445.255FC	Assignment 5	Due: 4pm, 22 May 2000

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet. These are available from outside the Resource Centre. PLEASE SHOW ALL WORKING.

- 1. Show that $8^n 5^n$ is a multiple of 3 for every $n \in \mathbb{N}$. [Hint: $8^{n+1} 5^{n+1} = 8 \cdot 8^n 5 \cdot 8^n + 5 \cdot 8^n 5 \cdot 5^n$.]
- **2.** We say that a function $f : \mathbb{R} \to \mathbb{R}$ is a *wibble* function if, for every $x \in \mathbb{R}$, f(2x) = 2f(x). If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are functions, $f + g : \mathbb{R} \to \mathbb{R}$ is defined by (f + g)(x) = f(x) + g(x) for all $x \in \mathbb{R}$.
 - (a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is a wibble function then $f(2^n x) = 2^n f(x)$ for every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$.
 - (b) Show that if f and g are both wibble functions then f + g is a wibble function.
 - (c) What is the converse of the result in part (b)?
 - (d) Show that the converse of the result in part (b) is false.
- **3.** Show that if $a, b \in \mathbb{N}$ and $d = \gcd(a, b)$ then there exist integers x and y with d = ax + by. [Hint: use complete induction, and the fact that if a = qb + r then $\gcd(a, b) = \gcd(b, r)$. Your proof should begin with something like "For $b \in \mathbb{N}$, let P_b be the statement that for every $a \in \mathbb{N}$ there exist integers x and y with d = ax + by"]
- **4.** Let $a, b \in \mathbb{N}$. Show that a and b are relatively prime if and only if there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.
- 5. Use Euclid's Algorithm to show that 53 and 25 are coprime. Using your working, or otherwise, find integers x and y such that 53x + 25y = 1.