445.255FC Mid Term Test Solutions

- 1. (a) $(n^2 \leq 35) \Longrightarrow (n \leq 5)$
	- (b) $(n^2 > 35) \Longrightarrow (n > 5)$
	- (c) The negation of $A \implies B$ is $A \land (\sim B)$ which gives $(n > 5) \land (n^2 \le 35)$.
(d) Yes it's sometimes true.
	-

Example 1: Let $n = 1$. Then the hypothesis is false and the statement is (vacuously) true. **Example 2:** Let $n = 7$. Then $n^2 = 49 > 35$. Since the conclusion is true, then statement is true. (Note the hypothesis is also true in this case.) true. (Note the hypothesis is also true in this case.)
(e) It is always true.

Proof: Let $n \in \mathbb{Z}$ satisfy $n > 5$. Then, since n is an integer, $n \ge 6$. So $n^2 = n.n > 6.n > 6.6 = 36 > 35$, so $n^2 > 35$ as required.

- (f) It is always true since it is equivalent to the original statement, proven in the previous part.
(g) The converse is sometimes true, but not always true.
-

 \overline{a} The converse is sometimes true, but not always true, but not always true, but not always true. **Example 1:** Let $n = 10$. Then the hypothesis $(n^2 > 35)$ is true and the conclusion $(n > 5)$ is

- **Example 2:** Let $n = -10$. Then the hypothesis $(n^2 > 35)$ is true but the conclusion $(n > 5)$
- 2. (a) Recall the relation is defined as follows. Let $(u, v), (x, y) \in \mathbb{R}^2$. Then $(u, v) \sim (x, y) \Leftrightarrow$ $u + y = x + v$. This is equivalent to $u - v = x - y$ which is an easier form to work with. By definition, $T_{(0,0)} = \{(x,y) \in \mathbb{R}^2 : (x,y) \sim (0,0)\}.$ So $(x, y) \in T_{(0,0)}$ iff $x - y = 0 - 0 = 0$, ie $x = y$. Therefore $T_{(0,0)} = \{(x,x) : x \in \mathbb{R}\}.$

(b) By definition, $T_{(u,v)} = \{(x, y) \in \mathbb{R}^2 : (x, y) \sim (u, v)\}.$ So $(x, y) \in T_{(u,v)}$ iff $x - y = (u - v)$, ie $x = y + (u - v)$. Therefore $T_{(u,v)} = \{(x, x - (u - v)) : x \in \mathbb{R}\}\$ or (neater) $\{(y + u - v, y) : y \in \mathbb{R}\}.$ $T_{(u,v)}$ is a line in \mathbb{R}^2 with gradient 1 that crosses the y axis at $v - u$.

(c) \mathcal{R}_{∞} is, from the previous part, a set of lines in \mathbb{R}^2 with gradient 1. By choosing say $\{T_{(0,v)} : v \in \mathbb{R}\}\$ we get EVERY line with gradient 1.

(d) Basically there are 2 choices in this part; prove [∼] is symmetric, reflexive and transitive OR prove that \mathcal{R}_{∞} is a partition of \mathbb{R}^2 and use the theorem we proved in class.

Method 1. We prove that \sim is reflexive, symmetric and transitive.

- **Reflexive:** Let $(a, b) \in \mathbb{R}^2$. Clearly $a b = a b$, which implies that $(a, b) \sim (a, b)$ as required.
- Symmetric: Let $(a, b), (c, d) \in \mathbb{R}^2$ satisfy $(a, b) \sim (c, d)$. This implies that $a b = c d$. So $c - d = a - b$, which implies that $(c, d) \sim (a, b)$ as required.
- **Transitive:** Let $(a, b), (c, d), (e, f) \in \mathbb{R}^2$ satisfy $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. The first relation implies that $a-b = c-d$, and the second implies that $c-d = e-f$. So $a - b = e - f$, which implies that $(a, b) \sim (e, f)$ as required.

Since [∼] is symmetric, reflexive and transitive, it is by definition an equivalence relation.

- **Method 2.** We need to show that $\mathcal{R}_{\sim} = \{T_{(u,v)} : (u, v) \in \mathbb{R}^2\}$ is a partition of \mathbb{R}^2 . The definition of partition says that this is the case iff the following 2 properties are satisfied: 1. $\forall (p,q) \in \mathbb{R}^2, \exists T_{(u,v)} \in \mathcal{R}_{\sim}$ such that $(p,q) \in T_{(u,v)}$ and
2. $\forall (p,q) \in \mathbb{R}^2, \exists T_{(u,v)} \in \mathcal{R}_{\sim}$ such that $(p,q) \in T_{(u,v)}$ and
	-
	- 2. $\forall (p,q),(u,v) \in \mathbb{R}^2$, $T_{(u,v)} \cap T_{(p,q)} \neq \phi \Longrightarrow T_{(u,v)} = T_{(p,q)}$.

Informally, 1 is true because every point in \mathbb{R}^2 has a line with gradient 1 passing through it, and 2 because if a pair of lines with the same gradient have a point in common, they are the same line! (I was willing to accept this argument.)

Proof of 1: Let $(p,q) \in \mathbb{R}^2$, and let $b = p - q$. Then the line $y = x + b$ (with gradient 1)
contains the point (p,q) . Refinitions of all lines with gradient 1 contains the point (p, q) . \mathcal{R}_{∞} is the set of all lines with gradient 1.

Proof of 2: Let (p, q) , $(u, v) \in \mathbb{R}^2$ and assume $(a, b) \in \mathbb{R}^2$ satisfies $(a, b) \in T_{(u,v)} \cap T_{(p,q)}$. Then $(a, b) \sim (p, q)$ and $(c, d) \sim (u, v)$.

The first relation implies that $a - b = p - q$, and the second implies that $a - b = u - v$. So $p - q = u - v$, which implies that as required.

 $T_{(p,q)} = \{(x, x - (p-q)) : x \in \mathbb{R}\} = \{(x, x - (u-v)) : x \in \mathbb{R}\} = T_{(u,v)}$ as required.

- **3.** (a) [First of all, notice that we **don't** assume that $(f \circ g)(y) = y$ for all $y \in B$, so we can't call g the inverse of f. Although you can use the ideas in the proof in your notes that if f has an inverse then f is one-to-one, you can't just copy that proof out indiscriminately. Suppose there is a function $g : B \to A$ such that $(g \circ f)(x) = x$ for all $x \in A$. We want to show that f is one to one, so let $x, y \in A$ with $f(x) = f(y)$ we want to show that $x = y$. Then that f is one-to-one, so let $x, y \in A$ with $f(x) = f(y)$ [we want to show that $x = y$]. Then $g(f(x)) = g(f(y))$, i.e. $(g \circ f)(x) = (g \circ f)(y)$, so $x = y$. Thus f is one-to-one.
	- (b) Suppose there is a function $h : B \to A$ such that $(f \circ h)(y) = y$ for all $y \in B$. We want to show that f is onto, so let $y \in B$ [we want to find $x \in A$ such that $f(x) = y$]. Now, $y = (f \circ h)(y) = f(h(y))$, so if we put $x = h(y)$ then $f(x) = y$, as required. Thus f is onto.
(c) [This is an "if and only if" proof, so we need to prove both implications.]
	- Suppose first that f has an inverse. Then, by part (a) we know that f is one-to-one and by part (b) we know that f is onto. So f is a one-to-one correspondence.

Conversely, suppose that f is a one-to-one correspondence. [We want to show that f has an inverse, in other words we are showing that the inverse exists, and to do this we give a definition of a function q and check that it is an inverse.

- of a function g and check that it is an inverse.] **Method 1:** For any $y \in B$ we know that there is at least one $x \in A$ with $f(x) = y$, since f is one to and that there is at most one such x since f is one-to-one. So we can define $g : B \to A$ by declaring that $g(y)$ is the unique x in A satisfying $f(x) = y$. This gives
us $f(g(x)) = y$. Also, for any x we have $g(f(x)) =$ the unique x satisfying $f(z) = f(x)$. us $f(g(y)) = y$. Also, for any x we have $g(f(x)) =$ the unique z satisfying $f(z) = f(x)$, namely $z = x$, so $g(f(x)) = x$. So g is an inverse of f.
- Method 2: Since $f : A \to B$, we have $f \subseteq A \times B$. Let $g = \{ (b, a) \in B \times A : (a, b) \in f \}$. We must check that g is a function from B to A and that g is an inverse of f.
	- g is a function if $(b, a_1) \in g$ and $(b, a_2) \in g$ then $f(a_1) = f(a_2) = b$, so since f is one-to-one we have $a_1 = a_2$.
	- $dom(q) = B$ We have $dom(q) \subseteq B$, and for every $b \in B$ there is an $a \in A$ with $(a, b) \in f$ (since f is onto), so there is an $a \in A$ with $(b, a) \in g$.
	- g is an inverse of f Let $a \in A$. Then $(a, f(a)) \in f$ so $(f(a), a) \in g$, so $g(f(a)) = a$. Similarly, $(b, g(b)) \in g$, so $(g(b), b) \in f$, so $f(g(b)) = b$. Thus g is an inverse of f.
- 4. (a) [We have to prove two implications: if x is maximal then $f(x)$ is maximal, and the converse.]
Suppose first that x is a maximal element of X [note that we don't know that X is totally ordered, so this does not imply that x is a greatest element of X. We will show that $f(x)$ is a maximal element of Y. So suppose that $y \in Y$ with $f(x) \sqsubseteq y$ [we want $f(x) = y$]. Since f is
onto there is some z with $f(z) = y$. So now we have $f(x) \sqsubset f(z)$ so $x \le z$. By maximality onto, there is some z with $f(z) = y$. So now we have $f(x) \sqsubseteq f(z)$, so $x \leq z$. By maximality, we have $x = z$, so $f(x) = f(z)$, i.e. $f(x) = y$, as required. Thus $f(x)$ is a maximal element of Y.

Conversely, suppose that $f(x)$ is a maximal element of Y. Let $z \in X$ with $x \leq z$ [we want $x - z$] Then $f(x) \sqsubset f(y)$ so $f(x) - f(z)$ so (since f is one-to-one) $x - z$ as required. Thus $x = z$. Then $f(x) \sqsubseteq f(y)$, so $f(x) = f(z)$, so (since f is one-to-one) $x = z$, as required. Thus x is a maximal element of X.

(b) Note: there are functions from $(0, 1)$ to $[0, 1]$ which are one-to-one, functions which are onto, and functions which are order-preserving. What we have to do is show that no function can and functions which are order-preserving. When we have to do is show that he function can be all the result in part (a) three at \mathbf{r}

Suppose $f : X \to Y$ were an order-isomorphism. Since $1 \in Y$, there is some $x \in X$ with $f(x) = 1$. Since 1 is maximal in Y, x must be maximal in X. But there is no maximal element \int_{0}^{∞} \int_{0}^{∞} \int_{0}^{∞} such isomorphism

in X. So there is no such isomorphism. (c) [To show that two sets are isomorphic, we must give an isomorphism from one to the other. Define $f : Z \to W$ by $\left(\begin{array}{cc} \end{array} \right)$ if $\pi \in (0, 1]$

$$
f(x) = \begin{cases} x & \text{if } x \in (0, 1], \\ x - 1 & \text{if } x \in (2, 3). \end{cases}
$$

We will check that f is one-to-one, onto and order preserving.

- f is one-to-one: Suppose $x, y \in Z$ with $f(x) = f(y)$ [we want to show that $x = y$]. BOvi-
ously if $f(x) = x$ and $f(y) = y$ then this will imply that $x = y$ and likewise if $f(x) = x - 1$ and $f(y) = y - 1$. So the only thing that could go wrong is that we could have $f(x) < 1$ could have WLOG $x \in (0,1]$ and $y \in (2,3)$. But in that case we would have $f(x) \leq 1$ and $f(y) = y - 1 > 2 - 1 = 1$, so we would not have $f(x) = f(y)$. SO the only way we can have $f(x) = f(y)$ is when $x = y$, as required.
- f is onto: Let $y \in W$ [we want to find some $x \in Z$ with $f(x) = y$]. If $y \le 1$ then $y \in Z$ and $f(y) = y$. Ontherwise $y + 1 \in Z$ and $f(y + 1) = (y + 1) 1 = y$. SO either way there is $f(y) = y$. Otherwise, $y + 1 \in Z$ and $f(y + 1) = (y + 1) - 1 = y$. SO either way there is some $x \in Z$ with $f(x) = y$.
- If $x \leq y$ then $f(x) \leq f(y)$: Suppose $x, y \in Z$ with $x \leq y$. If x and y are both in $(0, 1]$ then $f(x) = x$, $f(y) = y$, so $f(x) \leq f(y)$. If $x \in (0,1]$, $y \in (2,3)$ then $f(x) = x \leq 1$, $f(y) = y - 1 > 2 - 1 = 1$, so $f(x) \le f(y)$. And if x and y are both in (2,3) then $x-1 \leq y-1$, so $f(x) \leq f(y)$. So in any case we have $f(x) \leq f(y)$.
- If $f(x) \leq f(y)$ then $x \leq y$: Suppose $x, y \in Z$ with $f(x) \leq f(y)$. If x and y are both in $(0, 1]$, then this obviously implies $x \leq y$. If x and y are both in $(2, 3)$ then this implies $x-1 \leq y-1$, so $x \leq y$. If $x \in (0,1]$ and $y \in (2,3)$ then we already know that $x \leq y$. So the only thing that could go wrong is if $x \in (2,3)$, $y \in (0,1]$. But in that case we would have $f(y) < f(x)$. So that case can't occur: in other words, in any case which can occur we have $x \leq y$, as required.