1.	Table of	answers	to	${\rm the}$	'little	'questions
----	----------	---------	---------------------	-------------	---------	------------

	S'ment	Pred	Free Var	Bound Var	Thm	Taut	Cont'n
a	У	n	none	none	n	n	n
b	У	n	none	none	n	n	n
с	у	n	none	x,y,t	n(?)	n	n(?)
d	у	n	none	x,y,t	n(?)	n	n(?)
е	У	n	none	a,b,c	У	n	n

Note: in parts c and d I'll accept any plausible argument based on the properties of 'people' and the 'loves' 'relationship as long as they demonstrate an understanding of the logical structure of the statement!

(a) $(A \lor B) \land \sim (A \land B)$ or $(A \land \sim B) \lor (\sim A \land B)$ or $(A \lor B) \land (\sim A \lor \sim B)$. Other forms are possible, check the truth table. (Fewer marks for unnecessarily complex answers.)

А	В	Statement
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

(Table not required in the solution, but recommended.)

(b) $(A \land \sim B \land \sim C) \lor (\sim A \land B \land \sim C) \lor (\sim A \land \sim B \land C) \lor (A \land B \land C)$. A bonus mark for seeing how to simplify this John McK can't. Again, check the truth table.

А	В	С	Statement
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	Т
F	Т	Т	F
F	Т	F	Т
F	F	Т	Т
F	F	F	F

(Table not required in the solution, but recommended.)

(c) $\forall x \in P, \exists y \in P, \exists t \in T \text{ such that } R(x, y, t).$

(The commas and 'such that' are recommended but not necessary. All the symbols are necessary.)

- (d) $\sim (\exists x \in P, \forall y \in P, \forall t \in T \text{ such that } R(x, y, t)) \text{ or (better) } \forall x \in P, \exists y \in P, \exists t \in T \text{ such that} \sim R(x, y, t).$ (Comments as for part c.)
- (e) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, R(a, b) \Longrightarrow (\exists c \in \mathbb{Q} \text{ such that } R(a, c) \land R(c, b)).$ (Comments as for previous 2 parts, but marks lost for not using the symbols $\Longrightarrow, R(,)$ and \land .) Proof: Let $a, b \in \mathbb{Z}$ satisfy R(a, b), in other words a < b. Define c = (a+b)/2. Clearly $c \in \mathbb{Q}$. We claim that $R(a, c) \land R(c, b)$ is true; in other words a < c and c < b. c = (a+b)/2 < (b+b)/2 = b since a < b, and a = (a+a)/2 < (a+b)/2 = c since a < b. So the claim is established, since c satisfies the requirements of the theorem.
- **2.** $(A \Longrightarrow B) \land \sim (A \Longleftrightarrow C)$

Α	В	C	$A \Longrightarrow B$	$\sim (A \iff C)$	Statement
Т	Т	Т	Т	F	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т
F	F	F	Т	F	F

$$\begin{split} (A \Longrightarrow B) \wedge &\sim (A \Longleftrightarrow C) \quad \Longleftrightarrow \quad (\sim A \vee B) \wedge \sim ((\sim A \vee C) \wedge (A \vee \sim C)) \\ \Leftrightarrow \quad (\sim A \vee B) \wedge (\sim (\sim A \vee C) \vee \sim (A \vee \sim C)) \Leftrightarrow \quad (\sim A \vee B) \wedge ((A \wedge \sim C) \vee (\sim A \wedge C)). \end{split}$$

Hmmm. Can we go further?? One approach is to prove "distributive" laws for \lor and \land and keep expanding.

Markers note; only give credit for this if the rules are proven or a source referenced! Not covered in text or in class. Another way is to read off the expression from the truth table. (One bracket for every line that ends in a T. Think about it.)

$$(A \land B \land \thicksim C) \lor (\thicksim A \land B \land C) \lor (\thicksim A \land \thicksim B \land C)$$

 $\iff (A \land B \land \thicksim C) \lor (\thicksim A \land C) \ (\ \text{since} \ (X \land Y) \lor (\thicksim X \land Y) \Longleftrightarrow Y \ \text{This needs to be justified using a truth table!})$

 $\sim (\sim (A \lor \sim B) \land \sim (\sim A \lor B))$ is a tautology, and can be expressed as (for example) $A \lor \sim A$.

А	В	$\sim (A \lor \sim B)$	$\sim (\sim A \lor B)$	Statement
Т	Т	F	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	F	F	Т

3. (a) ⇒

Let $n \in \mathbb{Z}$ be divisible by 3. Then n = 3k for some integer k, and $n^3 = 27k^3 = 3(9k^3)$. Therefore, since $9k^3 \in \mathbb{Z}$, n^3 is divisible by 3 as required.

$$\Leftarrow$$

It is easiest to prove the contrapositive of the statement, which is "3 does not divide $n \Longrightarrow 3$ does not divide n^{3} "

There are 2 cases to check; n = 3k + 1 and n = 3k + 2.

Case1: $(3k + 1)^3 = 27k^3 + 27k^2 + 9k + 1 = 3(9k^3 + 9k^2 + 3k) + 1$ which is not divisible by 3 since $9k^3 + 9k^2 + 3k \in \mathbb{Z}$.

Case2: $(3k+2)^3 = 27k^3 + 54k^2 + 36k + 8 = 3(9k^3 + 18k^2 + 12k + 2) + 2$ which is not divisible by 3 since $9k^3 + 18k^2 + 12k + 2 \in \mathbb{Z}$.

(Note that we use the "in exactly one way" part of the facts I said you could use here.)

(b) Assume, for a contradiction, that there is a rational number d that satisfies $d^3 = 3$. Then we may assume that d = p/q where $p, q \in \mathbb{Z}$ have no common factor.

Then
$$3 = d^3 = p^3/q^3$$
, so

$$p^3 = 3q^3. \ (*)$$

This implies (since $q^3 \in \mathbb{Z}$) that p^3 is divisible by 3. From part a of this question, we conclude that p is divisible by 3. Let p = 3t, where $t \in \mathbb{Z}$.

Substituting in (*) we obtain $3q^3 = 27t^3$ or $q^3 = 3(3t^3)$. This implies that q^3 is divisible by 3 and (using part a again) that q is divisible by 3. Thus BOTH p and q are divisible by 3; in other words they have a common factor. This gives a contradiction to our original assumptions, and proves the result.

- 4. (a) Prove A\(A\B) = A ∩ B. We prove x ∈ A\(A\B) ⇔ x ∈ A ∩ B.
 ⇒ Let x ∈ A\(A\B). Then x ∈ A and x ∉ A\B. But A\B = {x ∈ A : x ∉ B}. Therefore we must have x ∈ B. Since x is in both A and B, x ∈ A ∩ B as required.
 ⇐ Let x ∈ A ∩ B. Then x ∈ A and x ∈ B. So x ∉ A\B. Therefore, since x ∈ A, x ∈ A\(A\B)
 - $= \text{Let } x \in A | |B. \text{ I hen } x \in A \text{ and } x \in B. \text{ So } x \notin A \setminus B. \text{ I herefore, since } x \in A, x \in A \setminus (A \setminus B) \text{ as required.}$
 - (b) Prove $(A \cup B^c)^c = A^c \cap B$. Let U be the universal set, and let $x \in U$. We prove $x \in (A \cup B^c)^c \iff x \in A^c \cap B$. \implies Let $x \in (A \cup B^c)^c$. Then $x \notin A \cup B^c$, so $x \notin A$ and $x \in B$. Since $x \notin A$, $x \in A^c$ so

 $x \in A^c \cap B$ as required. \Leftarrow Let $x \in A^c \cap B$. Then $x \in A^c$ and $x \in B$, so $x \notin A$ and $x \notin B^c$. Therefore $x \notin A \cup B^c$, and $x \in (A \cup B^c)^c$ as required.

(c) We need to prove 2 things; that the empty set ϕ has no proper subset, and that every nonempty set has a proper subset.

Assume (for a contradiction) that A is a proper subset of ϕ . Then (by the definition of subset) $x \in A \Longrightarrow x \in \phi$. Since ϕ has no elements we conclude that A has no elements. In other words, $A = \phi$. But the definition of proper subset requires that $A \neq \phi$ giving the contradiction we require.

Now assume that we have a set A such that $A \neq \phi$. We show that ϕ is a proper subset of A. To prove that $\phi \subseteq A$ we need to show that $x \in \phi \implies x \in A$. This is vacuously true since ϕ has no elements. Lastly, ϕ is a proper subset because there must be some x such that $x \in A$ (otherwise A would be the empty set).

(Note: the idea of this proof is very simple, but needs to be carefully worded to be a watertight proof.)