THE UNIVERSITY OF AUCKLAND 445.255 FC

TERMS TEST

MATHEMATICS

Principles of Mathematics

(Time allowed: 90 MINUTES)

1. Let n be an integer, and let A(n) be the statement

"If n is greater than 5 then n^2 is greater than 35".

- (a) Write down the contrapositive of A(n).
- (b) Write down the converse of A(n).
- (c) Write down the negation of A(n).
- (d) Is A(n) ever true? If so, give an example, if not give a proof.
- (e) Is A(n) always true? If so, give a proof, if not give a counterexample.
- (f) Is the contrapositive of A(n) ever true? Is it always true? Give brief reasons for your answer.
- (g) Is the converse of A(n) ever true? Is it always true? Give brief reasons for your answer.
- **2.** Define the relation \sim on the Cartesian plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ by

 $(u, v) \sim (x, y)$ if and only if u + y = v + x.

- (a) Give a geometric description of the set $T_{(0,0)}$ of relatives of the point (0,0). [A well-labelled diagram will be sufficient.]
- (b) Give a geometric description of the set $T_{(u,v)}$ of relatives of the point (u,v).
- (c) Give a geometric description of the collection $\mathcal{R}_{\sim} = \{T_{(u,v)} : u, v \in \mathbb{R}\}$ of subsets of \mathbb{R}^2 associated with \sim .
- (d) Show that \sim is an equivalence relation on \mathbb{R}^2 .
- **3.** Let A and B be sets, and let $f : A \to B$ be a function.
 - (a) Suppose that there is a function $g: A \to B$ such that $(g \circ f)(x) = x$ for all $x \in A$. Show that f is one-to-one.
 - (b) Suppose that there is a function $h : A \to B$ such that $(f \circ h)(y) = y$ for all $y \in B$. Show that f is onto.
 - (c) Using (a) and (b), show that f has an inverse if and only if f is a one-to-one correspondence.

- 4. (a) Let (X, \leq) and (Y, \sqsubseteq) be partially ordered sets, and let $f : X \to Y$ be an order isomorphism. Show that for any $x \in X$, x is a maximal element of X if and only if f(x) is a maximal element of Y.
 - (b) Let X = (0, 1) and Y = [0, 1] be subsets of \mathbb{R} , with the usual ordering \leq . Show that X and Y are not order isomorphic.
 - (c) Show that the subsets $Z = (0, 1] \cup (2, 3)$ and W = (0, 2) of \mathbb{R} are order isomorphic. [Hint: you will need to write down a function $f : Z \to W$ and show that it is an isomorphism. Your definition of f(x) will probably have two cases, depending on whether x is in (0, 1] or (2, 3).]