THE UNIVERSITY OF AUCKLAND 445.255 FC

EXAMINATION FOR BA BSc ETC 2000

MATHEMATICS

Principles of Mathematics

(Time allowed: THREE hours)

NOTE: Answer ALL the questions. All questions carry equal marks.

1. For any integer n, let A(n) be the statement

"If n is odd then $n^2 + n$ is even".

- (a) Write down the contrapositive of A(n).
- (b) Write down the converse of A(n).
- (c) Write down the negation of A(n).
- (d) Is A(n) true for some $n \in \mathbb{N}$? If so, give an example, if not give a proof.
- (e) Is A(n) true for every $n \in \mathbb{N}$? If so, give a proof, if not give a counterexample.
- (f) Is the contrapositive of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- (g) Is the converse of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- **2.** Let $f: A \to B$ be a function. Recall that for $C \subseteq B$, $f^{-1}(C) = \{x \in A : f(x) \in C\}$.
 - (a) Let $C, D \subseteq B$. Show that $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (b) Let Λ be and arbitrary indexing set. For each $\alpha \in \Lambda$ let $S_{\alpha} \subseteq B$. Show that

$$f^{-1}\left(\bigcap_{\alpha\in\Lambda}S_{\alpha}\right) = \bigcap_{\alpha\in\Lambda}f^{-1}(S_{\alpha}).$$

3. Define the relation \sqsubseteq on the Cartesian plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ by

 $(x,y) \sqsubseteq (u,v)$ if and only if $x \le u$ and $y \le v$.

- (a) Which of the following are true?
 - (i) $(1,1) \sqsubseteq (2,3)$. (ii) $(1,-1) \sqsubseteq (2,-2)$. (iii) $(1,2) \sqsubseteq (2,1)$.
 - (iv) $(2,1) \sqsubseteq (1,2)$.
- (b) Prove that \sqsubseteq is a partial order on \mathbb{R}^2 .
- (c) Is \sqsubseteq a total order on \mathbb{R}^2 ? Give a brief reason for your answer.
- **4.** A function $f : \mathbb{R} \to \mathbb{R}$ is said to be a *foo* function if f(x+1) = f(x) + 1 for every $x \in \mathbb{R}$, and a *bar* function if f(x+1) = x 1 for all $x \in \mathbb{R}$.
 - (a) Show that if f and g are both foo functions then $f \circ g$ is a foo function.
 - (b) Prove that $f : \mathbb{R} \to \mathbb{R}$ is a foo function if and only if for every $x \in \mathbb{R}$ we have f(x-1) = f(x)-1.
 - (c) Show that if f is a foo function and g is a bar function then $f \circ g$ is a bar function.
- 5. (a) Prove that if n is a natural number then $1 + 3 + \cdots + (2n 1) = n^2$.
 - (b) Prove that $2^{n+2} < 3^n$ for all integers $n \ge 4$.
- **6.** Let $n \in \mathbb{N}$ with $n \geq 2$.
 - (a) Explain what it means to say that addition modulo $n, +_n$, is well-defined.
 - (b) Show that addition modulo $n, +_n$, is well-defined.
 - (c) Show that $(\mathbb{Z}_n, +_n)$ is a group.
- **7.** Let $f : \mathbb{R} \to \mathbb{R}$ be an order-isomorphism, let $A \subseteq \mathbb{R}$, and let $x \in \mathbb{R}$. Show that x is a least upper bound for A if and only if f(x) is a least upper bound for $f(A) = \{f(y) : y \in A\}$.