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Integration using partial fractions 
 
This technique is needed for integrands which are rational functions, that is, they are the quotient of two 
polynomials.  We can sometimes use long division in order to rewrite such an integrand into a sum of 
functions whose antiderivatives we can easily find.   
 
Recall    If p is a polynomial in the variable x, the degree of p, deg(p) is defined to be the highest power 
of x in p(x).   
 
Examples   x3  has degree 1, 21 xx −−  has degree 2,  5 has degree 0.   
We could write this: deg( x3 ) = 1, deg( 21 xx −− ) = 2,  deg(5) = 0. 
 
Revision of long division. 

Example   Simplify  
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−
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x
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 using long division. 

We divide  x3 − 3x2 + x + 1  by  (x − 1).     We are going to decompose the numerator into products of 
the denominator, where possible.   The following whos some steps of the process, beginning by writing 
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( )x x x x
x

− − + +1 3 13 2

2

 

 

( )

( )

x x x x
x

x x

x x

− − + +

− −

− + +

1 3 1

2 1

3 2

2

3 2

2

 

 
 

( )

( )

( )

( )

x x x x
x x

x x

x x

x x
x

x

− − + +

− −

− −

− + +

− − +
− +
− − +

1 3 1
2 1

2 1

2 2
1

1
0

3 2

2

3 2

2

2

 

Result:  
1

13 23

−
++−

x
xxx

  = 1,122 ≠−− xxx , and it is now easy to find an antiderivative. 

Example with remainder   Simplify   
3 3 4

2

2

2
x x
x x
− +
−

 using long division.    

We now ask,  how many times will x, the term with the 
highest power of the variable in the denominator,  x − 1,  
"go into" x3  , the term with the highest power of the 
variable in the numerator, x3 − 3x2 + x + 1.   
 
Since x3 ÷ x = x2, we can say it "goes" x2  times and 
write x2 on the line above.   

Look next at the term with the highest power of x in the 
remainder,  − 2x2 + x + 1, and ask, how many times 
will x "go into" − 2x 2 ?   Since  
−2x2 ÷ x = −2x, we can write  −2x on the line above.  
 
Now multiply: −2x (x − 1) = −2x2 + 2x, write this below, 
and subtract this product of the denominator from   
− 2x2 + x + 1. 
 
The process goes on until we have zero remainder, 
which must happen in this case as (x − 1) is a factor of    
x3 − 3x2 + x+ 1. 

Now multiply: x2(x − 1) = x3 − x2,  write this below, and 
subtract this product of the denominator from  
x3 − 3x2 + x + 1 to give a remainder, a term that has 
not yet been divided by the denominator.   
Be very careful to use brackets here. 
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Example     ( )122
9

2
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12
1436 2
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+
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+
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x
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 .  Do it yourself. 

 
Partial fractions. 
If the denominator of a rational function is not a simple linear or quadratic polynomial, as in 
3 3 4

2

2

2
x x
x x
− +
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 = 
xx

x
2
433 2 −

+
+ , the result after long division will not necessarily be sums of functions 

whose antiderivatives we can easily find.   The technique of partial fractions is a method of 
decomposing rational functions, and is very useful for preparing such functions for integration (and has 
many other uses also). 

Consider, we can easily add 
xx
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What we would like to do is the same thing backwards, because the right hand version is not something 
we would care to integrate, while the left hand version is perfectly reasonable.   
 
Definition   The quadratic polynomial q given by  q(x) = ax2 + bx + c  (with coefficients a, b, c ∈IR)  
is said to be irreducible if   b2 − 4ac < 0, as it cannot then be rewritten as the product of two linear 
polynomials with real coefficients. 
 
This is just using the quadratic formula to find that if  b2 − 4ac < 0, then the equation ax2 + bx + c = 0  has 
only complex solutions, and so, by the factor theorem (which says that  p(d) = 0, where p is a polynomial 
if, and only if, (x – d) is a factor of p),  ax2 + bx + c has only complex linear factors. 
 
Example    12 +x , 12 ++ xx , 12 +− xx   are all irreducible.  
 
 
Method of partial fraction expansion of rational functions 

Given 
)(
)(0

xq
xp

 where  p0 and q are polynomials for which deg(p0) ≥ deg(q), we use long division to rewrite 

the expression.    Once we have an expression 
)(
)(

xq
xp

 for which deg(p) < deg(q), we may rewrite 
p x
q x

( )
( )

 as 

a sum of terms called partial fractions, whose antiderivatives are known.    In order to do so, we first 

Divide first by 2x .   The remainder is 3x + 4 : we cannot use 
long division to divide this by x2 − 2x  because the degree of 
the denominator (which is 2) is higher than the degree of the 
numerator (1).  3x + 4 has not been divided by xx 22 − . 

We recognize this by simply writing +
xx

x
2
43

2 −
+

 above. 
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consider the factors in the denominator.   We say the factor   (ax + b)  or   )( 2 cbxax ++   of q(x) is 

repeated n times where (ax + b)n  or ( )ncbxax ++2  is a factor of q(x).  
 

Examples:  
)1(

134
2

2

+
++

xx
xx

  has x repeated twice and x + 1 repeated once in the denominator. 

( ) ( )223

2

11
2
++−

+−

xxx
xx

 has  x − 1 repeated three times and 12 ++ xx  (an irreducible quadratic) repeated 

twice in the denominator. 
 
Knowing this, we factor the denominator and then write down the partial fraction sum (or expansion), 
using unknown constants. 
 
The sum of partial fractions includes (see examples below): 

• the n terms 
A

ax b
1

+
+ 
( )

A
ax b

2
2+

+ ... + 
( )

A
ax b

n
n+

         

           for each n times repeated linear factor  ( )bax +  in q x( ) ,  
           where the numerators A1, A2, … , An are constants;  

 

• the n terms 
cbxax

CxB
++

+
2

11 + 
( )22

22

cbxax

CxB
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+
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( )n
nn

cbxax

CxB

++

+
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            for each n times repeated irreducible quadratic factor )( 2 cbxax ++  in q x( ) ,  
            where the numerators B1x + C1, … , Bnx + Cn are linear.   
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example        ∫
+−
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1 dx
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.      

 
The integrand is a rational function (quotient of two polynomials) with degree of the numerator less than 
the degree of the denominator, as 0 < 2.  We may use the method of partial fractions to decompose the 
integrand.   
 
Step 1  Rewrite by factoring the denominator, and make the required assumption: 

(1)        ( )( ) 2121
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(a constant divided by a linear term for each linear term in the original denominator). 
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Step 2  Find the values of A and B for which (1) is true for all x.  There are many methods, we will use 
two of these, and both require us to first multiply both sides of (1) by the common denominator 
( )( )x x− −1 2  to get an expression without fractions. 
 
(2)         ( ) ( )1 2 1= − + −A x B x . 
 
Method 1:  the cover up rule.   The cover up rule is based on the fact that if (2) is true for all real x, it 
must be true for any particular x.  So we choose a value of x which makes one or more terms on the right 
in (2) zero and we replace this value in the equation.  In this case 
 
Step 3 
replacing  x = 2 in (2)  gives      1 = 0 + B(2 − 1) = B 
replacing  x = 1 in (2)  gives      1 = A(1 − 2) + 0 = −A ⇒ A = −1. 
 
⇒ if (2) is true, then A = −1 and B = 1   

⇒  (1)        ( )( ) 2
1

1
1

21
1

23
1

2 −
+

−
−

=
−−

=
+− xxxxxx

   

 
You can always check your result by adding the fractions: of course you should get back the original 
rational expression. 
 
Now we may integrate:     

∫
+−

4

3
2 23

1 dx
xx

 = ∫ ⎟
⎠
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⎜
⎝
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+
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  [ ]43|2|ln|1|ln −+−−= xx    
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2ln ⎥
⎦
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⎢
⎣

⎡
−
−

=
x
x

 )
2
1ln()

3
2ln( −=   )

3
4ln(= . 

You may find you run out of values for x that give zeros in (2) before you have found all the coefficients.  
In this case just choose other simple values for x that haven't yet been used.  You will often get some 
simultaneous equations to solve.   
 
We need a further result before we use the second method. 
Lemma:  If any two polynomials have the same values for all x ∈ IR, then the polynomials are identical 
and so the coefficients of the corresponding powers of x in the two polynomials are equal.   
This means that if  i

i
n

n xbxbbxaxaa +++=+++ ...... 1010   is true for all x ∈ IR, where  i ≤ n, then    

( ) ( ) ( ) 0...... 1
11100 =++−++−+− +
+

n
n

i
i

i
ii xaxaxbaxbaba  for all x ∈ IR    

 and     ii bababa === ...,,, 1100  and 0...1 ===+ ni aa . 
 
Example     We will do the last problem again using the second method.  The procedure follows the last 
one up to (2) and further expands the right hand side to rewrite it as the sum of powers of x. 
 
(2)   ( ) ( )121 −+−= xBxA    ⇒      (3)    1 ( ) ( )BABAx −−++= 2 . 
 
Method 2:  equating coefficients .  
 
By the lemma above, the coefficients of the corresponding powers of x in (3) must be equal.  As 
       1 ( ) ( )BABAx −−++= 2 , then   
 
Step 3 
x0:       1 = BA −− 2                where we equate the coefficients of x0, that is, the constants, each side  
                                                of the equality 
x1:       0 = BA +                     where we equate the coefficients of  x1 = x.  The coefficient of x at left is 0 
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We get the two equations 0=+ BA  and 12 =−− BA , and solving this linear system gives us A = −1 and 
B = 1 as before. 
 
Which method is best where?    
The cover up rule is quickest where the denominators in the partial fraction expansion have linear factors.  
Equating coefficients is usually better where the denominators contain irreducible quadratic factors. 
 

Example   ( )dx
xx
x

∫
+

+

1
23

2                   

Step 1 assumption. (1)    ( ) 11
23

2
21

2 +

+
+=

+

+

x
BxB

x
A

xx
x

 ,  

with a constant numerator for the linear term and a linear numerator for the irreducible quadratic 
term. 
 
Step 2  Multiply this equality through by the left hand side denominator, and because we have an 
irreducible quadratic term, expand the result as a sum of powers of x in order to use the second method 
of finding the constants. 
 

)()1(23 21
2 BxBxxAx +++=+   and therefore   

(2)  23 +x  = )()()( 21
2 ABxBAx +++ .      

    
Step 3   Equating coefficients in (2): 
         x2:    0 = A + B1 
         x1:    3 = B2 
         x0:    2 = A     

giving    A = 2, B1 = −2, B2 = 3,  

so that  ( ) 1
322

11
23

22
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2 +
+−

+=
+
+

+=
+
+
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xx
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x

.    

 

Then ( )dx
xx
x

∫
+

+

1
23

2  = dx
x

x
x∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
+−

+
1
322

2  .    

To integrate, we will split this integrand into three parts, where the first is an obvious split.  The reason for 

the second may not be obvious immediately.  Look at the denominator of the second term 
1
32

2 +
+−

x
x

:  we 

would want to make the substitution u = x2 + 1, which needs a multiple of x to appear in the numerator if it 
is to work.    However only one part of the numerator (−2x) is a multiple of x, the other is a constant, so 
we split the quotient in order to deal with each part separately.  

dx
xx

x
x∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
+

+
−

+
1

3
1

22
22 = ++− |1|ln||ln2 2xx cx +− )(tan3 1    

 
Do this integration yourself, and note that we have used the following list of antiderivatives which you 
ought to know by heart. 
 
For a, b constant,  

     ∫ += c
a
axdxax )sin()cos(                ∫ +

−
= c

a
axdxax )cos()sin(             ∫ += c

a
axdxax )tan()(sec2  

     c
a

edxe
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ax +=∫                            cbax
a

dx
bax

++=
+∫ ln1    1

           cxfdx
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+=
′

∫ )(ln    
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    ( ) cx
x

dx
+=

+
−∫ 1

2 tan
1

. 
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Repeated factors in the denominator. 
 
 Where there are repeated factors, that is, powers of factors in the denominator, we must recognise this 
in our decomposition assumption. 
 

Example   Evaluate  dx
xx

xx
∫

+
++2

1
2

2

)1(
134

 . 

First check that the degree of the numerator of the integrand is lower than that of the denominator. (If not, 
long division must be done first.)  Then write down the decomposition assumption. 
 

)1(
134

2

2

+
++

xx
xx

 = 
12 +

++
x
C

x
B

x
A

 

 
where because x was what we call a repeated factor in the denominator at left, we need to include the 
terms with denominators x1 and x2 (each with constant numerators, as x is linear). Read page 3 again.  
Then, multiplying through by the left hand denominator gives  

22 )1()1(134 CxxBxAxxx ++++=++ . 
Using the cover up rule, we look for values of x that give zeroes at right.  
x = −1:  4 – 3 + 1 = 2 = C. 
x = 0:    1 = B 
Having run out of zeroes before finding A, we use any other simple value of x. 
 x = 1:    4 + 3 + 1 = 8 =  2A + 2B + C  = 2A + 2 +  2 giving  A = 2.       
 
Then 

)1(
134

2

2

+
++

xx
xx

 = 
1

212
2 +
++

xxx
, so that  

dx
xx

xx
∫

+
++2

1
2

2

)1(
134

 = dx
xxx∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
++

2

1
2 1

212
   = 

2

1

|1|ln21||ln2 ⎥⎦
⎤

⎢⎣
⎡ ++− x

x
x  

( ))2ln(210)3ln(2
2
1)2ln(2 +−−⎟

⎠
⎞

⎜
⎝
⎛ +−=       )3ln(2

2
1
+= . 

Example      Write down the assumption for the partial fraction decomposition of 
( ) ( )223

2

11

2

++−

+−

xxx

xx
.    

First check that the degree of the numerator (2) is lower than that of the denominator (7).  Then note:  
• (x – 1) has power 3, we need 3 repeats (until all 3 powers are used) with constants in the 

numerators as it is a linear term.  
• ( )12 ++ xx  has power 2, we need 2 repeats with linear terms in the numerators as it is an 

irreducible quadratic.  

( ) ( ) ( ) ( ) ( )22

43
2

21
3

3
2

21
223

2

1111111

2

++

+
+

++

+
+

−
+

−
+

−
=

++−

+−

xx

BxB
xx

BxB
x

A
x

A
x
A

xxx

xx
. 

We would then solve for A1, A2, A3, B1, B2, B2  and B4  (I suggest by the method of equating coefficients).  
However it is a bit nasty, so don't actually do it.  Integrating the result is also nasty.  
 

Example    Find a partial fraction expansion of ( )4)12(
1510

2

2

+−

+−

xx
xx

, and hence find ( )dx
xx
xx

∫ +−
+−

4)12(
1510

2

2

.    

Check degrees. 
 

Assume that  ( )4)12(
1510

2

2

+−

+−

xx
xx

 = 
412 2 +

+
+

− x
CBx

x
A

      multiply by LH denominator 
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⇒   1510 2 +− xx  = )12)(()4( 2 −+++ xCBxxA                and sort the RHS by powers of x 

⇒   1510 2 +− xx )4()2()2(2 CACBxBAx −++−++= .  Equating coefficients:          
 
                  x2:  10 = A + 2B 
                  x1:   −1 = −B + 2C 
                  x0:  15 = 4A  − C    
 
We get a system of linear equations in A, B and C: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
15104

1210
10021

→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
25180
1210

10021
→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
171700
1210

10021
  

giving C = 1, B = 3, A = 4. 

Therefore ( )4)12(
1510

2

2

+−

+−

xx
xx  = 

4
13

12
4

2 +

+
+

− x
x

x
,  so that     

( )dx
xx
xx

∫ +−
+−

4)12(
1510

2

2

 =  dx
x

x
x∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
+

+
− 4

13
12

4
2  .    

 
To integrate the result, we need to split the second term, because the x in its numerator makes for a nice 
substitution, but the constant needs different treatment:  
 

dx
x

x
x∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
+

+
− 4

13
12

4
2  32122 4

1
4

3
12

4 IIIdx
x

dx
x

xdx
x

++=
+

+
+

+
−

= ∫∫∫ . 

Using one of the shortcuts, I1  = cxcx
+−=+

− |12|ln2
2

|12|ln4
 (= ( ) cx +− 212ln ). 

I2  needs the substitution 
2

42 duxdxxu =⇒+=  ⇒ I2 = c
x

c
u

u
du

+
+

=+=∫ 2

4ln3

2
ln3

2
3

2

. 

As x2 + 4 is always positive, this can be rewritten to 
( ) cx

+
+

2
4ln3 2

  . 

 
I3  has an integrand whose antiderivative is an inverse tan function.  We can rewrite it to  

I3  = dx
x∫ + 4

1
2  = dx

x
dx

x ∫∫
+⎟

⎠
⎞

⎜
⎝
⎛

=
+ 1

2

1
4
1

)1
4

(4

1
22  

                         =  du
u∫ +1

1
2
1

2   

            = ( ) cu +−1tan
2
1

    =  cx
+⎟

⎠
⎞

⎜
⎝
⎛−

2
tan

2
1 1 . 

Therefore dx
x

x
x∫ ⎟

⎠
⎞

⎜
⎝
⎛

+
+

+
− 4

13
12

4
2  = |12|ln2 −x + 

( )
2

4ln3 2 +x
+ cx

+−

2
tan

2
1 1 . 

 
Reading:  ABD §8.5.      Exercises:  ABD p 543 # 1, 5, 13, 23, 27, 37.   

Now make the substitution 

2
xu =  dxdu =⇒ 2    

and use the formula given in 
the table on page 5.  


