Which of the binary operations in Example 5.5.2 of the textbook have an identity element?

Proposition 1.4
If ∗ has an identity element, it is unique.

Definition 1.5
Let ∗ be a binary operation on a set A with identity element e. Let a ∈ A. Then b is an inverse of
a if a ∗ b = b ∗ a = e.

Example 1.6
The inverse of a real number x under the operation + is the number −x: we have x + (−x) =
(−x) + x = 0.

Definition 1.7
A group is a pair (G, ∗) where ∗ is a binary operation on G such that

• for any a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• there is some e ∈ G such that, for every a ∈ G, a ∗ e = e ∗ a = a; and

• for any a ∈ G there is some b ∈ G with a ∗ b = b ∗ a = e.

We often abuse notation and refer to “the group G” instead of “the group (G, ∗)”.

Example 1.8
The integers form a group under addition, in other words (Z,+) is a group. The non-zero real
numbers for a group under multiplication, in other words (R \ {0}, ·) is a group.
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Proposition 1.9
The inverse of a is unique. In other words, if a ∗ b = b ∗ a = e and a ∗ c = c ∗ a = e then b = c.

Because of this uniqueness, we can denote the inverse of an element a by a−1.

Proposition 1.10
If (G, ∗) is a group and a, b, c ∈ G with a ∗ b = a ∗ c then b = c.

This is sometimes called the cancellation law.

1.1 Cayley tables

If ∗ is a binary operation on a finite set, we can write down a “multiplication table” for ∗. For
example, we can define an operation ∗ on the set G = {e, a, b, c} by the following table:

∗ e a b c

e e a b c
a a b c e
b b c e a
c c e a b

We call this the Cayley table of the operation.

Exercise 1.11
Show that if ∗ is defined by the above table then (G, ∗) is a group.

Proposition 1.12
Each element of G occurs exactly once in each row and each column of the Cayley table of a group
operation.

Proposition 1.13
Let (G, ∗) be a group with identity element e.

1. If x ∈ G satisfies x ∗ x = x, then x = e.

2. If x, y ∈ G satisfy x ∗ y = y, then x = e. [Put another way, if x ∗ y = y for some y ∈ G then
x ∗ y = y for every y ∈ G.]

Exercise 1.14
Given that ⊕ is a group operation on the set G = {p, q, r, s}, complete the following Cayley table:

⊕ p q r s

p r
q q
r
s
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1.2 Symmetry Groups

In this section we will discuss a very important class of groups, the symmetry groups of solid objects.

Definition 1.15
A symmetry of a solid object is a way of moving it so that it ends up in the space it originally
occupied. We are only interested in the final position of the object, not how it got there, so for
example a clockwise rotation of 90◦ is the same as an anticlockwise rotation of 270◦.

For example, consider the set of symmetries of a square. We can rotate it anticlockwise through 90◦,
180◦ or 270◦. We can also flip it over either horizontally or vertically, or along the main diagonal
or the other diagonal. And, of course, we can simply put the square back where we found it. We
denote these symmetries by R90, R180, R270, H, V , D, D′ and R0 respectively. We can represent
these in Figure 1: we imagine that the square is transparent and has the letter R on it.

H V D D′

R0 R90 R180 R270

Figure 1: Symmetries of the square

To form a group, we need an operation. For symmetries A and B, we define A ∗ B to be the
symmetry which has the same effect as A followed by B. For example, R90 ∗ R180 = R270. Less
obviously, R90 ∗H = D. And we obviously have R0 ∗A = A = A ∗R0 for any A.

Exercise 1.16
Complete the Cayley table of ∗.

∗ R0 R90 R180 R270 H V D D′

R0 R0 R90 R180 R270 H V D D′

R90 R90 D
R180 R180

R270 R270

H H
V V
D D
D′ D′
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Proposition 1.17
The set of symmetries of the square forms a group under the operation ∗.

The hardest part of proving this would be to check associativity: there are 83 = 512 ways of choosing
A, B and C to check that A ∗ (B ∗ C) = (A ∗B) ∗ C. The best bet is to realise that the symmetry
A defines a function fA from the points of the square to the points of the square, and then we have
fA∗B = fB ◦ fA. But then we have

fA∗(B∗C) = (fC ◦ fB) ◦ fA = fC ◦ (fB ◦ fA) = f(A∗B)∗C .

Since fA∗(B∗C) = f(A∗B)∗C , we have A ∗ (B ∗ C) = (A ∗B) ∗C, as required.

The symmetry group of the square is usually denoted D4. More generally, the symmetries of a
regular n-gon form a group with 2n elements, usually denoted Dn and called the dihedral group of
order 2n.

Another related class of groups is the class of full summetric groups. The group Sn is defined to be
the set of all bijections (one-to-one correspondences) from {1, 2, . . . , n} to itself. Again, the group
operation is “followed by”, in other words f ∗ g = g ◦ f .1

Exercise 1.18
How many elements does Sn have?

We can represent the elements of Sn in matrix form, as follows. For our example, we will fix
n = 4. We represent the element f by the 2 × 4 matrix which has

[
1 2 3 4

]
as its first row

and
[
f(1) f(2) f(3) f(4)

]
as its second row. For example the bijection which has f(1) = 3,

f(2) = 4, f(3) = 2, f(4) = 1 is represented by the matrix
[
1 2 3 4
3 4 2 1

]
. We can then work out the

composition of two elements. For example, we have[
1 2 3 4
3 4 2 1

]
∗
[
1 2 3 4
4 3 2 1

]
=
[
1 2 3 4
2 1 3 4

]
.

1.3 Commutativity and abelian groups

For any real numbers x and y we have x + y = y + x. Thus the group operation in (R,+) is a
commutative operation. However, there is no need for every group operation to be commutative.
For example, looking back at the symmetries of the square, we have that R90 ∗ H = D, whereas
H ∗R90 = D′.

Definition 1.19
A group (G, ∗) is abelian if ∗ is a commutative operation, and non-abelian otherwise.

1Unfortunately there are two conflicting conventions for the notation of composition of functions. In analysis,
calculus and topology it is usual to write functions as we do in this course, writing f(x) for “the value of f evaluated
at x”. In algebra, it is more common to write xf instead. Using the first notation, it is more natural to define
composition of functions by (g ◦ f)(x) = g(f(x)), whereas with the second notation it is more natural to write
x(f ∗ g) = (xf)g. Some algebra books even use ◦ for “left-to-right” composition in this way, while others just write
fg for the composition “f followed by g”.
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So (R,+) is an abelian group whereas D4 is a non-abelian group.

Notice that even if G is a non-abelian group, there will be some elements x and y satisfying x ∗ y =
y ∗ x. For example, this will be true if x = y, or if x = e or y = e (where e is the identity element).

Exercise 1.20
The elements of S3 are e =

[
1 2 3
1 2 3

]
, α =

[
1 2 3
2 1 3

]
, β =

[
1 2 3
1 3 2

]
, γ =

[
1 2 3
3 2 1

]
, ϕ =[

1 2 3
2 3 1

]
and ψ =

[
1 2 3
3 1 2

]
. Complete the Cayley table for S3.

∗ e α β γ ϕ ψ

e
α
β
γ
ϕ
ψ

Find elements x and y such that x ∗ y 6= y ∗ x.

Proposition 1.21
Let n be an integer with n ≥ 3. Then Sn is non-abelian.

1.4 Isomorphisms and homomorphisms

We have already used the word “isomorphism” in Section 5.3 of the textbook, when we said that
two partially ordered sets (A,6) and (B,v) are order-isomorphic if there is a bijection f : A→ B
such that for every x, y ∈ A,

f(x) v f(y) if and only if x 6 y.

We can think of this as meaning that B is really just a “re-labelled” version of A, with exactly the
same structure.

We can do the same thing for groups. In this case, the structure we have is not an order relation but
a binary operation, but the idea—that the isomorphism should preserve the structure—is exactly
the same.

Definition 1.22
Let (G, ∗) and (H, �) be groups. An isomorphism from G to H is a bijection f : G→ H such that
for all x, y ∈ G,

f(x ∗ y) = f(x) � f(y).

if there is such a function, we say that G and H are isomorphic, written G ≈ H.

Example 1.23
Let U(10) = {1, 3, 7, 9}. We define an operation � by declaring that, for x, y ∈ U(10), x � y is
xy mod 10 (in other words, the remainder you get when dividing xy by 10. Let C4 = {0, 1, 2, 3},
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and define an operation ∗ on C4 by declaring that x ∗ y = x + y mod 4. So we have the Cayley
tables

� 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

∗ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Then the function f : U(10) → C4 given by f(0) = 1, f(1) = 3, f(2) = 9, f(3) = 7 is an
isomorphism.

Proposition 1.24
Let G and H be groups with identity elements eG and eH respectively, and let f : G → H be an
isomorphism. Then f(eG) = eH .

Proposition 1.25
Let G and H be groups with identity elements eG and eH respectively, and let f : G → H be an
isomorphism. Then, for every x ∈ G, we have

f(x) � f(x) = eH if and only if x ∗ y = eG.

Exercise 1.26
Let G be the group given by the group table

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Show that G is not isomorphic to C4.

1.5 Subgroups

Definition 1.27
A subgroup of a group (G, ∗) is a subset H of G such that ∗ is a group operation on H.

Example 1.28
Z is a subgroup of the group (R,+).

Example 1.29
The set H = {R0, R90, R180, R270} is a subgroup of D4.

Proposition 1.30
A subset H of a group G is a subgroup of G if and only if

1. e ∈ H (where e is the identity element of G);

2. for any x, y ∈ H, x ∗ y ∈ H; and
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3. for any x ∈ H, x−1 ∈ H.

Proposition 1.31
A subset H of a group G is a subgroup of G if and only if H 6= ∅ and, for every x, y ∈ H, x∗y−1 ∈ H.

Our goal for this section will be to prove Lagrange’s Theorem. This is the statement that if G is a
finite group and H is a subgroup of G then the number of elements of G is a multiple of the number
of elements of H.

To prove this, we will show that we can use the subgroup H to for a partition of G. The number
of elements in each set in the partition will be the same as the number of elements in H. Thus the
number of elements in G is equal to the number of elements in H times the number of sets in the
partition. And that’s all there is to it! Of course, we have to check the details.

Definition 1.32
Let H be a subgroup of a group G, and let a ∈ G. We define the left coset of H in G containing a,
written a ∗H, by

a ∗H = {a ∗ h : h ∈ H }.

Lemma 1.33
Let H be a subgroup of G and let a, b ∈ G. If a ∗H ∩ b ∗H 6= ∅ then a ∗H = b ∗H.

Lemma 1.34
Let H be a subgroup of G. Put

Ω = {a ∗H | a ∈ G }.

Then Ω is a partition of G.

Lemma 1.35
Let H be a subgroup of G and let a ∈ G. Then the function fa : H → a∗H defined by fa(h) = a∗h
is a bijection.

Theorem 1.36
Let G be a finite group and let H be a subgroup of G. Then |G| is a multiple of |H|.
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