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445.255FC Mid Term Test Solutions

1. (a) (n2 ≤ 35) =⇒ (n ≤ 5)

(b) (n2 > 35) =⇒ (n > 5)

(c) The negation of A =⇒ B is A ∧ (∼ B) which gives (n > 5) ∧ (n2 ≤ 35).

(d) Yes it’s sometimes true.

Example 1: Let n = 1. Then the hypothesis is false and the statement is (vacuously) true.

Example 2: Let n = 7. Then n2 = 49 > 35. Since the conclusion is true, then statement is
true. (Note the hypothesis is also true in this case.)

(e) It is always true.

Proof: Let n ∈ Z satisfy n > 5. Then, since n is an integer, n ≥ 6.

So n2 = n.n ≥ 6.n ≥ 6.6 = 36 > 35, so n2 > 35 as required.

(f) It is always true since it is equivalent to the original statement, proven in the previous part.

(g) The converse is sometimes true, but not always true.

Example 1: Let n = 10. Then the hypothesis (n2 > 35) is true and the conclusion (n > 5) is
also true.

Example 2: Let n = −10. Then the hypothesis (n2 > 35) is true but the conclusion (n > 5)
is false.

2. (a) Recall the relation is defined as follows. Let (u, v), (x, y) ∈ R2. Then (u, v) ∼ (x, y) ⇐⇒
u + y = x + v. This is equivalent to u− v = x− y which is an easier form to work with.

By definition, T(0,0) = {(x, y) ∈ R2 : (x, y) ∼ (0, 0)}.
So (x, y) ∈ T(0,0) iff x− y = 0− 0 = 0, ie x = y.

Therefore T(0,0) = {(x, x) : x ∈ R}.

(b) By definition, T(u,v) = {(x, y) ∈ R2 : (x, y) ∼ (u, v)}.
So (x, y) ∈ T(u,v) iff x− y = (u− v), ie x = y + (u− v).

Therefore T(u,v) = {(x, x− (u− v)) : x ∈ R} or (neater) {(y + u− v, y) : y ∈ R}.
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T(u,v) is a line in R2 with gradient 1 that crosses the y axis at v − u.

(c) R is, from the previous part, a set of lines in R2 with gradient 1.

By choosing say {T(0,v) : v ∈ R} we get EVERY line with gradient 1.

(d) Basically there are 2 choices in this part; prove ∼ is symmetric, reflexive and transitive OR
prove that R is a partition of R2 and use the theorem we proved in class.

Method 1. We prove that ∼ is reflexive, symmetric and transitive.

Reflexive: Let (a, b) ∈ R2. Clearly a − b = a − b, which implies that (a, b) ∼ (a, b) as
required.

Symmetric: Let (a, b), (c, d) ∈ R2 satisfy (a, b) ∼ (c, d). This implies that a− b = c− d.
So c− d = a− b, which implies that (c, d) ∼ (a, b) as required.

Transitive: Let (a, b), (c, d), (e, f) ∈ R2 satisfy (a, b) ∼ (c, d).and (c, d) ∼ (e, f).
The first relation implies that a−b = c−d, and the second implies that c−d = e−f .
So a− b = e− f , which implies that (a, b) ∼ (e, f) as required.

Since ∼ is symmetric, reflexive and transitive, it is by definition an equivalence relation.

Method 2. We need to show that R = {T(u,v) : (u, v) ∈ R2} is a partition of R2. The
definition of partition says that this is the case iff the following 2 properties are satisfied:

1. ∀(p, q) ∈ R2,∃T(u,v) ∈ R such that (p, q) ∈ T(u,v) and
2. ∀(p, q), (u, v) ∈ R2, T(u,v) ∩ T(p,q) 6= φ =⇒ T(u,v) = T(p,q).

Informally, 1 is true because every point in R2 has a line with gradient 1 passing through
it, and 2 because if a pair of lines with the same gradient have a point in common, they
are the same line! (I was willing to accept this argument.)
Proof of 1: Let (p, q) ∈ R2, and let b = p− q. Then the line y = x + b (with gradient 1)
contains the point (p, q). R is the set of all lines.with gradient 1.
Proof of 2: Let (p, q), (u, v) ∈ R2 and assume (a, b) ∈ R2 satisfies (a, b) ∈ T(u,v) ∩ T(p,q).
Then (a, b) ∼ (p, q).and (c, d) ∼ (u, v).
The first relation implies that a− b = p− q, and the second implies that a− b = u− v..
So p− q = u− v., which implies that as required.
T(p,q) = {(x, x− (p− q)) : x ∈ R} = {(x, x− (u− v)) : x ∈ R} = T(u,v) as required.
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3. (a) [First of all, notice that we don’t assume that (f ◦ g)(y) = y for all y ∈ B, so we can’t call g
the inverse of f . Although you can use the ideas in the proof in your notes that if f has an
inverse then f is one-to-one, you can’t just copy that proof out indiscriminately.]

Suppose there is a function g : B → A such that (g ◦f)(x) = x for all x ∈ A. We want to show
that f is one-to-one, so let x, y ∈ A with f(x) = f(y) [we want to show that x = y]. Then
g(f(x)) = g(f(y)), i.e. (g ◦ f)(x) = (g ◦ f)(y), so x = y. Thus f is one-to-one.

(b) Suppose there is a function h : B → A such that (f ◦ h)(y) = y for all y ∈ B. We want
to show that f is onto, so let y ∈ B [we want to find x ∈ A such that f(x) = y]. Now,
y = (f ◦ h)(y) = f(h(y)), so if we put x = h(y) then f(x) = y, as required. Thus f is onto.

(c) [This is an “if and only if” proof, so we need to prove both implications.]

Suppose first that f has an inverse. Then, by part (a) we know that f is one-to-one and by
part (b) we know that f is onto. So f is a one-to-one correspondence.

Conversely, suppose that f is a one-to-one correspondence. [We want to show that f has an
inverse, in other words we are showing that the inverse exists, and to do this we give a definition
of a function g and check that it is an inverse.]

Method 1: For any y ∈ B we know that there is at least one x ∈ A with f(x) = y, since
f is onto, and that there is at most one such x, since f is one-to-one. So we can define
g : B → A by declaring that g(y) is the unique x in A satisfying f(x) = y. This gives
us f(g(y)) = y. Also, for any x we have g(f(x)) = the unique z satisfying f(z) = f(x),
namely z = x, so g(f(x)) = x. So g is an inverse of f .

Method 2: Since f : A → B, we have f ⊆ A×B. Let g = { (b, a) ∈ B ×A : (a, b) ∈ f }. We
must check that g is a function from B to A, and that g is an inverse of f .

g is a function if (b, a1) ∈ g and (b, a2) ∈ g then f(a1) = f(a2) = b, so since f is
one-to-one we have a1 = a2.

dom(g) = B We have dom(g) ⊆ B, and for every b ∈ B there is an a ∈ A with (a, b) ∈ f
(since f is onto), so there is an a ∈ A with (b, a) ∈ g.

g is an inverse of f Let a ∈ A. Then (a, f(a)) ∈ f so (f(a), a) ∈ g, so g(f(a)) = a.
Similarly, (b, g(b)) ∈ g, so (g(b), b) ∈ f , so f(g(b)) = b. Thus g is an inverse of f .

4. (a) [We have to prove two implications: if x is maximal then f(x) is maximal, and the converse.]

Suppose first that x is a maximal element of X [note that we don’t know that X is totally
ordered, so this does not imply that x is a greatest element of X]. We will show that f(x) is
a maximal element of Y . So suppose that y ∈ Y with f(x) v y [we want f(x) = y]. Since f is
onto, there is some z with f(z) = y. So now we have f(x) v f(z), so x ≤ z. By maximality,
we have x = z, so f(x) = f(z), i.e.f(x) = y, as required. Thus f(x) is a maximal element of
Y .

Conversely, suppose that f(x) is a maximal element of Y . Let z ∈ X with x ≤ z [we want
x = z]. Then f(x) v f(y), so f(x) = f(z), so (since f is one-to-one) x = z, as required. Thus
x is a maximal element of X.

(b) [Note: there are functions from (0, 1) to [0, 1] which are one-to-one, functions which are onto,
and functions which are order-preserving. What we have to do is show that no function can
be all three at once. We can use the result in part (a) to do this.]
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Suppose f : X → Y were an order-isomorphism. Since 1 ∈ Y , there is some x ∈ X with
f(x) = 1. Since 1 is maximal in Y , x must be maximal in X. But there is no maximal element
in X. So there is no such isomorphism.

(c) [To show that two sets are isomorphic, we must give an isomorphism from one to the other.
We define a function, and then check that it is indeed an order-isomorphism.]

Define f : Z → W by

f(x) =

{
x if x ∈ (0, 1],

x− 1 if x ∈ (2, 3).

We will check that f is one-to-one, onto and order preserving.

f is one-to-one: Suppose x, y ∈ Z with f(x) = f(y) [we want to show that x = y]. BOvi-
ously, if f(x) = x and f(y) = y then this will imply that x = y, and likewise if
f(x) = x − 1 and f(y) = y − 1. So the only thing that could go wrong is that we
could have WLOG x ∈ (0, 1] and y ∈ (2, 3). But in that case we would have f(x) ≤ 1
and f(y) = y − 1 > 2− 1 = 1, so we would not have f(x) = f(y). SO the only way we
can have f(x) = f(y) is when x = y, as required.

f is onto: Let y ∈ W [we want to find some x ∈ Z with f(x) = y]. If y ≤ 1 then y ∈ Z and
f(y) = y. Otherwise, y + 1 ∈ Z and f(y + 1) = (y + 1)− 1 = y. SO either way there is
some x ∈ Z with f(x) = y.

If x ≤ y then f(x) ≤ f(y): Suppose x, y ∈ Z with x ≤ y. If x and y are both in (0, 1] then
f(x) = x, f(y) = y, so f(x) ≤ f(y). If x ∈ (0, 1], y ∈ (2, 3) then f(x) = x ≤ 1,
f(y) = y − 1 > 2 − 1 = 1, so f(x) ≤ f(y). And if x and y are both in (2, 3) then
x− 1 ≤ y − 1, so f(x) ≤ f(y). So in any case we have f(x) ≤ f(y).

If f(x) ≤ f(y) then x ≤ y: Suppose x, y ∈ Z with f(x) ≤ f(y). If x and y are both in
(0, 1], then this obviously implies x ≤ y. If x and y are both in (2, 3) then this implies
x− 1 ≤ y− 1, so x ≤ y. If x ∈ (0, 1] and y ∈ (2, 3) then we already know that x ≤ y. So
the only thing that could go wrong is if x ∈ (2, 3), y ∈ (0, 1]. But in that case we would
have f(y) < f(x). So that case can’t occur: in other words, in any case which can occur
we have x ≤ y, as required.
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