Assignment 3 Solutions

(a) Maximal Elements: {1,4} Let b ∈ {1,4}. From the lattice diagram (or checking the relation) there is no x ∈ X other than b that satisfies b ≤ x. Minimal Elements: {2}. From the lattice diagram (or checking the relation) there is no x ∈ X, x ≠ 2 such that x ≤ 2.. Greatest Elements: φ (none). Clearly the greatest element must be 1 or 4. But neither 1 ≤ 4 nor 4 ≤ 1 is true, so neither is a greatest element.

Least Element: $\{2\}$. $\forall x \in X, 2 \leq x$.

(b) A is a maximal element.

Proof: Clearly $A \in \mathcal{P}(A)$. Assume that there is a $B \in \mathcal{P}(A)$ satisfying $A \subseteq B$. Since $B \in \mathcal{P}(A)$, we also have $B \subseteq A$. This means that $x \in A \iff x \in B$. So A = B. So the only element of $\mathcal{P}(A)$ satisfying $A \subseteq B$ is A as required.

 $\mathcal{P}(A)$ has greatest element A since (by definition) $\forall B \in \mathcal{P}(A), B \subseteq A$.

Total ordering example: $A = \{1\}$. Then $\mathcal{P}(A) = \{\phi, \{1\}\}$, and $\phi \subseteq \{1\}$. (The other conditions such as reflexivity are already assumed, since we've been given that \subseteq is a partial ordering.) Not a total ordering example: $A = \{1, 2\}$. $\{1\}, \{2\} \in \mathcal{P}(A)$ but they cannot be compared. In other words, neither $\{1\} \subseteq \{2\}$ nor $\{1\} \subseteq \{2\}$.

2. $T_1 = \{b \in \mathbb{Z} : (1-b)/3 \in \mathbb{Z}\}$ by the definition of \sim . So assume $(1-b)/3 = -k \in \mathbb{Z}$. Then b = 3k+1 where $k \in \mathbb{Z}$. So $T_1 = \{3k+1 : k \in \mathbb{Z}\}$.

Similar calculations show that $T_0 = \{3k : k \in \mathbb{Z}\}$ and $T_2 = \{3k + 2 : k \in \mathbb{Z}\}$. Since every integer can be written as 3k, 3k + 1 or 3k + 2, $\mathbb{Z} = T_0 \cup T_1 \cup T_2$.

We show next that these 3 sets are the *only* sets in \mathcal{R}_{\sim} . The easiest way is to first prove that \sim is symmetric. Assume $a \sim b$. Then $(b-a)/3 = -(a-b)/3 \in \mathbb{Z}$, so $b \sim a$.

This implies $a \in T_b \iff b \in T_a$. So, since $\mathbb{Z} = T_0 \cup T_1 \cup T_2$, $\mathcal{R}_{\sim} = \{T_0, T_1, T_2\}$.

To show that \sim is an equivalence relation, we need to show that \mathcal{R}_{\sim} is a partition of \mathbb{Z} . We have already shown that the union of the sets in \mathcal{R}_{\sim} is all of \mathbb{Z} . They are also disjoint since every integer can be written in *exactly* one of the ways given. Thus \mathcal{R}_{\sim} is a partition of \mathbb{Z} and \sim is an equivalence relation.

The equivalence classes are T_0, T_1 and T_2 . (Alternatively, they are the integers congruent to 0, 1 and 2 mod 3.)

3. We use the alternative definition of 1-1 (5.1.10 in the book) and prove its contrapositive:

 $\forall x, y \in A, x \neq y \Longrightarrow (g \circ f)(x) \neq (g \circ f)(y)$ Assume $x, y \in A, x \neq y$. Since f is 1-1, $f(x) \neq f(y)$. Then, since g is 1-1, $(g \circ f)(x) \neq (g \circ f)(y)$ as required.

Proof of $f(X) \setminus f(Y) \subseteq f(X \setminus Y)$:

Assume $b \in f(X) \setminus f(Y)$. Then $\exists x \in X$ such that f(x) = b, and there is no $y \in Y$ such that f(y) = b. So, in particular, $x \notin Y$. Therefore $x \in X \setminus Y$. So $b = f(x) \in f(X \setminus Y)$ as required.

One way to find an example is to cook up a function $f: A \to B$ whose domain contains 2 points x and y with the following properties.

- 1. $\exists b \in B$ such that $f^{-1}(\{b\}) = \{x, y\}$ (Inverse image of a set, NOT an inverse function !!)
- 2. $x \in X \setminus Y$ and $y \in Y \setminus X$.

The simplest example is $X = \{x\}, Y = \{y\}, A = \{x, y\}, B = \{b\}, f = \{(x, b), (y, b)\}.$ $X \setminus Y = X$, so $f(X \setminus Y) = \{b\}$. But $f(X) = f(Y) = \{b\}$, so $f(X) \setminus f(Y) = \phi$.

4. $f: [0,1) \to [1,3), f(x) = 2x + 1.$

To prove that f is a 1-1 correspondence, we need to show that it is both 1-1 and onto.

Let $x, y \in [1,3)$ satisfy f(x) = f(y). Then 2x + 1 = 2y + 1. This implies that x = y, so f is 1-1.

Let $z \in [1,3)$. To prove that f is onto, we need to prove that $\exists x \in [0,1)$ such that f(x) = z. It is easy enough to 'solve 'for x, to obtain x = (z-1)/2.

Finally, we need to check that $x \in [0, 1)$. Since $z \in [1, 3)$, $1 \le z < 3$, so $0 \le z - 1 < 2$, and $0 \le (z - 1)/2 < 1$. So $x = (z - 1)/2 \in [0, 1)$ as required.

To prove that f is an order isomorphism, we need to show that f is 1-1 and onto (done already) and that $\forall x, y \in [0, 1), x \leq y \iff f(x) \leq f(y)$.

 \implies Assume $x \leq y$. Then $2x \leq 2y$, and $f(x) = 2x + 1 \leq 2y + 1 = f(y)$ as required.

 \Leftarrow Assume $f(x) \leq f(y)$. Then $2x + 1 \leq 2y + 1$, and $2x \leq 2y$, so $x \leq y$ as required.

(NOTE: The two parts of this proof are really the same calculation 'run' in opposite directions. So we could combine the two into a single argument using 'is equivalent to ' or 'if and only if ' rather than 'implies'. In general, this is a dangerous practice; the two directions usually require different arguments. For example if the rule for f was $f(x) = 2x^2 + 1$ you would need to be *very* careful to justify yourself.)

5. The set difference binary operation is neither associative nor commutative.

Let $A = \{1, 2\}, B = C = \{2\}.$

Associative: $(A \setminus B) \setminus C = \{1\} \setminus \{2\} = \{1\}$. However, $A \setminus (B \setminus C) = A \setminus \phi = \{1, 2\} \neq (A \setminus B) \setminus C$. So \setminus is not associative.

Commutative: $A \setminus B = \{1\}$. But $B \setminus A = \phi \neq A \setminus B$. So \setminus is not commutative.