- 1. (a) Maximal Elements: $\{1, 4\}$ Let $b \in \{1, 4\}$. From the lattice diagram (or checking the relation) there is no $x \in X$ other than b that satisfies $b \leq x$. there is no x ∈ \sim other than b that satisfies $\epsilon \leq x$. $x \neq 9$ such that $x < 9$ $x \neq 2$ such that $x \leq 2$..
Greatest Elements: ϕ (none). Clearly the greatest element must be 1 or 4. But neither $1 \leq 4$ nor $4 \leq 1$ is true, so neither is a greatest element.
	- Least Element: $\{2\}$. $\forall x \in X, 2 \leq x$.
	- (b) \overline{A} is a maximal element.

Proof: Clearly $A \in \mathcal{P}(A)$. Assume that there is a $B \in \mathcal{P}(A)$ satisfying $A \subseteq B$. Since $B \in \mathcal{P}(A)$, we also have $B \subseteq A$. This means that $x \in A \iff x \in B$. So $A = B$. So the only element of $\mathcal{P}(A)$ satisfying $A \subseteq B$ is A as required.

 $\mathcal{P}(A)$ has greatest element A since (by definition) $\forall B \in \mathcal{P}(A), B \subseteq A$.

Total ordering example: $A = \{1\}$. Then $\mathcal{P}(A) = \{\phi, \{1\}\}\$, and $\phi \subseteq \{1\}$. (The other conditions such as reflexivity are already assumed, since we've been given that \subseteq is a partial ordering.)

Not a total ordering example: $A = \{1,2\}$. $\{1\}, \{2\} \in \mathcal{P}(A)$ but they cannot be compared. In Not a total ordering example: $A = \{1, -1, 1\}$, $\{1, -1, 1\}$, $\{2, -1, 1\}$ but they cannot be compared. $\sum_{i=1}^{n} (1+i)^2 = \sum_{i=1}^{n} (1$

2. $T_1 = \{b \in \mathbb{Z} : (1-b)/3 \in \mathbb{Z}\}$ by the definition of ~. So assume $(1-b)/3 = -k \in \mathbb{Z}$. Then $b = 3k+1$ where $k \in \mathbb{Z}$. So $T_1 = \{3k+1 : k \in \mathbb{Z}\}$.

Similar calculations show that $T_0 = \{3k : k \in \mathbb{Z}\}\$ and $T_2 = \{3k + 2 : k \in \mathbb{Z}\}\$. Since every integer $\frac{1}{2}$ $\left[\frac{1}{2} + \frac{1}{2} +$ can be written as 3k, 3k + 1 or 3k + 2, Z = T0 ∪ T1 ∪ T2.

we symmetric Δ setting $a \sim b$ Then $(b-a)/3 = -(a-b)/3 \in \mathbb{Z}$, so $b \sim a$ symmetric. Assume a ∼ b. Then (b − a)/3 = −(a − b)/3 ∈ Z, so b ∼ a.

This implies $a \in T_b \Longleftrightarrow b \in T_a$. So, since $\mathbb{Z} = T_0 \cup T_1 \cup T_2$, $\mathcal{R}_{\infty} = \{T_0, T_1, T_2\}$.

To show that \sim is an equivalence relation, we need to show that \mathcal{R}_{\sim} is a partition of Z. We have already shown that the union of the sets in \mathcal{R}_{\sim} is all of Z. They are also disjoint since every integer all \overline{z} and \overline{z} is a partition of \overline{z} and \overline{z} is an equivalence can be written in exactly one of the ways given. Thus R is a partition of Z and ∼ is an equivalence

relation. and $9 \mod 3$ and 2 mod 3.)

3. We use the alternative definition of 1-1 (5.1.10 in the book) and prove its contrapositive:
 $\forall x, y \in A, x \neq y \Longrightarrow (q \circ f)(x) \neq (q \circ f)(y)$

 $\sqrt{3}$, $\sqrt{9}$, $\sqrt{9}$, $\sqrt{9}$, $\sqrt{9}$, $\sqrt{9}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

required.
Proof of $f(X)\backslash f(Y) \subset f(X\backslash Y)$:

Assume $b \in f(X)\backslash f(Y)$. Then $\exists x \in X$ such that $f(x) = b$, and there is no $y \in Y$ such that $f(y) = b$. So, in particular, $x \notin Y$. Therefore $x \in X \backslash Y$. So $b = f(x) \in f(X \backslash Y)$ as required.

One way to find an example is to cook up a function $f: A \to B$ whose domain contains 2 points x and y with the following properties. $\sigma_{\rm F}$ is the following properties.

- 1. $\exists v \in B$ such that $f^{-1}(\{v\}) = \{x, y\}$ (Inverse image of a set, NOT an inverse function !!)
-

2. $x \in X \backslash Y$ and $y \in Y \backslash X$.
The simplest example is $X = \{x\}$, $Y = \{y\}$, $A = \{x, y\}$, $B = \{b\}$, $f = \{(x, b), (y, b)\}$. The simplest example is $Y = {x \choose y}$, $Y = {y \choose y}$. $\begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$ = $\begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$ = $\begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$

4. $f : [0, 1) \rightarrow [1, 3), f(x) = 2x + 1.$
To prove that f is a 1-1 correspondence, we need to show that it is both 1-1 and onto.

Let $x, y \in [1,3)$ satisfy $f(x) = f(y)$. Then $2x + 1 = 2y + 1$. This implies that $x = y$, so f is 1-1.

Let $z \in [1, 3)$. To prove that f is onto, we need to prove that $\exists x \in [0, 1)$ such that $f(x) = z$. It is easy enough to 'solve 'for x, to obtain $x = (z - 1)/2$.

Finally, we need to check that $x \in [0,1)$. Since $z \in [1,3)$, $1 \le z \le 3$, so $0 \le z-1 \le 2$, and $0 \le (z-1)/2 < 1$. So $x = (z-1)/2 \in [0,1)$ as required.

To prove that f is an order isomorphism, we need to show that f is 1-1 and onto (done already) and that $\forall x, y \in [0, 1), x \leq y \Longleftrightarrow f(x) \leq f(y)$.

 \implies Assume $x \leq y$. Then $2x \leq 2y$, and $f(x) = 2x + 1 \leq 2y + 1 = f(y)$ as required.

 \Leftarrow Assume $f(x) \le f(y)$. Then $2x + 1 \le 2y + 1$, and $2x \le 2y$, so $x \le y$ as required.

(NOTE: The two parts of this proof are really the same calculation 'run' in opposite directions. So we could combine the two into a single argument using 'is equivalent to ' or 'if and only if ' rather than 'implies'. In general, this is a dangerous practice; the two directions usually require rather than $\frac{1}{2}$ implies '. In general, this is a dangerous practice; the two directions usually require different arguments. For example if the rule for f was $f(x) = 2x^2 + 1$ you would need to be very careful to justify yourself.)

5. The set difference binary operation is neither associative nor commutative.
Let $A = \{1, 2\}, B = C = \{2\}.$

 $\binom{1}{2}$, B = C = C = {1}, B = C = {2}, B = {2}, Associative: $\begin{pmatrix} 1 \end{pmatrix}$, $\begin{pmatrix} 1 \end{pmatrix}$,

not associative.
Note $C_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$