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1. (a) Suppose (xn) and (yn) are both increasing. Let n,m ∈ N with n ≤ m. Then xn ≤ xm and
yn ≤ ym, so xn + yn ≤ xm + ym, i.e. zn ≤ zm. Thus (zn) is an increasing sequence. (1 mark)
The converse of the statement is “If (zn) is an increasing sequence then (xn) and (yn) are both
increasing sequences”. The converse does not hold. For a counterexample, we could have xn = n,
yn = 1

n for each n ∈ N. Then zn = n + 1
n , so (zn) is an increasing sequence, but (yn) is not an

increasing sequence. (1 mark)
(b) We have seen that if (xn) and (yn) are both increasing then (zn) is increasing, and a similar

argument shows that if both sequences are decreasing then (zn) will be decreasing. So we will
need to have one sequence increasing and the other decreasing. One possible example would
be xn = 4n yn = −n2. These give us z1 = 4 − 1 = 3, z2 = 8 − 4 = 4, z3 = 12 − 9 = 3,
z4 = 16 − 16 = 0, . . . . Thus the sequence zn increases initially and then decreases, so it is not
monotonic. (2 marks)

2. (a) Let x ∈ A 4 (B 4 C). [We want to show that x ∈ (A 4 B)4 C] Then x ∈ A r (B 4 C) or
x ∈ (B 4 C)rA
Case 1: x ∈ Ar (B 4 C). We have x /∈ B4 C, so either x /∈ B ∪C or x ∈ B ∩ C.

Case 1a: x ∈ Ar (B 4 C) and x /∈ B ∪ C. Then x ∈ A r B, so x ∈ A4 B, and x /∈ C.
Thus x ∈ (A4B)4 C in this case.

Case 1b: x ∈ A r (B 4 C) and x ∈ B ∩ C. Then x ∈ A ∩ B, so x /∈ A4 B, and x ∈ C.
Thus x ∈ C r (A4B), so x ∈ (A4B)4 C in this case also.

Case 2: x ∈ (B 4 C)rA. Then x ∈ (B r C) ∪ (C rB).
Case 2a: x ∈ B r C. Since we also have x /∈ A, we have x ∈ A 4 B and x /∈ C, so

x ∈ (A4B)4 C in this case.
Case 2b: x ∈ C rB. Then x /∈ A ∪ B so x /∈ A4B, and x ∈ C, so x ∈ (A4 B)4 C in

this case.
So, in any case we have x ∈ (A4B)4 C. Thus A4 (B 4 C) ⊆ (A4B)4 C. (3 marks)
Now we have to show the converse. Let y ∈ (A4B)4 C: we will show that y ∈ A4 (B 4 C).
Again we have four cases to consider.

Case 1: y ∈ (A4B)r C.
Case 1a: y ∈ ArB and y /∈ C. Then y ∈ Ar (B 4 C) so y ∈ A4 (B 4 C).
Case 1b y ∈ B r A and y /∈ C. Then y ∈ (B r C so y ∈ B 4 C, and y /∈ A so

y ∈ A4 (B 4 C).
Case 2: y ∈ C r (A4B).

Case 2a: y /∈ A ∪B. Then y /∈ (A4B) and y ∈ C, so y ∈ A4 (B 4 C).
Case 2b: y ∈ A ∩B. Then y ∈ A and y ∈ B ∩ C so y /∈ B 4 C. Thus y ∈ A4 (B 4 C).

So, in any case, we have y ∈ A 4 (B 4 C). Thus (A 4 B) 4 C) ⊆ A 4 (B 4 C), as
required. (2 marks)

(b) We must check five things: that 4 is an operation on P(S); that 4 is associative; that there is
an identity element; that every element has an inverse; and that 4 is commutative.
First, note that if A,B ⊆ S then ArB∪BrA ⊆ A∪B ⊆ S, so if A,B ∈ P(S) then A4B ∈ P(S).
So 4 really is a binary operation on P(S).
Part (a) shows that 4 is associative.
We have A4∅ = (Ar∅)∪ (∅rA) = A and ∅4A = (∅rA)∪ (Ar∅) = A for all A, so ∅ is
an identity element.
We have A4A = (ArA) ∪ (ArA) = ∅, so every element has an inverse (namely A−1 = A for
each A).
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Finally, note that if A,B ∈ P(S) then A4B = (ArB)∪ (BrA) = (BrA)∪ (ArB) = B4A,
so 4 is a commutative operation.
So (P(S),4) is an abelian group, as required. (3 marks)

3. Suppose first that H is a subgroup of G. Then H has an identity element, so there is some e′ ∈ H
which satisfies e′ ∗ h = h for all h ∈ H. In particular we have e′ ∗ e′ = e′. But we know that the only
solution of x∗x = x in G is x = e, so we have e′ = e. Thus e ∈ H. Now, if x, y ∈ H then, since ∗ is an
operation on H we must have x∗y ∈ H. Finally, if x ∈ H then x has an inverse in H, so there is some
y ∈ H with x ∗ y = y ∗ x = e. The only such y ∈ G is y = x−1, so we have x−1 ∈ H. (2 marks)

Conversely, suppose that H ⊆ G with e ∈ H, x ∗ y ∈ H for every x, y ∈ H, and x−1 ∈ H for every
x ∈ H. We must show that H is a subgroup of G, i.e. we must show that ∗ is a group operation on H.
By the second assumption we know that ∗ is an operation on H. Since x ∗ (y ∗ z) = (x ∗ y) ∗ z for all
x, y, z ∈ G, we certainly know that the same holds for all x, y, z ∈ H, so ∗ is an associative operation
on H. Similarly, we know that x ∗ e = e ∗ x = x for all x ∈ G, and in particular for all x ∈ H, so e
is an identity element for H. Finally, for any x ∈ H we have x−1 ∈ H and x ∗ x−1 = x−1 ∗ x = e, so
every element has an inverse in H. Thus ∗ is indeed a group operation on H, so H is a subgroup of
G. (4 marks)

4. Suppose first that H is a subgroup of G. By Question 3 we know that e ∈ H, so H 6= ∅. Let x, y ∈ H:
we must show that x ∗ y−1 ∈ H. Now, by Question 3 we know that y−1 ∈ H, so by Question 3 again
we know that x ∗ y−1 ∈ H. (2 marks)

Conversely, suppose that H 6= ∅ and, for every x, y ∈ H we have x ∗ y−1 ∈ H. We will show that
H is a subgroup. By Question 3 again, it is enough to show that e ∈ H, x−1 ∈ H for every x ∈ H,
and x ∗ y ∈ H for every x, y ∈ H. First, note that since H 6= ∅, there is some z ∈ H. By hypothesis,
we have z ∗ z−1 ∈ H, i.e. e ∈ H. Now let x ∈ H. Then, since we also know that e ∈ H we have
e ∗ x−1 = x−1 ∈ H. Finally, let x, y ∈ H. Then by the previous line we know that y−1 ∈ H, so by
hypothesis we have x ∗ (y−1)−1 ∈ H. But (y−1)−1 = y, so x ∗ y ∈ H, as required. (5 marks)

5. We can use either the characterisation in Question 3 or that in Question 4. The first is probably easier
in this case. So we will check that eG ∈ ker(f), that if x, y ∈ ker(f) then x ∗ y ∈ ker(f), and that if
x ∈ ker(f) then x−1 ∈ ker(f).

Note that eG ∗ eG = eG, so f(EG) � f(eG) = f(eG). The only solution of h � h = h is h = eH , so we
have f(eG) = eH , and therefore eG ∈ ker(f).

Now let x, y ∈ ker(f). Then f(x ∗ y) = f(x) � f(y) = eH � eH = eH , so x ∗ y ∈ ker(f).

Finally, let x ∈ ker(f). Then

f(x−1) = eH � f(x−1) = f(x) � f(x−1) = f(x ∗ x−1) = f(eG) = eH ,

so x−1 ∈ ker(f), as required.

Thus, by Question 3, ker(f) is a subgroup of G. (5 marks)
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