The theory of self-adjoint extensions is closely related to the theory of hermitian symplectic geometry cite{Pav,Kost:Sch,Nov3}. Here we develop this idea, showing that it may also be used to consider symmetric extensions of a symmetric operator. Furthermore we find an explicit parameterisation of the Lagrange Grassmannian in terms of the unitary matrices $U (n)$. This allows us to explicitly describe all self-adjoint boundary conditions for the Schr"{o}dinger operator on the graph in terms of a unitary matrix. We show that the asymptotics of the scattering matrix can be simply expressed in terms of this unitary matrix. \ Using the construction of the asymptotic hermitian symplectic space cite{Nov1,Nov3} we derive a formula for the scattering matrix of a graph in terms of the scattering matrices of its subgraphs. This also provides a characterisation of the discrete eigenvalues embedded in the continuous spectrum. |
Keywords
Schr"{o}dinger operator, graphs, extension theory, hermitian symplectic geometry, graph factorisation the graph
Math Review Classification
Last Updated
Length
39 pages
Availability
This article is available in: