Solutions to Assignment 5

445.255FC

(4 marks)

1. For $n \in \mathbb{N}$ let P_n be the statement " $8^n - 5^n$ is a multiple of 3". We prove by induction that P_n is true for all $n \in \mathbb{N}$.

Base: (n = 1) We have $8^1 - 5^1 = 3 = 1 \cdot 3$, so P_1 is true.

Inductive step: Suppose $n \in \mathbb{N}$ and P_n is true. Then we can find some $k \in \mathbb{N}$ such that $8^n - 5^n = 3k$. So

$$8^{n+1} - 5^{n+1} = 8 \cdot 8^n - 5 \cdot 8^n + 5 \cdot 8^n - 5 \cdot 5^n$$

= (8 - 5)8ⁿ + 5(8ⁿ - 5ⁿ)
= 3 \cdot 8ⁿ + 5 \cdot 3k
= 3(8ⁿ + 5),

so $8^{n+1} - 5^{n+1}$ is a multiple of 3, i.e. P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

- **2.** (a) Let f be a wibble function. For each $n \in \mathbb{N}$ let P_n be the statement "for all $x \in \mathbb{R}$, $f(2^n x) = 2^n f(x)$ ". We prove by induction that P_n is true for all $n \in \mathbb{N}$.
 - **Base:** P_1 is the assertion that for all $x \in \mathbb{R}$, f(2x) = 2f(x), which is the definition of a wibble function.
 - **Inductive step:** Suppose $n \in \mathbb{N}$ and P_n is true. We must show that P_{n+1} is true. So let $x \in \mathbb{R}$. Then

$$f(2^{n+1}x) = f(2 \cdot 2^n x)$$

= $2f(2^n x)$ since f is a wibble function
= $2 \cdot 2^n f(x)$ by inductive hypothesis
= $2^{n+1}f(x)$,

so P_{n+1} is also true, as required.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$, as required. (4 marks)

(b) Suppose that f and g are both wibble functions. Let $x \in \mathbb{R}$. Then

$$(f+g)(2x) = f(2x) + g(2x) = 2f(x) + 2g(x) = 2(f+g)(x).$$

Thus f + g is a wibble function.

- (c) The converse of the result in part (b) is "If f + g is a wibble function then f and g are both wibble functions." (1 mark)
- (d) To show that the converse of the result in part (b) is false, we give an example of a nonwibble function f and a function g such that f + g is a wibble function.¹ Define $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \in [0,1] \\ 0 & \text{if } x \in \mathbb{R} \setminus [0,1] \end{cases} \quad g(x) = \begin{cases} 0 & \text{if } x \in [0,1] \\ x & \text{if } x \in \mathbb{R} \setminus [0,1] \end{cases}$$

(2 marks)

¹Note: it is also the case that g is not a wibble function, but we don't need to prove that in order to answer the question

Now f(1) = 1 but $f(2) = 0 \neq 2f(1)$. Thus f is not a wibble function. However, (f + g)(x) = x, and it is easy to see that h(x) = x is a wibble function: h(2x) = 2x = 2h(x). (4 marks)

3. For $b \in \mathbb{N}$ let P_b be the statement "For any $a \in \mathbb{N}$, if $d = \gcd(a, b)$ then there exist integers x and y with d = ax + by." We prove by complete induction that P_b is true for all $b \in \mathbb{N}$.

Base: Let b = 1, and let $a \in \mathbb{N}$. Let $d = \operatorname{gcd}(a, b)$. Then d = a0 + bd.

Inductive step: Suppose $b \in \mathbb{N}$ and P_1, P_2, \ldots, P_b are all true. We must show that P_{b+1} is true. So let $a \in \mathbb{N}$, and let $d = \gcd(a, b + 1)$. By the Division Algorithm, we can find $q, r \in \mathbb{Z}$ with a = q(b+1) + r and $0 \leq r < b+1$. Since r < b+1, $r \leq b$. There are two cases to consider, depending on whether r = 0 or not. If r = 0 then $b+1 \mid a$, so d = b+1 = a0 + (b+1)1. Otherwise, we have $1 \leq r \leq b$, so by the inductive hypothesis P_r is true. Also, $d = \gcd(a, b+1) = \gcd(b+1, r)$, so by P_r we know that there exist $x, y \in \mathbb{Z}$ with d = (b+1)x + ry. Substituting r = a - q(b+1) we get

$$d = (b+1)x + (a - q(b+1))y = ay + (b+1)(x - qy),$$

and y and x - qy are both integers. Thus P_{b+1} is also true.

Hence, by complete induction, P_b is true for all $b \in \mathbb{N}$.

4. Let $a, b \in \mathbb{N}$. Suppose first that a and b are relatively prime. Then gcd(a, b) = 1, so by Question 3 there exist integers x and y such that ax + by = 1. (1 mark)

Conversely, suppose that there exist integers x and y such that ax + by = 1. We must show that a and b are relatively prime, in other words we must show that if d is a positive integer with $d \mid a$ and $d \mid b$ then d = 1. So suppose d is a positive integer with $d \mid a$ and $d \mid b$. Then there exist integers p and q with a = pd and b = qd. Substituting this into ax + by = 1 gives pdx + qdy = 1, so (px + qy)d = 1. Since px + qy and d are integers, this implies that px + qy = d = 1 or px + qy = d = -1. Since d is positive, we must have d = 1, as required. (4 marks)

5. We apply Euclid's Algorithm to 53 and 25:

$$53 = 2 \cdot 25 + 3$$

 $25 = 8 \cdot 3 + 1$
 $8 = 8 \cdot 1 + 0$

Since 1 is the last non-zero remainder, we have gcd(53, 25) = 1, i.e. 53 and 25 are relatively prime. (2 marks)

From the first two lines of Euclid's Algorithm, we get $3 = 53 - 2 \cdot 25$ and $1 = 25 - 8 \cdot 3$. Substituting the first into the second, we get $1 = 25 - 8(53 - 2 \cdot 25)$, so $1 = 53(-8) + 25 \cdot 17$. (3 marks)

(6 marks)