DEPARTMENT OF MATHEMATICS Assignment 3

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet. These are available from outside the Resource Centre. PLEASE SHOW ALL WORKING.

1. (a) Consider the partial ordering \leq on the set $X = \{1, 2, 3, 4, 5, 6\}$ defined by $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 1), \}$

 $(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (6,4), (5,4)\}.$

Draw the lattice diagram.

List the sets of maximal, minimal, greatest and least elements of A. (Some of these sets may be empty, or have several elements.) Give reasons.

- (b) Now let A be a set, and consider the power set of A, $\mathcal{P}(A)$, with the partial ordering \subseteq . Prove that $A \in \mathcal{P}(A)$ is a maximal element of $\mathcal{P}(A)$. Does $\mathcal{P}(A)$ have a greatest element? Give one example of a nonempty set A where \subseteq is a total ordering, and another where \subseteq is not a total ordering.
- **2.** Define a relation on \mathbb{Z} by $a \sim b \iff (a b)/3 \in \mathbb{Z}$.

Describe the set of relatives of $1 \in \mathbb{Z}$ (ie the set T_1).

Write down $\mathcal{R}_{\sim} \subseteq \mathcal{P}(\mathbb{Z})$, and justify your answer.

Prove that \sim is an equivalence relation by showing that \mathcal{R}_{\sim} is a partition of \mathbb{Z} .

Describe the equivalence classes.

Hint: Recall (from a previous assignment) that every integer x can be written in exactly one of the following ways (with $k \in \mathbb{Z}$): 3k, 3k + 1 or 3k + 2.

3. Let $f: A \to B$ and $g: B \to C$ be functions.

Prove that if both f and g are one-to-one, then $g \circ f$ is one-to-one.

Let X and Y be subsets of A. Prove that $f(X) \setminus f(Y) \subseteq f(X \setminus Y)$.

Give an example where $f(X) \setminus f(Y) \neq f(X \setminus Y)$. (Be careful to define f properly and to show it is an example.)

4. Let $X = [0,1) \subseteq \mathbb{R}$ and $Y = [1,3) \subseteq \mathbb{R}$. Let $f : X \to Y$ be defined by f(x) = 2x + 1.

Prove that f is a 1-1 correspondence.

The usual ordering \leq on \mathbb{R} gives orderings on X and Y. (In other words, we can compare elements of X, say, because they are real numbers.) Prove that f is an order isomorphism.

5. Let A be a set and consider the binary operation on $\mathcal{P}(A)$ given by set difference: $a * b = a \setminus b$ for $a, b \in \mathcal{P}(A)$.

Is this operation associative?

Is this operation commutative?

Give proofs or counterexamples.