Barely Baire Spaces and Hyperspaces

J. Cao, S. Garcia-Ferreira and V. Gutev

Abstract

We prove that if the Vietoris hyperspace ${mathcal F}(X)$ of all non-empty closed subsets of a space $X$ is Baire, then all finite powers of $X$ must be Baire spaces. In particular, there exists a metrizable Baire space $X$ whose Vietoris hyperspace $mathcal{F}(X)$ is not Baire. This settles a problem of McCoy stated in [9].



Keywords
Baire space, Product space, Hyperspace, Vietoris topology

Math Review Classification
Primary 54E52 ; Secondary 26A21, 46A30, 54B10, 54B20.

Last Updated
20/8/04

Length
7 pages

Availability
This article is available in: