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Abstract

The primary topic of this thesis is the construction of explicit projective equations for the
modular curves X0(N). The techniques may also be used to obtain equations for X+

0 (p) and,
more generally, X0(N)/Wn. The thesis contains a number of tables of results. In particular,
equations are given for all curves X0(N) having genus 2 ≤ g ≤ 5. Equations are also given for
all X+

0 (p) having genus 2 or 3, and for the genus 4 and 5 curves X+
0 (p) when p ≤ 251. The

most successful tool used to obtain these equations is the canonical embedding, combined with
the fact that the differentials on a modular curve correspond to the weight 2 cusp forms. A
second method, designed specifically for hyperelliptic curves, is given. A method for obtaining
equations using weight 1 theta series is also described.

Heights of modular curves are studied and a discussion is given of the size of coefficients
occurring in equations for X0(N).

Finally, the explicit equations are used to study the rational points on X+
0 (p). Exceptional

rational points on X+
0 (p) are exhibited for p = 73, 103, 137 and 191.
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“Which of us is to do the hard and dirty work for the rest − and for what pay?”
John Ruskin (1819−1900)

“Better far off to leave half the ruins and nine-tenths of the churches unseen and to see well
the rest; to see them not once, but again and often again; to watch them, to learn from them,
to live with them, to love them, till they have become a part of life and life’s recollections.”

Augustus Hare (1792−1834)
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Chapter 1

Introduction

The star of this thesis is the modular curve X0(N) and we will examine its life from several
different angles.

The modular curve X0(N) is very important as it is one of the objects which links the
world of elliptic curves with the world of modular forms. Indeed, one of the many equivalent
formulations of the famous Shimura-Taniyama-Weil conjecture is that, for every elliptic curve E
defined over Q, there is some integer N and some surjective morphism of curves φ : X0(N)→ E.

There are also practical applications for equations of X0(N). Notable among these is an
algorithm for counting the number of points on an elliptic curve E over a finite field Fq. This
algorithm was proposed by Schoof and uses the relation #E(Fq) = q+1−c, where the Frobenius
map φ : x 7→ xq has characteristic polynomial φ2 − cφ + q = 0 in End(E). For various small
primes l the trace c of the Frobenius map is computed modulo l. The Chinese Remainder
Theorem is then used to obtain the value of c ∈ Z, and hence the number of points on the
curve over the large field Fq. In Schoof’s original formulation, the trace of the Frobenius map
was calculated by working with the l-division polynomial on E (whose roots are the (l2 − 1)/2
values of x such that (x, y) has order l in E

(
Fq
)
). An idea of Elkies was to work with an

equation of X0(l) and thus find a cyclic l-element subgroup C of E, which is fixed by Frobenius
(when such a subgroup exists). The trace of Frobenius may then be calculated by considering
its action on just this l-element subgroup C. The use of X0(l) in this situation gives a very
large improvement in the effectiveness of the algorithm. There are further methods, due to
Atkin, for using X0(l) to get information on the trace of Frobenius. It is therefore necessary to
have suitable equations for X0(l).

The primary topic of this thesis is the study of methods for obtaining projective models for
X0(N) which are defined over Q. There is a well-known canonical equation for X0(N) which
is given by the following. Let j(τ) be the classical modular j-function. There is a symmetric
polynomial Φ(x, y) ∈ Z[x, y], of degree N + 1 in each variable, such that Φ(j(τ), j(Nτ)) = 0.
One may use Φ(x, y) as an affine model for X0(N) over Q. This has many theoretical uses but
it has practical drawbacks. The main drawbacks are that its degree is very large (so it is highly
singular) and that its coefficients are enormous.

It has been noted by Atkin, Elkies and others that modular curves seem to have models
with surprisingly small coefficients. One of the aims of this thesis is to try to understand the
meaning of the phrase “small coefficients”. Therefore we seek methods which will yield suitably
nice equations for X0(N). It is hoped that the coefficient size arising in such equations may be
estimated.

The first method for obtaining equations studied is the canonical embedding. The canonical
embedding is suitable for practical computation because the differentials on the curve corre-
spond to the weight 2 cusp forms for Γ0(N). The weight 2 cusp forms are well understood and

1



CHAPTER 1. INTRODUCTION 2

have fallen to the scythe of computational number theory to such an extent that there are very
complete and explicit tables describing them.

In Chapter 3 we give an algorithm for computing equations for the image of the canonical
embedding of certain modular curves X0(N) and we provide a large table of models for these
curves. The models listed are seen to have small coefficients. Our evidence suggests that there
is usually a model for X0(N) with coefficients of size O(log(N)). Furthermore, it seems there
is always an equation for X+

0 (p) which has coefficients of size ≤ log(p) (i.e., O(log(p)) with
constant equal to 1).

The canonical embedding is not applicable for hyperelliptic curves. In Chapter 4 we give a
method, which is similar in flavour to the methods of Chapter 3, which deals with the case of
hyperelliptic curves. Once again we produce a large table (predominantly for curves of genus
2) which contains nice models for many modular curves.

The canonical embedding has a very solid theoretical grounding because it is a purely
geometric technique based on the holomorphic differentials on the curve. For the methods of
Chapter 3 we choose a basis {f1, . . . , fg} for the weight 2 cusp forms on Γ0(N). The canonical
map is translated into

τ 7−→ [f1(τ) : · · · : fg(τ)] (1.1)

which is now purely in the language of modular forms. The fact that this is a well-defined map
from X0(N) to Pg−1(C) is immediate from the modularity of the forms fj(τ). One observes
that, for any collection of modular forms on Γ0(N) having weight k, it is possible to construct
a rational map having the same form as (1.1). This idea gives a large number of possibilities
for methods of obtaining projective models of X0(N).

As our goal is to understand why X0(N) has a model with small coefficients, it seems
potentially fruitful to consider a map of the form (1.1) where the modular forms themselves
have very small coefficients. We are led to consider the case of theta series associated to
integral binary quadratic forms, as these are known to have sparse coefficients. Indeed, the nth
coefficient of the q-expansion of a theta series associated to a quadratic form Q(x, y) is precisely
the number of pairs (x, y) ∈ Z2 such that Q(x, y) = n. Therefore the coefficients grow slowly
and many of them are zero. In Chapter 5 a study is made of the weight 1 theta series coming
from such quadratic forms. We call the projective map inspired by (1.1) the “hemi-canonical
map”. For the analysis of this map it is necessary to introduce a slight generalisation of the
usual theta series. We prove a basic transformation formula for this generalised theta series.

The hemi-canonical map does, in certain cases, give a good projective model defined over Q
with reasonably small coefficients. Unfortunately though, the coefficients are not as remarkably
small as those found using the canonical embedding. Also there are several further drawbacks
with this method. One problem is that the hemi-canonical map is never injective. Indeed, in
many cases, the map factors through X0(N)/WN . Another problem is that the image of the
hemi-canonical map of the curve X0(N) will sit in a projective space of dimension related to
the class number of the quadratic field Q

(√
−N

)
. When the image lies in P3 or P4 it is difficult

to control the degree of the equations arising. When the class number is large it is difficult to
predict the number of equations arising (whose intersection will be the model for the curve).
The reason for this lack of control is that, in contrast to the case of the canonical embedding, we
lack a firm link between the space of theta series under consideration and a concrete geometric
object.

For the application of counting points on elliptic curves E over Fq, there are other methods
for obtaining equations for X0(l). The basic idea is to choose a suitable modular function
f(τ) (which is found from considering ratios of modular forms) and then to compute a relation
between j(τ) and f(τ). There are at least two reasons for involving j(τ) in this process. The
first reason is that it is important to be able to pick out the elliptic curve E in question on



CHAPTER 1. INTRODUCTION 3

the projective model. For instance, if one has Φ(j(τ), f(τ)) describing the curve X0(l), then
the l-element subgroups of E correspond to the roots x of Φ(j(E), x). The splitting of this
polynomial Φ(j(E), x) in Fq[x] is precisely what is used to obtain information about the trace
of Frobenius. The second reason for introducing j(τ) is that it is easy enough to find one special
function f(τ) on X0(l) but, given f , it is difficult to find another function g such that C(f, g)
is the function field of X0(l). The price paid for using the function j(τ) is that the coefficients
become large, though when we are working over a finite field this is less of a drawback. In
practice, an equation for X0(l) is computed over Q and this model is reduced modulo p (where
p is the characteristic of Fq) when required. Large amounts of time and space are required for
the precomputation of the X0(l).

The models we obtain in Chapters 3 and 4 are probably not useful, at present, for the
application of counting points on elliptic curves over Fq. This is primarily due to the fact that
there is no obvious way to use these models to find a polynomial analogous to the Φ(j(E), x)
mentioned above. The methods discussed in this thesis, for calculating equations of modular
curves X0(N), are tailor-made for finding models with very small coefficients and they are
less applicable when N increases. On the other hand, models with small coefficients may be
useful in the application as they would require less storage space (this does become an issue in
practice), potentially less computation time, and would be easily reduced modulo p.

The study of coefficient size of projective models for X0(N) leads one naturally towards
the theory of heights. In Chapter 6, which is very speculative, we discuss a few aspects of
this theory. There are two related definitions of the height of a projective variety C. One of
these was introduced by Faltings and it requires some quite abstract objects from algebraic
geometry. The other definition is more concrete and we discuss it in some detail. These two
notions are explicitly related and both of them depend on the actual choice of the embedding
of C in projective space. It would be very nice to have a relationship between these heights
and a more intrinsic height (such as the height of the Jacobian of C). In the elliptic curve
case, we study the height of E, as a projective variety, and show why it seems very difficult
to relate this height to the height of E, when E is considered as an abelian variety. We also
discuss the relationship between h(X) and h(Y ) when X and Y are projective curves related
by some morphism f : X → Y . We are interested in this situation because the modular
parameterisation X0(N)→ E is very important. We discuss the height conjecture for modular
elliptic curves. Chapter 6 contains several examples and observations that are more explicit
than appear elsewhere. It is hoped that the contents of this chapter will provide some concrete
examples in what is otherwise a very high-brow and abstract theory.

In Chapter 7, we undertake a study of the rational points on the curves X+
0 (p). There

has been interest in this problem since the work of Mazur [24] on rational points of X0(N)
and X1(N). It has generally been believed that, when the genus is at least 2, most points
on X+

0 (p) (or, more generally, X0(N)/WN ) come from either cusps or complex multiplication
points. As with X0(N) we expect, in a few rare cases, exceptional rational points. In Chapter
7 we have been able to exhibit the cusps and complex multiplication points explicitly on many
curves X+

0 (p). We have then, occasionally, been able to exhibit exceptional rational points on
these curves. To the author’s knowledge, these are the first known examples of exceptional
rational points on modular curves X+

0 (p) of genus at least 2. It is hoped that the data obtained
(suggesting that such points are rare, and also showing that they do exist) may be of use in
classifying such points.

We attempt to use standard notation wherever possible. Note that the references given in
this thesis tend to be practical rather than historical. By this we mean that references are given
to places in the literature where a clear explanation of the idea may be found, rather than the
original description. We apologise if it seems we have not given credit where it is due.



Chapter 2

Background

This chapter contains a review of some of the main ideas and tools used in this thesis. There
is nothing original in this chapter, although the presentation has been tailored to our needs.

2.1 Modular Curves

The classical modular curves are defined to be quotients of the upper half plane H = {τ =
x+ iy ∈ C | y > 0} by the action of certain subgroups of finite index in SL2(Z). This thesis is
concerned with the congruence subgroups

Γ0(N) =

γ =

 a b

c d

 ∈ SL2(Z)

∣∣∣∣∣∣∣ c ≡ 0(mod N)

 .

In this thesis, subgroups of SL2(Z) will usually be viewed as linear fractional transformations,
thus both I and −I will act as the identity. A more pedantic approach would be to work with
PSL2(Z) but the difference is cosmetic.

We write Y0(N) = Γ0(N)\H. This turns out to be a non-compact Riemann surface. There-
fore we consider the “completed” upper half plane H∗ = H∪Q∪{∞} and define the modular
curve X0(N) = Γ0(N)\H∗. The points Q and∞ are called the cusps. The cusps fall naturally
into Γ0(N)-equivalence classes. We now give a few comments to explain the name “modular
curve”.

The set Y0(N) arises naturally as the moduli space of pairs (E,C), where E is an elliptic
curve over C and C is a cyclic N -element subgroup of E. Indeed, since we are working over C,
we may make this totally explicit. Suppose τ ∈ H corresponds to a point of Y0(N) and write
Eτ = C/〈1, τ〉 and Cτ = 〈1/N, τ〉 (here 〈a, b〉 represents the Z-module generated by a and b).
Clearly, the image of Cτ in Eτ is a cyclic subgroup of order N . Also j(Eτ ) = j(τ) (where the
first j is the j-invariant of the elliptic curve and the second j is the classical modular j-function)
and the point τ ∈ Y0(N) corresponds to the pair (Eτ , Cτ ). Every such pair (E,C) corresponds
to a Γ0(N)-orbit of some τ ∈ H. This notion may be extended to X0(N) by interpreting the
cusps as generalised elliptic curves (see Diamond and Im [10] §9 for a sketch of the details).
Thus we have justified the use of the word “modular”.

We will now show that X0(N) has the structure of a Riemann surface. It is obvious that
all the points τ ∈ H have sufficiently small neighbourhoods which look like open subsets of
C. Such neighbourhoods will be preserved under the passage from H → Γ0(N)\H. We write
λ : z 7→ (z − τ)/(z − τ), so λ maps a small neighbourhood of τ to an open disc around 0
in C (clearly λ(τ) = 0). In all but a finite number of points τ ∈ H, this identification of
neighbourhoods gives a local coordinate at τ . If the stabilizer, in Γ0(N), of the point τ is not

4



CHAPTER 2. BACKGROUND 5

just {±I} then we call the point an elliptic point of the group Γ0(N). If the stabilizer is a
group of n elements (here we mean n elements as a subgroup of PSL2(Z)) then take λn to be
the local coordinate at τ . This gives a well defined Riemann surface structure on Y0(N).

It remains to give local coordinates at the cusps. Define a base for the open sets at∞ to be

Uε(∞) = {x+ iy ∈ H | y > 1/ε} ∪ {∞}

for each ε > 0. A choice of local coordinate function at ∞ is the map q : τ 7→ exp(2πiτ),
which maps Uε(∞) to a disc in C, of radius exp(−2π/ε), which is centered at zero. The action
of SL2(Z) gives corresponding open sets at each of the rational cusps (one needs to take the
width into account, see Section 2.3). This choice of topology now gives X0(N) the structure of
a compact Riemann surface. It is possible to choose a connected fundamental domain for the
action of Γ0(N), and so the Riemann surface is connected. From a well-known theorem (see
the discussions in [41] or Appendix B of [20]) it then follows that X0(N) may be interpreted as
a non-singular irreducible quasi-projective algebraic curve.

Note that, when X0(N) has genus 2, there isn’t a non-singular model in P2 (though there is
an elegant general model in P4, which is described in Cassels and Flynn [5]). We will generally
use a plane model which represents the image of a projection X0(N) −→ P2(C). It is possible
to choose the image curve in P2 so that it has a single singularity at infinity. We will also use
this convention for hyperelliptic curves of higher genus.

It turns out that the algebraic curve X0(N) may be defined over Q. We refer to Shimura
[33] Chapter 6 for the details.

In this thesis we will utilise both aspects of the geometry of X0(N). The complex analytic
(Riemann surface) theory gives links to the theory of modular forms, while the fact that X0(N)
is an algebraic curve is implicit in our quest for good projective models.

2.2 Involutions

We introduce the Atkin-Lehner involutions (see [1]). In this section we will write these as
matrices in SL2(R), though in the applications we usually write them as elements of GL+

2 (Z)
and therefore the normalisation is implicit.

For each prime l|N , let α be such that lα‖N , and choose a, b, c, d ∈ Z such that lαad −
(N/lα)bc = 1. Set

Wl =
1√
lα

 lαa b

Nc lαd

 ∈ SL2(R). (2.1)

It follows that (l, bc) = 1, but we may have l|a and l|d. Note that there are many possible choices
of Wl and we do not prefer any over the others, as they are all equivalent up to multiplication
by an element of Γ0(N) (see Lemma 1). Also note that W−1

l is of the same form as Wl.
For composite numbers n|N we may set

Wn :=
∏
l|n

Wl. (2.2)

If (n,N/n) = 1 then Wn has the same shape as Wl in equation (2.1) but where lα is replaced
by n. In the case n = N we do choose a canonical representative, namely

WN =
1√
N

 0 −1

N 0

 .
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The definition (2.2) of Wn only depends on the primes dividing n. In practice there are
many different choices of n which would give the same Wn, for example if N = 23325 then
W6 = W12 = W18 = W24 = W36 = W72. For theoretical purposes one may assume that
(n,N/n) = 1 without any loss of generality.

The crucial property of the matrices Wn is the following.

Lemma 1 ([1] Lemma 8) For any two choices Wn and W ′n we have

WnΓ0(N)W ′n = Γ0(N). (2.3)

Proof. That WnΓ0(N)W ′n ⊆ Γ0(N) is a simple calculation. The equality follows from the fact
that, for any Wn, the matrix W−1

n is also of the same form. Thus, for all γ ∈ Γ0(N), we set
γ′ = W−1

n γW ′−1
n ∈ Γ0(N) and clearly Wnγ

′W ′n = γ. 2

Suppose τ1, τ2 ∈ H∗ are in the same Γ0(N)-orbit, i.e., there is some γ ∈ Γ0(N) such that
τ1 = γτ2. Then WnγW

−1
n = γ′ ∈ Γ0(N) and Wnτ1 = Wnγτ2 = γ′Wnτ2 and thus Wnτ1 and

Wnτ2 are in the same Γ0(N)-orbit. Therefore there is a well-defined action of the Wn on X0(N).
Clearly WnW

−1
n acts as the identity on X0(N). Since all the possible choices Wn act in the

same way up to Γ0(N), it then follows that they give an involution on the curve X0(N) (i.e.,
a map such that its square is the identity).

We want to consider, for any n|N , the set X0(N)/Wn (i.e., where we identify points of
X0(N) which are mapped to each other by Wn). This corresponds to the upper half plane
modulo the group G = Γ0(N) ∪WnΓ0(N) ⊂ SL2(R). So we have

X0(N)/Wn = G\H∗

and thus X0(N)/Wn is a Riemann surface. The index [G : Γ0(N)] = 2 and so the obvious map
φ : X0(N) → X0(N)/Wn is a degree 2 meromorphic map ramified at certain points (namely,
those Γ0(N)-orbits which are fixed by Wn). Once again we translate these statements into the
language of algebraic geometry and see that we have algebraic curves X0(N) and X0(N)/Wn

with a rational map between them.

2.3 Modular Forms

We briefly state a few of the properties of modular forms which will be used in depth in our
later work.

Definition 1 A meromorphic modular form of weight k, level N and character χ is a
mapping f : H∗ → C such that

(1) f is meromorphic as a function H → C

(2) For all γ =

 a b

c d

 ∈ Γ0(N) and all τ ∈ H∗, f(γ(τ)) = χ(d)(cτ + d)kf(τ).

(3) f is meromorphic at the cusps

If the character χ is not mentioned then assume it is identically 1.
Condition (2) is the most significant. We define an action of SL2(R) on the space of modular

forms by

f(τ)

∣∣∣∣∣∣∣
 a b

c d

 := (cτ + d)−kf
(
aτ + b

cτ + d

)
. (2.4)
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Thus the second condition may be rephrased as f(τ) | γ = χ(d)f(τ) for all γ ∈ Γ0(N). Note
also that we may generalise equation (2.4) to give an action of GL2(R) on the space of modular
forms by defining f(τ)|γ := det(γ)k/2(cτ + d)−kf(γ(τ)) in the obvious way.

The third condition of Definition 1 requires some explanation. Any cusp c of X0(N) may
be mapped to ∞ by some σ ∈ SL2(Z). This σ is determined up to multiplication by an
element of Γ0(N). The width of the cusp c is defined to be the smallest d ∈ N such that

σ−1

 1 d

0 1

σ ∈ Γ0(N). A tedious calculation shows that the width is independent of the

representative for σ chosen. Clearly the width of the cusp ∞ is d = 1. Note that, if γ ∈ Γ0(N)

fixes c, then σγσ−1 fixes ∞, and therefore σγσ−1 = ±Tn = ±

 1 n

0 1

 for some n ∈ Z.

Hence γ = ±σ−1Tnσ and so n is a multiple of d. We need to choose a local parameter, qc, from
an open neighbourhood of ∞ as before, but in this case the open set at ∞ is only invariant

under

 1 λd

0 1

 where λ ∈ Z. The map we choose is qc : τ 7→ exp(2πiτ/d). The function f

is said to be meromorphic at the cusp c if the function f |σ ◦ q−1
c is meromorphic at zero.

This process gives the expansion

f |σ−1 =
∑
n∈Z

anexp(2πiτ)n/d. (2.5)

It is usual to write q =exp(2πiτ) and call (2.5) the q-expansion of the modular form f at the
cusp c. We will often use this representation of modular forms.

The meromorphic modular forms clearly form a C-vector space.

Definition 2 A cusp form of weight k, level N and character χ is a meromorphic modular
form as above but with the additional conditions

1. f is holomorphic on H

2. f is zero at each cusp, i.e., the q-expansions have the form
∑
n>0 anq

n/d.

Write Sk(N) for the C-vector space of all cusp forms of weight k, level N and trivial
character.

A modular function is a meromorphic modular form of weight zero. This is the same
as being a meromorphic function on the Riemann surface X0(N). The derivative of such a
function will be a form of weight 2 for Γ0(N). Thus there is a correspondence between the
C-vector space of all objects df (for all meromorphic functions f on X0(N)) and the space of
weight 2 forms. We will describe this correspondence in more detail in the following section.

2.4 Differentials

We will need a few results from the geometry of Riemann surfaces, particularly the Riemann-
Roch theorem. We give a brief description here, following Griffiths and Harris [17] and several
other sources. Write K for the C-algebra of meromorphic functions on X0(N). All these
definitions are for general Riemann surfaces but we state them only for X0(N) so that we may
treat special cases (such as behaviour at cusps or elliptic points) as we go.

Definition 3 The space of meromorphic differential forms on X0(N) is the K-vector space
generated by all symbols df where f ∈ K and where d is C-linear and satisfies the properties



CHAPTER 2. BACKGROUND 8

1. d(fg) = fdg + gdf

2. dc = 0 if c is a constant function.

Thus we may view the set of differentials as {df | f ∈ K} or as {fdz | f ∈ K} for some fixed
non-constant function z ∈ K.

We now define the divisor of a meromorphic function f . Every point P ∈ Y0(N) corresponds
to some (equivalence class of) τ0 ∈ H. Let n be the size of the stabilizer in PSL2(Z) of τ0 (so n is
the order of the elliptic point or 1 if P isn’t an elliptic point). There is a local coordinate function
λ : H → C which takes τ0 to 0. So the function f may be viewed as a meromorphic function in
a neighbourhood of 0, and thus as a Laurent series in the local parameter t = λn. Write ν for
the valuation of this locally defined meromorphic function at 0. Define the valuation of f at P
to be νP (f) = ν/n. Now suppose P is a cusp of X0(N). By the usual method (mapping P to
∞ and then taking a local parameter) we may view f as a meromorphic function on C at zero.
Again we define νP (f) to be the valuation of this complex valued function at zero. If the cusp
has width m then the valuation will lie in 1

mZ.

Definition 4 The divisor of a modular function f is

div(f) =
∑

P∈X0(N)

νP (f)P.

We define the valuation of a differential ω at a point P ∈ C to be the following. Choose
any function t ∈ K such that νP (t) = 1. That is to say that t has a simple zero at P . Consider
the ratio ω/dt. This is a ratio of two differential forms and thus it is a function. We define
the valuation of ω at P to be the valuation of the ratio. Using the notation of the previous
paragraphs we have

νP (ω) := νP (ω/dt).

Definition 5 The divisor of a meromorphic differential ω is

div(ω) =
∑

P∈X0(N)

νP (ω)P.

The space of holomorphic differentials (sometimes called differentials of the first kind) is
the C-vector space

Ω1(X0(N)) = {differentials ω | div(ω) ≥ 0}.

Recall that two divisors are said to be equivalent if their difference is the divisor of a
function. Since the ratio of two differentials on a curve is always a function on the curve, it
follows that the divisors of differentials are all in the same equivalence class. This divisor class
is called the canonical class and is denoted κ.

Proposition 1 (Shimura [33] Proposition 2.16) Let Q1, . . . , Qu be the cusps of X0(N) and let
P1, . . . , Pr be the elliptic points (having orders e1, . . . , er respectively). Then

div(f) = div(fdz) +
r∑
i=1

(
1− 1

ei

)
Pi +

u∑
j=1

Qj .

Since 0 ≤ (1− 1/ei) < 1 it is clear that

div(fdz) ≥ 0 if and only if div(f) ≥
u∑
j=1

Qj .

The condition on the right hand side states that f is holomorphic and indeed zero at the cusps
Qj . So this proves the following.
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Proposition 2 The map f 7→ fdz gives an isomorphism of C-vector spaces between S2(N)
and the space of holomorphic differentials.

In this thesis we are also interested in the curves X0(N)/Wn. The following lemma will be
useful.

Lemma 2 The holomorphic differentials, Ω1(X0(N)/Wn), on X0(N)/Wn are isomorphic as
a C-vector space to the C-span of the set

Sn = {f ∈ S2(N) | f |Wn = f}.

Proof. Let ω ∈ Ω1(X0(N)/Wn). Then at each τ ∈ H∗ we may write ω locally as f(z)dz
for some function f . Thus ω may be equally interpreted as a holomorphic differential on
X0(N), and thus as a weight 2 cusp form which (to abuse notation) we will call f . That
ω(Wn(τ)) = ω(τ) translates to the fact that f | Wn = f . Conversely, all the forms f ∈ Sn

clearly give holomorphic differentials on X0(N)/Wn. Thus the vector spaces are isomorphic. 2

2.5 The Riemann-Roch Theorem

The Riemann-Roch theorem will be used in several places in this work. We will state the result
and mention some aspects of it. For proof we refer to Hartshorne [20].

Suppose we have a curve C of genus g and let D be a divisor on C. Define

L(D) = {meromorphic functions f on C | div(f) ≥ −D} and l(D) = dimCL(D).

Let κ be the canonical class. Here we will be quite concrete and fix some differential, ω, and
set κ = div(ω). The Riemann-Roch theorem states

l(D)− l(κ−D) = deg(D) + 1− g.

We gather together some consequences of the Riemann-Roch theorem (for proof see, for
instance, Iitaka [22] Chapter 6).

Proposition 3 Let C be a curve of genus g. Then

(1) deg(κ) = 2g − 2

(2) l(κ) = g

(3) If g ≥ 1 then l(P ) = 1 for all points P on C.

We now follow Clemens [6] and set

i(D) = dimCI(D) where I(D) = {meromorphic differentials ω | div(ω) ≥ D}.

Lemma 3 i(D) = l(κ−D).

Proof. Let f ∈ L(κ−D). Then div(f) ≥ D− κ. Thus div(fω) = div(f) + div(ω) ≥ D and so
the differential fω is in I(D). The converse clearly also holds. 2

Combining Lemma 3 with Proposition 2 and taking D = 0 shows that dimCS2(N) =
genus(X0(N)).
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2.6 Hyperelliptic Curves

Hyperelliptic curves appear, in this thesis, as a special case, for which separate methods should
be used. We will show that the canonical map is not an embedding for these curves. Hyper-
elliptic curves cannot be ignored as there certainly are significant hyperelliptic modular curves
and quotients.

We will always be considering modular curves and these will always have at least one ra-
tional point (the cusp at infinity) therefore curves of genus 1 will always be elliptic curves.
The Shimura-Taniyama-Weil conjecture states that every elliptic curve defined over Q is pa-
rameterised by some modular curve X0(N). Recent work of Wiles, Taylor and Diamond has
proved this conjecture in a large number of cases. As the study of elliptic curves is already very
advanced we don’t expect to be able to contribute anything new to the theory here. We will
generally be more interested in curves having genus at least 3.

Definition 6 A hyperelliptic curve is a curve C with a degree 2 map φ : C → P1(C).

The following proposition gives two more possible definitions of a hyperelliptic curve.

Proposition 4 Let C be a genus g curve over C. Then the following are equivalent.

(1) C is hyperelliptic

(2) There is a function z on C which has precisely 2 poles (counted with multiplicity).

(3) The curve C has an equation in the following (so-called “hyperelliptic”) form

w2 = p(z)

where p(z) is some polynomial of degree 2g + 2.

Proof. That (1) ⇒ (2) is just a restatement of the definition since φ itself is a degree 2 map
(and any non-constant φ must have a pole). The statement (2)⇒ (1) is immediate.

To show (2) ⇒ (3), consider the ramification points in P1 for z = φ. Since the map has
degree two, each point can have ramification index at most 2. By the Hurwitz formula there
must be 2g + 2 distinct ramification points. We may assume that none of these points are at
∞. Label their pre-images P1, . . . , P2g+2. Now consider the “multivalued function”

w =

√√√√2g+2∏
j=1

(z − z(Pj)). (2.6)

It can be shown (see Farkas and Kra [13] Proposition III.7.4) that this may be chosen to be a
meromorphic function on C. Hence w2 = p(z) (where p is the polynomial given by the right
hand side of (2.6)) is an equation for the curve.

Finally, it is clear that (3)⇒ (1), as the function z will have degree 2 and 2g+2 ramification
points and thus (by the Hurwitz formula) will map to a genus zero curve. 2

Moreover, it can be shown (see Farkas and Kra [13] III.7.3) that the function z = φ above
is unique up to a linear fractional transformation on P1.

From the hyperelliptic equation, w2 = p(z) =
∏
j(z − z(Pj)), of a hyperelliptic curve C

it can be seen that there is an obvious involution, namely the map ι : w 7→ −w. The 2g + 2
ramification points of the map z = φ are precisely the fixed points of ι and these are also known
as the Weierstrass points. When g ≥ 2 it is a fact that if i is any other involution fixing
2g + 2 points then, since there cannot be a non-trivial Möbius transformation fixing 6 or more
points, i = ι (see Farkas and Kra [13] page 102). The involution ι is therefore unique and is
called the hyperelliptic involution.

We will use the following result later in this chapter.
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Lemma 4 Let C be a hyperelliptic curve with hyperelliptic involution ι. Then ι(P ) = Q if and
only if there is a function f on C which has simple poles precisely at P and Q.

Proof. If ι(P ) = Q then it follows that P and Q have the same image (say [a : b] ∈ P1(C))
under the hyperelliptic projection π : C → P1. Consider the function f on P1 defined by
f([x : y]) = x/(ay − bx) (or y/(ay − bx) if a = 0). Then f has a simple pole at [a : b] and thus
π∗f has simple poles at precisely P and Q.

Conversely, suppose div(f) = −P −Q+D (where D ≥ 0). Then f induces a hyperelliptic
projection f : C → P1. The projection obtained from f induces an involution which fixes the
2g + 2 Weierstrass points and, by uniqueness, this involution must be ι. 2

This lemma allows us to prove the following result.

Proposition 5 The hyperelliptic involution ι on a hyperelliptic curve C commutes with every
σ ∈Aut(C).

Proof. We must show that ι(σ(P )) = σ(ι(P )). For an arbitrary P let Q = ι(P ). Then by
the previous lemma there is a function f with simple poles precisely at P and Q. Now σ is an
automorphism of C so we may consider g = (σ−1)∗f = f ◦ σ−1. This function g has simple
poles precisely at σ(P ) and σ(Q), i.e., ι(σ(P )) = σ(Q) = σ(ι(P )). 2

Suppose X0(N) is a modular curve such that, under one of the involutions Wn, the curve
X0(N)/Wn has genus zero. Then it follows that X0(N) is hyperelliptic and that the involution
Wn is the hyperelliptic involution.

The preceding paragraph gives a simple way to identify hyperelliptic modular curves. For
instance the curves X0(35) and X0(39) are hyperelliptic. The reason for this is that Table 5 of
Antwerp 4 [2] shows that the weight 2 forms for these curves split as 0, 1, 2, 0. This notation (for
more detail about the use of Table 5 of [2], see Section 3.4 or the introduction to the tables in
Antwerp 4 [2]) represents the dimensions of the eigenspaces of weight 2 cusp forms of composite
level paqb. The sequence 0, 1, 2, 0 means that there are no forms which have eigenvalue +1 with
respect to both Wp and Wq, there is a one dimensional space of forms having eigenvalue +1
with respect to Wp and eigenvalue −1 with respect to Wq etc. Thus in both cases the quotient
curves X0(N)/WN have genus zero.

Some care should be taken with this trick. Consider, for instance, X0(34). The eigenforms
split (again using [2] Table 5) as 0, 1, 1, 1. It is tempting to say that X0(34)/W34 has genus 0
but this is false. There is a form with eigenvalue −1 with respect to both W2 and W17, and
thus it has eigenvalue +1 under W34 = W2W17. Hence X0(34)/W34 has genus 1. What can
be said is that the curve X0(34)/ 〈W2,W17〉 has genus zero. However the group 〈W2,W17〉 has
order 4, so the covering map in this case has degree 4.

Note that there are several hyperelliptic modular curves. The most well-known example is
X0(37), whose hyperelliptic involution is not an Atkin-Lehner involution. Also there are the
cases X0(40) and X0(48) where the hyperelliptic involution is not an Atkin-Lehner involution
though, it does come from an element of SL2(Z). Ogg [30] gives a full list of all the hyperelliptic
modular curves X0(N).

Finally we make a comment about the point at infinity on a genus 2 hyperelliptic equation.
Usually our genus 2 curves will arise as some smooth projective variety which we then project
into P2(C). In these cases the point [x : y : z] = [0:1:0] at infinity will be singular. Topologically
there are actually two points, ∞+ and ∞−, on the curve above [0:1:0]. The hyperelliptic
projection φ : [x : y : z] 7→ [x : z] is not defined at [0:1:0]. We set φ([0:1:0]) = [1:0] and this is
compatible with the action of φ away from [0:1:0]. In the case of a degree 5 curve, y2 =quintic,
there is only one point on the curve above the singularity [0:1:0] and this point is a Weierstrass
point.
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2.7 Canonical Projective Models

It will be useful, in the later chapters, to know what equations of higher genus projective curves
may look like. For genus 3, 4 and 5 we will generally have one canonical non-hyperelliptic
equation.

The image of the canonical embedding into P2 of a non-hyperelliptic genus 3 curve will
always be a plane quartic (see Hartshorne [20] Example IV.5.2.1). This follows since such a
curve must have degree 4.

Hartshorne [20] Example IV.5.2.2, shows that the image of the canonical embedding into P3

of a non-hyperelliptic genus 4 curve will be the complete intersection of a degree 2 surface with
a degree 3 surface in P3. We will describe such curves by giving equations for the two surfaces.

The image of the canonical embedding of a non-hyperelliptic genus 5 curve in P4 does not
have a single standard form. We will find that most of our examples may be expressed as the
intersection of three 3-folds of degree 2 in P5. Such curves will have degree 8. We now show
why such a situation may be expected to occur often.

We will use the Riemann-Roch theorem and the canonical divisor class κ to understand the
functions on a general curve. Recall that deg(κ) = 2g − 2. Also recall that we have shown the
existence of holomorphic differentials. Thus we may choose a positive divisor div(ω) ∈ κ and
this will simplify some of our later arguments. It is easy to show that, for genus g ≥ 3,

l(nκ) =


1 n = 0

g n = 1

(2n− 1)(g − 1) n ≥ 2

(2.7)

We have l(κ) = 5 so choose a basis {1, w, x, y, z} for L(κ). Now l(2κ) = 12 and L(2κ)
contains the 15 terms {1, w, x, y, z, w2, wx,wy, wz, x2, xy, xz, y2, yz, z2}. By linear algebra
there must be at least 3 linear dependencies. In the simplest case these relations will describe
three quadric 3-folds in A4(C) and they will give a degree 8 curve, of genus 5, which is a
complete intersection. There are other cases which arise. In particular, X+

0 (181) and X+
0 (227)

are genus 5 curves whose canonical models are the intersection of the three quadric 3-folds
(which must exist by our earlier argument) with 2 further cubic 3-folds.

Note that, in this section, we have given the equations in affine space. In the applications
we will usually work with projective space. It is clear that these arguments also apply to the
projective situation.

If one considers curves of genus at least 6 then there are many more possible forms of model
and the geometry becomes much more intricate. In particular, for genus at least 6, the canonical
curve is never a complete intersection.

2.8 Hecke Operators

The description of Hecke operators in the general setting may be found in Shimura [33]. Hecke
operators will not play a major role in this thesis, so we mention just a few of the key definitions
and properties.

We follow the paper of Atkin and Lehner [1] and so restrict to the case of modular forms of
even weight.

Atkin and Lehner define operators T ∗p and U∗l (here we assume (p,N) = 1 and l|N) in
the classical manner. They also define operators on the q-expansions of a cusp form f(τ) =∑
anq(τ)n in the following way. Note that our k is twice the k used in [1], and also note the
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convention that an/p = 0 if p - n.

f | Tp :=
∑
n≥1

(
anp + pk−1an/p

)
qn

f | Ul :=
∑
n≥1 anlq

n

The relation between these two definitions is

f | Tp = pk/2−1f | T ∗p

f | Ul = lk/2−1f | U∗l .

Thus the two notions differ only by a constant (which is one in the weight 2 case anyway)
and so we will tend to use whichever definition suits our purposes best.

2.9 The Petersson Inner Product

The Petersson inner product is a generalisation of the natural inner product on differentials
〈ω, ω′〉 =

∫
X
ω ∧ ω′.

Let f and g be cusp forms of even weight k and level N . Let F be a fundamental domain
for the action of Γ0(N) on H∗ (we will not discuss fundamental domains in any detail here).
Writing τ = x+ iy we make the following definition.

Definition 7 The Petersson inner product of f and g is

〈f, g〉 =
∫
F
f(x+ iy)g(x+ iy)yk−2dxdy.

One of the most important properties of this inner product is the following proposition. We
refer to the paper of Atkin and Lehner [1].

Proposition 6 For p coprime to N , the Hecke operators, Tp, are Hermitian with respect to
the Petersson inner product, i.e.,

〈f |Tp, g〉 = 〈f, g|Tp〉 .

This also holds for the Atkin-Lehner involutions Wq when q|N .

A corollary of this proposition is that the eigenvalues of a normalised eigenform f (which
are simply its q-expansion coefficients) are all real.

2.10 Newforms

Once again we restrict to cusp forms of even weight k on Γ0(N).
For any m ∈ N we have Γ0(N) ⊇ Γ0(mN) and so a modular form of level N is evidently a

form of level mN . Further, if f(τ) is a form of level N then f(mτ) is a form of level mN . For
a given N we call a form of level N old if it arises as some f(nτ), for some form f(τ) of level
strictly less than (and necessarily dividing) N . The old subspace is the sub-vector-space of
S2(N) which is generated by all the old forms.

The new subspace of S2(N) is the orthogonal complement of the old subspace with respect
to the Petersson inner product. We fix a basis of the new subspace of S2(N) which consists of
forms which are eigenforms with respect to all the Tp (for (p,N) = 1) and also for the Wq (for
q|N). The elements of this basis are called the newforms of weight k and level N . That these
notions are all well-behaved follows from [1]. Note that we use the convention that whenever
we say “newform” it is implicit that forms are both cusp forms and eigenforms.
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2.11 Atkin-Lehner Theory

The paper of Atkin and Lehner [1] gives more information about the behaviour of the newforms.
We quote what we need from their main theorem.

Theorem 1 ([1] Theorem 5) The vector space, of cusp forms of even weight k on Γ0(N), has
a basis consisting of oldclasses and newclasses. All forms in a class have the same eigenvalues
with respect to the operators Tp (for (p,N) = 1). Each newclass consists of a single form f

which is also an eigenform for the Wl and Ul (l|N). We choose f to be normalised (i.e.,
a1 = 1 in the q-expansion). Then f satisfies

f | Tp = apf

f | Ul = alf

f |Wl = λlf

where, if l||N we have al = −lk/2−1λl, and if l2|N then al = 0. It then follows that the q-
expansion coefficients for f satisfy apn = apap(n−1) − pk−1ap(n−2) and amn = aman (if (m,n) =
1). Further, each oldclass is of the form {g(dτ) | g is a newform of some level M , and d runs
through all divisors of N/M}. The oldclasses may be given a different basis consisting of forms
which are eigenforms for all the Wl.

In general, there are forms whose eigenvalues lie in a number field. As a result there will
often be sets of classes (either newclasses or oldclasses) which are all Galois conjugates of each
other.

In later work we will often need to choose certain oldforms having prescribed behaviour
with respect to the Atkin-Lehner involutions Wp. For the rest of this section we will discuss
how this is done.

Lemma 5 Suppose f(τ) is a weight 2 newform of level m and suppose p - m. Let ε = ±1.
Then g(τ) := f(τ) + εpf(pτ) is a cusp form on Γ0(mp) and it has eigenvalue ε with respect to
Wp. Also, g(τ) has the same eigenvalues as f(τ) with respect to Wq for q|m.

Proof. Certainly, g(τ) is a cusp form on Γ0(mp). Select a, b ∈ Z such that pa − bm = 1 and
set

Wp =
1
√
p

 pa b

mp p

 , Ap =
1
√
p

 p 0

0 1

 and γ =

 a b

m p

 .

Note that γ ∈ Γ0(m), that ApWp ∈ Γ0(m) and that Wp = γAp. Now pf(pτ) = f(τ)|Ap and so
we have

(f(τ) + εpf(pτ)) |Wp = f(τ)|γAp + εf(τ)|ApWp = pf(pτ) + εf(τ).

For the other involutions, Wq, it can be shown that ApWq is of the same form as WqAp and
the result follows. 2

The following lemmas are proved in a similar manner and clearly one may state generalisa-
tions of them.

Lemma 6 Suppose f(τ) is a weight 2 newform of level m and suppose p - m. Let ε = ±1. Set
g(τ) := f(τ) + εp2f(p2τ) and h(τ) := f(pτ). Then g(τ) and h(τ) are forms on Γ0(p2m) and g
has eigenvalue ε with respect to Wp and h has eigenvalue +1.

Lemma 7 Suppose f(τ) is a weight 2 newform of level m where, in this case, p|m and suppose
f(τ) has eigenvalue ε = ±1 with respect to Wp. Then g(τ) := f(τ)± εpf(pτ) is a cusp form on
Γ0(mp) and it has eigenvalue ±ε with respect to Wp.
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2.12 The Canonical Embedding

On a curve C the holomorphic differentials, Ω1(C), give rise to a line bundle, and this is
called the canonical bundle. This line bundle, in certain situations, gives an embedding into
projective space. In this section we follow the more concrete approach of Griffiths and Harris
[17]. A description of the canonical embedding from the point of view of invertible sheaves is
given in Hartshorne [20].

For the time being we work with a general Riemann surface C of genus g ≥ 2. We will never
be concerned with the case of genus 0 or 1 in this thesis.

Let ω1, . . . , ωg be a basis for Ω1(C). Viewing C as a Riemann surface, we may choose a
finite covering of open sets, with local parameters z on each set, such that we can locally write
ωj = fj(z)dz. Consider the map

φ : C → Pg−1

P 7→ [ω1(P ) : · · · : ωg(P )].
(2.8)

Note that, away from the cusps, [ω1(P ) : · · · : ωg(P )] = [f1(P ) : · · · : fg(P )].
For this to be a well-defined mapping it must never map to [0 : · · · : 0]. We show that

this cannot occur. Let P be any point on the curve and let D be the divisor P . Firstly
l(P ) = 1 (see Proposition 3) so the only functions which have at worst a single pole at P are
the constant functions. Hence, applying the Riemann-Roch theorem, we get i(P ) = g−1. Thus
there is a (g − 1)-dimensional space of differentials vanishing at P but that means there is a
one-dimensional space of differentials which do not vanish at P . Another way to phrase this
would be to say that the canonical linear system |κ| has no base points.

We will give a criterion for the canonical map to be an embedding.

Lemma 8 If g = genus(C) ≥ 2 and C is not hyperelliptic then the canonical map is injective.

Proof. This map will fail to be injective if there are points P,Q such that, for all differentials ω,
we have ω(P ) = 0⇒ ω(Q) = 0. This statement may be written (using the notation of Section
2.5) as i(P + Q) = i(P ). The Riemann-Roch theorem then states that l(P + Q) = 1 + l(P ),
which implies that there is a function f ∈ L(P + Q) − L(P ). This function must have a pole
at Q as it isn’t in L(P ), on the other hand l(Q) = 1 so it must have a pole at P too. So we
have a function with precisely 2 simple poles. 2

The image of the canonical map, in the non-hyperelliptic case, is a curve of degree 2g − 2
(see Hartshorne [20] Example IV.3.3.2 on page 309). We call this curve a canonical curve.

If one takes the canonical map of a hyperelliptic curve then it is possible to predict what
will happen. Indeed, suppose C is a hyperelliptic curve of genus g and let f : C → P1(C) be
the degree 2 map arising from the hyperelliptic involution. Then Hartshorne [20] Proposition
IV.5.3 shows that the canonical map φ : C → Pg−1(C) factors through P1(C), as f followed by
the (g− 1)-uple embedding of P1 into Pg−1. Thus the image of C in Pg−1(C) will be a smooth
curve which is isomorphic to P1(C) and which is described by (g−1)(g−2)/2 quadric equations.
This means that it is possible to distinguish hyperelliptic curves C from non-hyperelliptic ones
by examining their images under the canonical embedding.

Now let us specialize the canonical embedding to the case of the curves X0(N). Here
we know that the differentials correspond precisely to the weight 2 cusp forms. There are
involutions acting on the space of cusp forms. The behaviour of the cusp forms with respect to
the involutions will give us information on the canonical embedding. We give an example.
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Example. Consider the genus 3 curve X0(41). The basis of newforms for S2(41) consists of 3
forms fj such that fj(τ) |W41 = −fj(τ). We have the canonical map

φ : X0(41) → P2

τ 7→ [f1(τ), f2(τ), f3(τ)].

Now φ(W41(τ)) = [fj(W41(τ))] = [−(41τ)2fj(τ)] = [fj(τ)] = φ(τ) since projective coordinates
are defined only up to scalar multiples. Note that, at the cusps, all the fj(τ) are zero so
one really should work with the differentials fj(τ)dτ , however this is not a problem as our
construction is generically valid. The fact that φ(W41(P )) = φ(P ) is equivalent to the statement
that φ factors through X+

0 (41) = X0(41)/W41. Thus the map φ in this case is really

φ : X+
0 (41)→ P2

and X+
0 (41) is a genus 0 curve. The genus 3 curve X0(41) is hyperelliptic.



Chapter 3

The Canonical Embedding of

Modular Curves

We already know that the modular curves X0(N) have projective models defined over Q.
Furthermore, there is an opinion (championed for instance by Atkin and Elkies) that these
models may be chosen to have relatively small coefficients. We are interested in gathering
evidence for this claim, in the hope that doing so will allow us to understand the nature of the
phenomenon.

In this Chapter we discuss how to compute the image of the canonical embedding of modular
curves X0(N). We give a table of results of our computations, listing mainly models for curves
of genus less than or equal to 5.

3.1 Theory

Consider the modular curves X0(N). As we have seen in the previous chapter, the space of
holomorphic differentials Ω1(X0(N)) is isomorphic, as a C-vector space, to the space of weight
2 cusp forms, S2(N), on Γ0(N). Indeed, let {f1(τ), . . . , fg(τ)} be a basis for S2(N), then the
set {fj(τ)dτ} forms a basis for Ω1(X0(N)). Thus the canonical map in this situation is simply

φ : τ 7→ [f1(τ) : · · · : fg(τ)].

In this chapter only non-hyperelliptic curves X0(N) are considered, and so the image of the
canonical map φ is a projective model for X0(N). This image is a curve of degree 2g − 2 and
it will be described by some set of projective equations of the form Φ(f1, . . . , fg) = 0. In the
case that it is a complete intersection, the equations have degrees whose product is 2g−2. It is
possible to interpret each Φ(f1(τ), . . . , fg(τ)) as a modular form which is zero at every τ ∈ H∗.
Thus these forms may be interpreted as the zero cusp form of weight 2deg(Φ).

To construct equations for modular curves we take (from tables) the q-expansions of a basis
for the space S2(N). We compute a set of equations Φ by finding combinations of powers
of the q-expansions which yield identically zero series (more details will be given in the next
section). When the product of the degrees of the polynomials in Φ is equal to 2g − 2 and the
variety defined by them is one dimensional, then the zero locus of Φ contains a model for the
embedding of X0(N) which has the right dimension and degree, and thus it is a model for the
canonical curve. For higher genus the canonical curve ceases to be a complete intersection and,
though we may find equations which determine the model, it is not so easy to check that they
are correct. This situation is not a flaw in the method, however it makes it harder to check
against human error in the implementation of the method.

17
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It is possible to choose a basis for S2(N) such that all the basis elements are eigenforms
with respect to the Hecke operators Tp (for p - N) and the involutions Wq for all q|N (see
Section 2.11). The differentials on the curve X0(N)/Wn will be those differentials on X0(N)
which are invariant under the action of Wn. Such differentials correspond to those eigenforms
in the basis of S2(N) which have eigenvalue +1 with respect to Wn. Thus the image of the
canonical mapping of X0(N)/Wn will be the curve described by the set of polynomials Φ which
give relations between forms in the corresponding subset of the basis of eigenforms for S2(N).
If X0(N)/Wn has genus larger than 2 and is not hyperelliptic then this will give a model for
its canonical embedding.

Note that this method may be used for computing equations for any modular curves Γ\H∗

as long as there is a method to compute explicit q-expansions for the weight two cusp forms on
the group Γ.

3.2 Method

Methods for computing a basis for S2(N) are already well-known. There are also various tables
published which contain such data. For instance, Tingley computed Hecke eigenvalues way
back in 1975 [43]. Also Cremona [8] has Hecke eigenvalues for weight 2 cusp forms, although he
restricts attention to rational newforms whereas we are interested mainly in those forms whose
coefficients lie in larger number fields (as we are interested in curves of genus larger than one).
The most complete tables are those generated by Cohen and Zagier [7]. Although these have
not been published they are in wide circulation. They list q-expansion coefficients up to q100

for all weight 2 newforms of level up to 198.
Using the lemmas at the end of Section 2.11 we may also easily find a basis consisting of

Hecke eigenforms (eigenforms with respect to the Tp when p - N and the Wq when q|N) for the
old subspace. Thus we may easily find a basis of eigenforms for S2(N).

Let f =
∑
anq

n be a cusp form of weight 2 for Γ0(N) and let Kf be the field extension
of Q generated by the coefficients of the q-expansion for f . We assume that f is normalised
so that the an are algebraic integers which generate Kf . We may choose a form f so that its
Galois conjugates span the eigenclass associated to f . Suppose {α0, ..., αm} is an integral basis
for Kf . Then we may write the coefficients as

an =
m∑
i=0

an,iαi

where an,i ∈ Z. We may therefore consider the formal q-expansions

fi :=
∑
n

an,iq
n

which have the honourable property that the coefficients of their q-expansions are rational inte-
gers. Clearly f =

∑
fiαi. The fi are no longer eigenforms with respect to the Hecke operators

Tp (where (p,N) = 1) but they are eigenforms for the Wq. The fi are linear combinations (over
Kf ) of the conjugates of f . We use the fi for computation because working with integers is
simpler and also because this will ensure that the equations we construct will be defined over
Q. Of course, for computer calculation, we are forced to take only a finite initial segment of
the q-expansion. We discuss the number of terms required for these finite q-expansions at the
end of this section.

Hence we may assume that we have a basis for S2(N) consisting of integral q-expansions
and such that the forms split into eigenclasses under all the Wq with q|N .

The algorithm is as follows. Let X0(N) (or X0(N)/Wn) be the curve of genus g for which
we want to obtain a projective model. Take a set {f0, ..., fm} of integral q-expansions which
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are a C-basis for the particular subset of S2(N) which corresponds to the modular curve we are
hunting. Choose an integer d, which may be predicted from knowing the form of the canonical
models for curves of genus g in Pg−1 (see Section 2.7). Compute all monomials of degree d
in the fi and let nd be the number of such monomials. They form a set of nd cusp forms of
weight 2d on Γ0(N). Construct a matrix M which has nd columns and as many rows as there
are terms in the q-expansions we are using. Thus the (i, j)-th entry in the matrix M is the jth
q-expansion coefficient of the ith monomial. We now apply the PARI−GP function kerint to
the transpose of M . This function produces an LLL-reduced basis for the kernel of this matrix.
This gives a collection of linear combinations of rows of the matrix M , each of which equals
zero. Since the matrix rows correspond to monomials in the fi, these linear combinations of
matrix rows may be interpreted as homogeneous degree d polynomials in the fi. The function
kerint produces a basis for the matrix kernel and therefore, when the curve is described by
equations of degree d, we get a generating set for the ideal describing the canonical curve in
Pg−1. In some cases (e.g., curves of genus 4), the canonical model is given by equations of
different degrees. In these cases it is necessary to repeat the above process and then discard the
multiples of lower degree polynomials. Note that we obtain models whose coefficients are very
small (although we cannot prove that they are minimal) since kerint uses LLL-reduction.

The algorithm described above will produce a set of equations whose intersection is an inte-
gral model for the canonical curve. Experimental evidence shows that the equations obtained
by this method have the property that their coefficients are reasonably small. Certainly the
coefficients have size roughly bounded by N . This is perhaps not so surprising since the weight
2 cusp forms have reasonably small coefficients in their q-expansions.

We stress that the algorithm itself is merely simple linear algebra on the q-expansions. The
“hard” work has been already done with the computation of the modular forms and hence no
special techniques are required. On the other hand, the matrix M gets quite large in practice.
Also there is some work in checking the equations in the genus 4 case (and some genus 5 cases)
as we need to separate degree 2 and a degree 3 hypersurfaces.

As a final note we need to decide what “precision” must be worked with. The key step is
finding a cusp form of weight 2d with zero q-expansion at the cusp∞. The following proposition
(which we quote from a paper of Frey [15], though it is well-known) tells us when such a form
is zero.

Proposition 7 Let f be a cusp form of weight k on Γ0(N). Write µ = [SL2(Z) : Γ0(N)] =
N
∏
p|N (1 + 1/p). If f has a zero of order ≥ µk/12 then f is the zero form.

Proof. The form f is a cusp form so it has no poles. Its total number of zeroes is certainly
≥ µk/12. This contradicts the usual bound on the number of zeroes of holomorphic forms (see
for instance Schoenenberg [32] Chapter V, Theorem 8). 2

We note, once again, that the algorithm we have given will work for any non-hyperelliptic
curves X0(N) or X0(N)/Wn of genus at least 3. In the applications we will be mainly concerned
with curves of genus less than or equal to 5 as, in these cases, it is relatively easy to check our
results.

3.3 Example

To embed a modular curve X0(p) (where p is a prime) of genus 3 we aim (bearing in mind
Section 2.7) for a quartic curve in P2(C). Therefore, our degree 4 monomials will correspond
to forms of weight 8. Thus any form f(τ) =

∑
n anq

n with an = 0 for all n ≤ 2(p + 1)/3 will
in fact be the zero form.
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In practice this bound is far larger than necessary, though it pays to keep the extra terms
as a check against error.

For example, consider p = 43. From the tables we choose a basis {f, g, h} for S2(43) such
that each is represented as an integral q-expansion with 30 terms. For all integer triples (i, j, k)
with i + j + k = 4 and 0 ≤ i, j, k ≤ 4 we compute the q-expansion of the monomial f jgjhk.
We write all these monomials into a matrix M . We find that the transpose of M has a one-
dimensional kernel. This space corresponds to a certain linear combination of rows of M and
thus to a relation between the weight 2 forms.

Our method only works for non-hyperelliptic curves. Fortunately Ogg [30] has classified all
hyperelliptic modular curves. Indeed, X0(N) is hyperelliptic with genus greater than or equal to
2 for precisely N ∈ {30, 33, 35, 37, 39, 40, 41, 46, 47, 48, 59, 71}. It is not completely known in ad-
vance which of the quotients X0(N)/Wn will be hyperelliptic. Clearly X0(N)/Wn will be hyper-
elliptic if it has genus 2 or if there is some Atkin-Lehner involutionW such that (X0(N)/Wn) /W
has genus zero. It can happen that X0(N)/Wn is hyperelliptic for neither of these reasons (just
as X0(37), X0(40) and X0(48) are hyperelliptic). Some examples of hyperelliptic quotient curves
are the genus 2 curves X0(52)/W2, X0(52)/W52, X0(57)/W3,X0(57)/W57,X

+
0 (67), X0(72)/W2,

X0(72)/W72 and X+
0 (73). The calculations have also revealed the four hyperelliptic genus 3

curves X0(51)/W3, X0(55)/W5, X0(56)/W2 and X0(72)/W3. For the first three of these curves,
the hyperelliptic involution is an Atkin-Lehner involution Wq. Hyperelliptic curves are detected
using the criterion discussed in Section 2.12. One computes the image of their canonical map-
pings and notes that the image is described by too many quadrics (a hyperelliptic curve will
have a canonical image described by (g−1)(g−2)/2 quadrics). Thus we conclude (after check-
ing our calculation!) that the curve must be hyperelliptic. In these cases we may construct a
model for the quotient curve by using our model for X0(N) and factoring by Wn using algebraic
manipulation. Also it is possible to obtain models for hyperelliptic curves using the techniques
given in the next chapter.

3.4 Calculation of Quotient Curves

Our main goal has been to calculate a model for the image of the canonical embedding of genus
3, 4 or 5 curves. Once these equations have been obtained it is possible to find equations for
the quotient curves directly. We believe that there is enough interest in these curves to warrant
listing their equations too. Note that we are not concerned with equations of genus zero so we
do not give equations for such curves.

For each divisor, n, of N , the Atkin-Lehner involution, Wn, gives a degree 2 rational map
X0(N) → X0(N)/Wn (though recall that Wn depends only on the primes dividing n). It is
possible to exhibit this map algebraically when one has a suitable model for the curve X0(N).
Note that a projective model for the image curve X0(N)/Wn will be one in which the variables
all have the same behaviour under Wn. In general we will arrange that the image curve is
described by an equation in variables which have eigenvalue +1 under Wn. In certain cases,
however, we will write our equation using variables which have eigenvalue −1 with respect to
Wn. This is valid because a homogeneous relation between modular forms gives rise (by taking
ratios) to a relation between modular functions. Modular forms which have the same eigenvalue
under Wn give rise to modular functions which have eigenvalue +1 under Wn, and so these are
functions on the curve X0(N)/Wn.

Most of the time, the process of finding quotient curves is relatively simple (one must
construct a double cover, usually this may be done by eliminating some of the variables).
Sometimes the process involves moving a singular point to the point at infinity, by taking a
linear change of variable, in these cases the new variable will be denoted u.
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This section contains a brief outline of methods for obtaining all the quotient curves of
X0(51), X0(42) and X0(52).

There is a very useful table (Table 5 of [2]) which lists the dimensions of the various
eigenspaces (with respect to the Wq where q|N) of S2(N). Suppose q1, . . . , qt are the different
primes dividing N and choose a basis f1, . . . , fg of S2(N) such that the fi are all eigenforms
with respect to all the Wq. To each of these basis elements, f , we may associate a sequence of
plus and minus signs, ε1, . . . , εt, so that f |Wqj = εjf . Table 5 of [2] lists, for each combination
of ε1, . . . , εt, the number of forms having that sequence of eigenvalues. For X0(51) we note that
51 = 3.17 and that Table 5 of [2] gives the entry 0,3,1,1. This shows that the genus of X0(51)
is 5 and that there are no forms which have eigenvalue +1 with respect to both W3 and W17.
There is a 3-dimensional space of forms with eigenvalue +1 with respect to W3 and eigenvalue
−1 with respect to W17. There are 1-dimensional spaces of forms with sequence −1,+1 and
−1,−1. We therefore choose a basis v, w, x, y, z for S2(51), of eigenforms, so that v, w, x are
the +1,−1 forms, y is the −1,+1 form, and z is the −1,−1 form. The equations describing
the image of the canonical embedding of the genus 5 curve X0(51) are found to be

v2 + w2 − x2 − 2wx− 2y2 = 0

v2 − w2 + x2 − 3vx− wx− y2 + z2 = 0

2w2 − vw + 5x2 + 3vx− 2wx− y2 = 0.

(3.1)

From the data of [2] Table 5 it follows that X0(51)/W3 has genus 3. The modular forms v, w, x
will give a canonical mapping of X0(51)/W3 but all their ratios are invariant by W17 and
X0(51)/〈W3,W17〉 has genus 0. Therefore, the canonical image has genus 0 and X0(51)/W3 is
hyperelliptic. We also note that X0(51)/W17 and X0(51)/W51 are elliptic curves.

The first and third equations of (3.1) may be used to eliminate y. We therefore obtain the
following conic relating v, w and x.

v2 + 2vw − 3w2 − 6vx+ 2wx− 11x2 = 0 (3.2)

It is also quite easy to find the expressions

z2 = −v2 − vw + 3w2 + 6vx− wx+ 4x2

y2 = 2w2 − vw + 3vx− 2wx+ 5x2.

(3.3)

Together these are enough to give models for all three quotient curves of X0(51) (see the tables).
These models are preferred as they fit with our programme of canonical embeddings (i.e., using
variables which correspond to differentials to give equations).

It is possible to obtain plane models for these curves by using equation (3.2) to reduce from
P3 to P2. First note that (3.2) may be written as

(v + w − 3x)2 − 4(w − x)2 − 16x2 = 0.

This gives the expression 16x2 = (v + 3w − 5x)(v − w − x) which has the parametric solution
(up to scalar multiples) v+ 3w−5x = 4s2, v−w−x = 4t2 and x = st. Rearranging these gives
w = s2 − t2 + st and v = s2 + 3t2 + 2st. We set t = 1 (i.e., we divide by the function t) to get
affine equations.

Now it is possible to rephrase the equations (3.3) in terms of s. We obtain

z2 = s4 + 4s3 − 2s2 − 3.

y2 = s4 + 2s3 + 3s2 + 6s+ 5
(3.4)
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The first of these will give a model for X0(51)/W51 which can be seen to be of conductor 17
(i.e., it is a model for X0(17)). The second equation in (3.4) gives a model for X0(51)/W17.

Finally we obtain a model for X0(51)/W3 by multiplying these two equations (since yz is a
function on X0(51)/W3) to get

(yz)2 = s8 + 6s7 + 9s6 + 14s5 + 20s4 + 2s3 − 19s2 − 18s− 15.

Now we turn to calculating the quotients of X0(42). We find that X0(42) is a non-
hyperelliptic curve of genus 5 and that X0(42)/W2 and X0(42)/W7 are both non-hyperelliptic
genus 3 curves. Thus we may obtain models for their canonical embedding using the algorithm
already described. Similarly, by looking at the splitting of the weight 2 forms as given in Table 5
of Antwerp 4 [2], we see that X0(42)/W14 has genus 1 and that X0(42)/Wn for n ∈ {3, 6, 21, 42}
has genus 2. We show how to obtain the quotients X0(42)/W3 and X0(42)/W14 from the equa-
tions for X0(42). The other cases follow in a similar way.

The equations for X0(42) are

vx− yz = 0

2v2 + w2 − 2y2 − z2 = 0

3v2 − 2w2 − x2 + y2 − z2 = 0

where v, w, x, y, z correspond to a basis of eigenforms for the weight 2 cusp forms of level 42.
First note that the modular forms v and y are + with respect to W3 and that w, x, z are −.
From the first equation we solve x = yz/v. The second equation remains unchanged and the
third becomes 3v4−2v2w2 + v2y2− v2z2− y2z2 = 0. Using the second equation and the “new”
third equation we may solve for w2 and z2 and we get

w2(3v2 + y2) = v4 + v2y2 + 2y4

z2(3v2 + y2) = 7v4 − 3y2v2.

Now multiply these two equations and, again, use the fact that yz = vx, to get

(3vwz + wxy)2 = (7v2 − 3y2)(v4 + v2y2 + 2y4).

Note that v, y and (3vwz +wxy) all have eigenvalue +1 with respect to W3, so this is a model
for the genus 2 curve X0(42)/W3.

To give an equation for the genus one curve X0(42)/W14 we cannot use variables which are
+ with respect to W14 as there is only one of them. The form which is fixed by W14 corresponds
to the variable w. Instead we eliminate w2 and v to obtain

x4 + y2(3x2 − 7z2) + 3x2z2 = 0.

This equation may be rearranged into the hyperelliptic form

((7z2 − 3x2)y)2 = −3x6 − 2x4z2 + 21x2z4 = x2(x2 + 3z2)(7z2 − 3x2)

Note that the forms x and z both have eigenvalue −1 with respect to W14 whilst the form
7yz2 − 3x2y = 7vxz − 3x2y has eigenvalue +1. The proper interpretation of this equation is
to divide by x6. Thus we have the following affine relation between the functions X = z/x

and Y = (7vz − 3xy)/x2 (both of which have eigenvalue +1 and so they are both functions on
X0(42)/W14).

Y 2 = 21X4 − 2X2 − 3
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Finally we discuss the quotients of X0(52). In this case the canonical embedding gives the
following equations for the genus 5 curve X0(52).

vx− 4vy + 3wz = 0

3v2 + 9w2 − x2 − 8xy − 3z2 = 0

6v2 + 3x2 + 4xy − 16y2 + 3z2 = 0

(3.5)

The quotient X0(52)/W13 is a non-hyperelliptic genus 3 curve, so we may use the theory of the
canonical embedding to find a projective model for it. The genus 2 quotient curves X0(52)/W2

and X0(52)/W52 may be found by alternative means.
Consider X0(52)/W2. Note that the variables v and w have eigenvalue +1 with respect to

W2. The first formula in (3.5) is a relation between forms of weight 4 with eigenvalue −1 and
thus we cannot apply the techniques used to handle X0(42) above. Indeed the method to use
is to solve for v using the first equation in (3.5), i.e., v = 3zw/(4y − x), and then to solve for
w2 using the second equation, to get the formula

(x− 4y)2(3x4 − 20x3y + 18x2z2 + 192xy3 + 36xyz2 − 256y4 + 27z4) = 0.

The (x− 4y)2 factor arises from the process of elimination and does not come from the curve.
The quartic curve has a singularity at the point [x:y:z] = [4:1:0], so set u = x − 4y to obtain
the equation listed in the tables.

This game may be played all over again in order to find the quotients X0(N)/〈Wn,Wm〉.
This is less illuminating and it usually just reveals well-known elliptic curves (or genus zero
curves).

3.5 The Tables

These tables list the results of calculations following the ideas mentioned in the previous sec-
tions. We try to be as complete as possible subject to the following two restrictions: first that
the method does not work when X0(N) is hyperelliptic, and second that we are only looking
for curves of genus 3,4 or 5. More precisely we list all genus three X+

0 (p) (and most genus 4
and 5 curves X+

0 (p) where p ≤ 300) and we list all non-hyperelliptic X0(N) of genus 3,4 or 5
and, for each of these, all their non-trivial quotients by Atkin-Lehner involutions.

The reason for our genus restriction is, on one hand, that the canonical embedding is useless
for genus 0,1 and 2, and on the other hand, dealing with curves of large genus results in equations
which are not complete intersections and therefore it is less easy to check the results for human
error.

We give projective equations for the image of the canonical embedding. The variables
v, w, x, y, z will correspond to weight 2 forms. In all cases the alphabetic order of these variable
names will correspond to the ordering given in Table 5 of volume 4 of the Antwerp proceedings
[2]. This ordering associates to each form of level N a sequence of + and − signs which are the
eigenvalues of the cusp form with respect to the Wq (where q are the primes dividing N , listed in
increasing order). Such sequences are then written in the “binary” ordering ++,+−,−+,−−
etc. When there are newforms and oldforms with the same Wq-eigenvalues then the oldforms
will be listed first. Note that, for newforms in classes of dimension larger than 1, the q-
expansions used are a basis for the eigenclass given by forms with integral coefficients (thus
these will not actually be eigenforms with respect to the Hecke operators Tp).

The variable names in equations for quotient curves will match the variable names used for
the original curve, though we sometimes introduce changes of variable in order to describe the
model.
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This work is in part motivated by the quest for projective models for X0(N) which have
small coefficients. The model we obtain via the canonical embedding using eigenforms already
has small coefficients. There are clearly many choices of basis for the space of holomorphic
differentials on a curve. Any other choice of basis will be related to our basis of eigenforms by
some linear map (i.e., an element of GLg(C)). Therefore any change of variable in GLg(Q) will
also yield a model for the canonical curve which is defined over Q. In some instances we have
been able to find a suitable change of variable which yields a model with smaller coefficients.
The changes of variable are given explicitly (up to multiplication by an appropriate scalar). We
do not claim that our models have any minimality properties among all projective models. A
canonical model should have variables which correspond to a basis for the space of holomorphic
differentials, thus we are restricted to considering only invertible linear changes of variable.

Finally we make some comments about correctness. We have generated relations between
cusp forms with q-expansions of sufficient length to ensure that our results are correct. If our
arithmetic is correct then it follows that the equations obtained really are canonical models for
the curves in question. It is a little awkward to perform an independent check on the arithmetic.
However in most cases we may consider the quotients of the curve X0(N) and see that they
cover known elliptic curves (see Cremona [8]) with expected ramification. Some of the prime
cases have been computed by others (for example Elkies) and we can check our models against
theirs.

We expect a model for X0(N) to have bad reduction at the primes dividing N . Moreover, it
is known that there is some model which has bad reduction at only those primes. In the tables
we often get extra bad reduction, most commonly at the prime 2. There are also a few cases
where there is unexpected bad reduction modulo 3. This situation is not a significant problem
as it does not affect the usefulness of our equations.

Note that we have not seriously attempted to reduce the size of coefficients appearing in
models for the quotient curves when they have genus 1 or 2 (e.g., see X+

0 (67)). The genus 1
cases are already well-known and understood. For the genus 2 case there are better methods
for obtaining nice models of these curves (see Chapter 4 or Murabayashi [28]).

We use the notation X++
0 (pq) to represent X0(pq)/〈Wp,Wq〉.

Table 1. Canonical Embeddings

X0(34) Here x = f17(τ) + 2f17(2τ), y = f34(τ), z = f17(τ)− 2f17(2τ).

x4 + 6x2y2 + 8x2z2 − 8y4 − 6y2z2 − z4 = 0

Setting X = x+ z;Y = 2y;Z = x− z gives

X4 +X3Z − 2X2Z2 + 3XY 2Z +XZ3 − Y 4 + Z4 = 0

X0(34)/W2 x has eigenvalue +1 with respect to W2 while y and z have eigenvalue −1.

Really we should divide by z to get functions y/z, which is +, and x/z which is −.

(x2 + 3y2 + 4z2)2 = 17y4 + 30z2y2 + 17z4

X0(34)/W17 (8y2 − 3x2 + 3z2)2 = 17x4 + 46z2x2 + z4

X0(34)/W34 (z2 + 3y2 − 4x2)2 = 17x4 − 18y2x2 + y4
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X0(38) † Here w = f19(τ) + 2f19(2τ), x, y = newforms A,B from [7], z = f19(τ)− 2f19(2τ)

w2 + 10x2 + 16wx− 18y2 − 9z2 = 0

2w3 − 4w2x− 5x3 + 4wx2 − 7xy2 + 4xz2 + 4wy2 + 2wz2 = 0

Set W = 4w − 4x;X = −8w + 2x− 6y;Y = 5w − 2x+ 6y − 3z;Z = −w − 2x+ 3z

W 2 −WX +−3WY − 4WZ −X2 +−2XY − 4XZ − 2Y Z = 0

W 3 + 3W 2X + 3W 2Y + 5W 2Z +WX2 + 5WXZ −WY 2 + 3WY Z −X3

−3X2Y −X2Z − 2XY 2 + 2Y 2Z + 2Y Z2 = 0

X0(38)/W2 (27xyz)2 = −32w6 + 12w5x− 192w4x2 + 208w3x3 − 3w2x4 + 768wx5 − 32x6

Set Y = 27xy/z and w = x− z, then set X = 3x− z

Y 2z4 = X6 + 4X5z − 6X4z2 − 4X3z3 − 19X2z4 − 4Xz5 − 12z6

X0(38)/W19 32x3 + 3xw2 − 8w3 − 27xz2 = 0

X0(38)/W38 x3 − 24x2w − 4w3 + 27xy2 = 0

X0(42) Ordering v, w, x, y, z corresponds with the splitting 0,1,1,1,1,0,1,0 of [2] Table 5

vx− yz = 0

2v2 + w2 − 2y2 − z2 = 0

3v2 − 2w2 − x2 + y2 − z2 = 0

X0(42)/W2 8v4 − 27v2w2 + 9w4 − v2x2 + 9w2x2 + 2x4 = 0

Setting X = (2x+ 2z);Y = (2x+ 3y − z);Z = (3y − 2x+ z) gives

X4 −X3Y +X3Z + 3X2Y 2 − 5X2Y Z + 3X2Z2 − 2XY 3 − 4XY 2Z

+4XY Z2 + 2XZ3 + 4Y 2Z2 = 0

X0(42)/W3 (3vwz + wxy)2 = (7v2 − 3y2)(v4 + v2y2 + 2y4)

X0(42)/W7 7w4 − 22w2y2 + 16y4 − 8w2z2 + 6y2z2 + z4 = 0

Setting X = 2y;Y = 2x;Z = 2(z − x) gives

2X4 − 2X2Y 2 + 3X2Y Z + 3X2Z2 − 3Y 3Z − Y 2Z2 + 4Y Z3 + 2Z4 = 0

X0(42)/W6 (3vwy + wxz)2 = (7v2 − 3z2)(8v4 − 5v2z2 + z4)

X0(42)/W14 (7vz − 3xy)2 = (7z2 − 3x2)(3z2 + x2)

†Note that this model has bad reduction at the prime 3 despite the fact that 38 is not divisible by 3. This bad

reduction persists in the models given for X0(38)/W19 and X0(38)/W38. The first model listed for X0(38)/W2

has bad reduction at the prime 3, but this is eliminated using the given change of variable. It is known that

there is a model for X0(N) with bad reduction only at the primes dividing N , but, in this case, the best model

cannot be obtained from the canonical model.
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X0(42)/W21 (7vwy − 3wxz)2 = x6 − 2x4y2 − 7x2y4 + 24y6

X0(42)/W42 (7vwz − 3wyx)2 = (x2 + 3z2)(2x4 + x2z2 + z4)

X0(43) † x4 + 2x2y2 − 3y4 + 8x2yz + 8y3z + 16x2z2 + 16y2z2 + 48yz3 + 64z4 = 0

Setting X = (x− y);Y = 2y;Z = 2z gives

X4 + 2X3Y + 2X2Y 2 + 2X2Y Z + 4X2Z2 +XY 3 + 2XY 2Z

+4XY Z2 + Y 3Z + 2Y 2Z2 + 3Y Z3 + 4Z4 = 0

X+
0 (43)

(
1
2 (x2 + y2 + 4yz + 8z2)

)2 = y4 + 4z2y2 + 4z3y

X0(44) Forms w = f11(τ) + 4f11(4τ), x = f11(2τ), y = f44(τ), z = f11(τ)− 4f11(4τ)

3w2 + 16wx+ 32x2 − 4y2 + z2 = 0

w2x+ 8x3 + 2wy2 − 4xy2 − 2wz2 − 5xz2 = 0

Set W = w + 4x+ z;X = w + 2y;Y = w + 2x− 2y − z;Z = w − 2x+ z gives

3W 2 + 2WX + 2WY − 2WZ + 4XY + Y 2 − 2Y Z + Z2 = 0

W 3 − 2W 2X − 2W 2Y + 5W 2Z − 4WXY − 2WXZ −WY 2 −WZ2 + 4X2Y

−4X2Z + 5XY 2 − 2XY Z + 5XZ2 + Y 3 − 4Y 2Z + Y Z2 = 0

X0(44)/W2 (4xyz + wyz)2 = (w3 + 4w2x− 16x3)(w3 + 8w2 + 24wx2 + 28x3)

X0(44)/W11 w3 + 4w2x− 16x3 − 4xz2 − wz2 = 0

X0(44)/W44 w3 + 24wx2 + 8w2x+ 28x3 − 4xy2 − wy2 = 0

X0(45) x4 + 7x2z2 − 21x2y2 + z4 + 3y2z2 + 9y4 = 0

Setting X = (x+ 2z + 3y);Y = (x− 6y − z);Z = (x− z) gives

X4 + 2X3Y +X2Y 2 +X2Y Z −X2Z2 −XY 2Z + 3XY Z2 − 2XZ3

−Y 3Z + Y 2Z2 + Y Z3 + 4Z4 = 0

X0(45)/W3

(
1
3 (2x2 − 21y2 + 7z2)

)2 = 45y4 − 34z2y2 + 5z4

X0(45)/W5 (6y2 + z2 − 7x2)2 = 45x4 − 42z2x2 − 3z4

X0(45)/W45

(
1
3 (2z2 + 3y2 + 7x2)

)2 = 5x4 + 14y2x2 − 3y4

†The forms used to derive this model are all normalised (i.e., they have minimal integral q-expansions) and

yet the variable z here is not normalised, in the sense that one may absorb a factor of 2 into z throughout.
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X0(51) v2 + w2 − x2 − 2wx− 2y2 = 0

v2 − w2 + x2 − 3vx− wx− y2 + z2 = 0

2w2 − vw + 5x2 + 3vx− 2wx− y2 = 0

X0(51)/W17 z2 = −v2 − vw + 3w2 + 6vx− wx+ 4x2

v2 + 2vw − 3w2 − 6vx+ 2wx− 11x2 = 0

X0(51)/W51 y2 = 2w2 − vw + 3vx− 2wx+ 5x2

v2 + 2vw − 3w2 − 6vx+ 2wx− 11x2 = 0

X0(51)/W3 (yz)2 = (−v2 − vw + 3w2 + 6vx− wx+ 4x2)(2w2 − vw + 3vx− 2wx+ 5x2)

v2 + 2vw − 3w2 − 6vx+ 2wx− 11x2 = 0

X0(52) † vx− 4vy + 3wz = 0

3v2 + 9w2 − x2 − 8xy − 3z2 = 0

6v2 + 3x2 + 4xy − 16y2 + 3z2 = 0

X0(52)/W2 Set u = x− 4y and Z = 3z

(24u2y + 24Z2y + 7u3 + 5uZ2)2 = 13u6 + 10u4Z2 − 3u2Z4 − 4Z6

X0(52)/W13 27v4 + 18v2x2 + 3x4 + 18v2xy − 2x3y − 144v2y2 − 48x2y2 + 128y4 = 0

Setting X = (2y + 4z);Y = (3x+ y − 4z);Z = (3x− y + 4z) gives

Y X3 − ZX3 + 2X2Y 2 − 2X2Y Z + 2X2Z2 +XY 3 + 2XY 2Z − 2XY Z2

−XZ3 + Y 3Z + 2Y 2Z2 + Y Z3 = 0

X0(52)/W52 Putting u = x− 4y and W = 3w gives

(24yW 2 + 5W 2u− u3)2 = u6 − 2u4W 2 + 9u2W 4 + 8W 6

X0(53) x2 − w2 + 2xy + 2xz − 11y2 − 10zy − 7z2 = 0

x2z + xy2 + xyz + 5xz2 + 2y2z + yz2 + 6z3 = 0

Setting W = 2y + 2z;X = −2z;Y = w + x− y = z;Z = w − x+ y + z gives

2W 2 + 2WX −WY +WZ + 2X2 +XZ + Y Z = 0

W 3 −W 2X +W 2Y −W 2Z +WX2 −WXY +WXZ − 3X3 + 3X2Y

−3X2Z −XY 2 + 2XY Z −XZ2 = 0

X+
0 (53) w is + and x, y, z are −. The second equation, of the model obtained

using eigenforms, gives a model for X+
0 (53).

x2z + xy2 + xyz + 5xz2 + 2y2z + yz2 + 6z3 = 0

†Here the variable y is not “normalised”. One may absorb a factor of 4 throughout.
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X0(54) w2 + 2x2 − 2y2 − z2 = 0

w3 + 3wz2 − x3 − 3xy2 = 0

X0(54)/W2 (6wyz + 3xyz)2 = −(2w3 − 3w2x− 8x3)(4w3 + 6wx2 − x3)

X0(54)/W3 2w3 − 3w2x− 8x3 + 6wz2 + 3xz2 = 0

X0(54)/W54 4w3 + 6wx2 − x3 − 3xy2 − 6y2w = 0

X0(55) 2v2 + 4vx− 3vw − 6w2 − wx+ x2 + 7y2 = 0

3v2 + 4vw − 8vx− 4wx− 16x2 − 7z2 = 0

v2 + vw + 8vx+ 5w2 − 41wx+ x2 − 7z2 = 0

X0(55)/W11 7z2 = 3v2 + 4vw − 8vx− 4wx− 16x2

2v2 + 3vw − 5w2 − 16vx+ 37wx− 17x2 = 0

X0(55)/W55 7y2 = −2v2 + 3vw + 6w2 − 4vx+ wx− x2

2v2 + 3vw − 5w2 − 16vx+ 37wx− 17x2 = 0

X0(55)/W5 (7yz)2 = (3v2 + 4vw − 8vx− 4wx− 16x2)(−2v2 + 3vw + 6w2 − 4vx+ wx− x2)

2v2 + 3vw − 5w2 − 16vx+ 37wx− 17x2 = 0

X0(56) w2 − 2wx− x2 + 2y2 − z2 = 0

3w2 + 2wx− y2 + z2 = 0

v2 + 4vw − w2 + 2x2 − 2wx− 3y2 = 0

X0(56)/W7 2z2 = v2 + 4vw − 3w2 − 6wx+ x2

v2 + 4vw + 11w2 − 2wx− x2 = 0

X0(56)/W56 y2 = x2 − 4w2

v2 + 4vw + 11w2 − 2wx− x2 = 0

X0(56)/W2 (2yz)2 = 2(x2 − 4w2)(v2 + 4vw − 3w2 − 6wx+ x2)

v2 + 4vw + 11w2 − 2wx− x2 = 0

X0(57) 3wz − 4vx+ vy = 0

−5w2 − z2 + 8xy + y2 − 3v2 = 0

3w2 − 3z2 − 4x2 + 8xy − 4y2 = 0

X0(57)/W3 Put u = y − 4x and Z = 3z

(6u2x+ 18Z2x+ 6u3 + 6uZ2)2 = 19u6 + 7u4Z2 − 7u2Z4 − 3Z6
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X0(57)/W19 80x4 + 64x3y − 816x2y2 − 176xy3 + 119y4

+432v2x2 + 432v2xy − 54v2y2 − 81v4 = 0

Setting X = (2x+ y − 3v);Y = −(4x+ 2y);Z = (2y − 2x) gives

X4 + 2X3Y −X2Y 2 − 2X2Y Z + 2X2Z2 − 2XY 3 − 2XY 2Z

+2XY Z2 − 2Y 3Z − 3Y 2Z2 + 6Y Z3 = 0

X0(57)/W57 Put u = y − 4x and W = 3w

(18W 2x+ 30u2x+ 6uW 2 + 6u3)2 = u6 + u4W 2 + 11u2W 4 + 3W 6

X0(61) w2 − x2 + 2xy − 6xz + 3y2 + 6zy − 5z2 = 0

x2z + xy2 + xyz + 5xz2 + 4y2z + 5yz2 + 6z3 = 0

X+
0 (61) w is + and all the other forms are − with respect to W61.

Therefore the second of the two equations is a model for X+
0 (61).

X0(63) w2 + 3x2 − yz = 0

v2 − w2 + 2wx+ 3x2 = 0

2v2 + 12wx+ y2 − 3z2 = 0

X0(63)/W3 v2 − w2 + 2wx+ 3x2 = 0

(3z2 − v2 − 6wx)2 = v4 + 3w4 + 12v2wx+ 54w2x2 + 27x4

X0(63)/W7 7v4 + v2y2 + y4 − 15y2z2 − 3v2z2 + 9z4 = 0

X0(63)/〈W7,W9〉 1
4 (3z2 − w2 − 4wx+ 3x2)2 = w4 + 2w3x+ 7w2x2 − 6wx3 + 9x4

X0(64) x4 + 6x2y2 + y4 − 8z4 = 0

X0(64)/W2
1
4 (x2 + 3y2)2 = 2y4 + 2z4

X0(65) v2 − y2 + 2x2 + 2z2 = 0

v2 − 2y2 + z2 + w2 − 2wx = 0

y2 + 2yz + 2z2 − w2 − x2 = 0

X0(65)/W5 13v4 − 18v2w2 + 5w4 + 40v2wx− 40w3x+ 80v2x2 − 48w2x2 + 96wx3 + 112x4 = 0

Setting X = 2w + 2x;Y = v − w − 2x;Z = v + w + 2x gives

8X4 + 10X3Y − 10X3Z − 3X2Y 2 − 12X2Y Z − 3X2Z2 − 2XY 3 − 2XY 2Z

+2XY Z2 + 2XZ3X + 3Y 4 + 7Y 2Z2 + 3Z4 = 0
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X0(65)/W13 5v4 + 2v2y2 − 7y4 + 8v2yz + 16y3z + 34v2z2 + 46y2z2

+128yz3 + 137z4 = 0

Setting X = x+ y + x;Y = y + z − x;Z = 2z gives

3X3Y − 8X2Y Z + 9XY Z2 − 7Y Z3 − 3X3Z +X2Z2 − 7XZ3 − 2Z4

3XY 3 − 3Y 3Z +X2Y 2 − 8XY 2Z + Y 2Z2 = 0

X0(65)/W65 (2wz − 2xz − 2xy)2 = 13x4 − 2x2z2 + 5z4

X0(67) 5vz − 2wx− 3wy + wz = 0

15v2 − 5wv + 5w2 + 8x2 − 12xy − 14xz − 11y2 − 3yz + 15z2 = 0

10v2 + 5wv − 5w2 + 4x2 − 12xy + 2xz − 2y2 − 35yz − 12z2 = 0

X+
0 (67) Put u = 2x/3 + y and Z = 5z;U = z − 3u(

1
3

(
(10U2 + 20UZ + 20Z2)x+ 5U3 + 9U2Z + 2UZ2 + Z3

))2
= U6 + 2U5Z + U4Z2 − 2U3Z3 + 2U2Z4 − 4UZ5 + Z6

X0(72) vy − wz = 0

v2 − 2x2 + y2 = 0

v2 − 3w2 + y2 + z2 = 0

X0(72)/W2 (2vxz + 2wxy)2 = 2(v4 + 3w4)(3w2 − v2)

X0(72)/W3 v2 − 2x2 + y2 = 0

(6w2 − 2x2)2 = v4 + 14v2y2 + y4

X0(72)/W72 (6vwx− 2xyz)2 = 2(v2 + z2)(3v4 + z4)

X0(73) 3vz + 2wx+ wy − 5wz = 0

3v2 + 6vw − 3w2 + 4x2 + 8xz − 7y2 − 4yz + 6z2 = 0

3v2 − 3vw + 6w2 − 4x2 − 8xy + 6xz + 9y2 + 13yz + 16z2 = 0

X+
0 (73) Put u = 2x+ y

(6u2x− 78uzx+ 240z2x− 3u3 + 36u2z − 99uz2 − 57z3)2

= u6 − 24u5z + 234u4z2 − 1018u3z3 + 957u2z4 + 5058uz5 − 8111z6

Set X = u− 5z;Z = 3z(
(6XZ − 6X2)x+ 3X3 + 3X2Z − 4XZ2 + Z3

)2
= X6 + 2X5Z +X4Z2 + 6X3Z3 + 2X2Z4 − 4XZ5 + Z6
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X0(75) 3v2 + w2 − 2wx+ x2 − 2yz − z2 = 0

3w2 − 3x2 + 5y2 − 4yz − z2 = 0

w2 + 4wx+ 4x2 − 5y2 − 8yz + 4z2 = 0

X0(75)/W3 37v4 + 126v2w2 − 243w4 − 76v3x+ 396vw2x− 120v2x2

−360w2x2 + 320vx3 − 80x4 = 0

Setting X = v − 3w + 2x;Y = 2v − 2w;Z = −6x gives

3x4 + 6x3y + 6x3z + x2y2 + 3x2yz + 4x2z2 − 2xy3 − 5xy2z

−2xyz2 + xz3 − 3y4 − 4y3z − 2y2z2 − yz3 = 0

X0(75)/W5 9v4 + 30v2y2 + 108v2yz − 48v2z2 + 25y4 − 60y3z − 80y2z2 + 16z4 = 0

Setting X = 2z − 2y;Y = y + 2z − 3v and Z = −2y − 4z gives

4X4 + 9X3Z − 4X2Y 2 − 4X2Y Z + 3X2Z2 + 9XY 2Z + 9XY Z2

+Y 4 + 2Y 3Z + 4Y 2Z2 + 3Y Z3 = 0

X0(75)/W75 Set u = x+ 2w and Z = 3z

(36wz − 24uz)2 = 5u4 + 14u2Z2 − 3Z4

X0(81) w2 − x2 + 12z2 = 0

w2x+ 3xz2 + 9z3 − y3 = 0

X0(81)/W3 x3 − 9xz2 + 9z3 − y3 = 0

X+
0 (97) −x2y2 + xy3 − x3z + x2yz − xy2z + 2y3z − 3x2z2 + 2xyz2

+y2z2 − 2xz3 + yz3 = 0

X+
0 (109) −xy3 + x3z + x2yz − xy2z − 2y3z + 4x2z2 + 2xyz2 − 4y2z2 + 4xz3 − yz3 + z4 = 0

X+
0 (113) x2y2 + xy3 + x3z + 3x2yz + 5xy2z + 2y3z + 4x2z2

+8xyz2 + 7y2z2 + 6xz3 + 7yz3 + 3z4 = 0

Setting X = x+ z;Y = z;Z = −y − z gives

X3Y +X3Z −X2Y 2 +X2Y Z +XY 3 −XY 2Z −XZ3 + Y 2Z2 − Y Z3 = 0

X+
0 (127) x2y2 + xy3 + x3z + 3x2yz + 5xy2z + 4y3z + 6x2z2

+13xyz2 + 11y2z2 + 13xz3 + 17yz3 + 10z4 = 0

Setting X = −z − y;Y = −y;Z = −x− y − 2z gives

X4 −X3Y −X3Z + 2X2Y 2 +X2Y Z −X2Z2 − 2XY 3 + 2XY 2Z

+XZ3 − Y 3Z − Y Z3 = 0
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X+
0 (137) xy + wy + 2y2 + 2wz + xz + 6yz + 3z2 = 0

x3 + wx2 + 6x2z − 2xy2 − 5xyz + xzw + 13xz2 + 2y3 + 3wy2

+w2y + 3wyz − 6yz2 + zw2 − 4z2w + 14z3 = 0

Set W = w − x+ y − z;X = x+ z;Y = w − x− 2z;Z = z

2W 2 + 2WX − 3WY + 2WZ − 2XY +XZ + Y 2 − Y Z = 0

2W 3 +W 2X − 3W 2Y −W 2Z +WX2 − 2WXZ +WY 2 +WY Z −WZ2

+2X3 + 3X2Z −XY 2 +XY Z + 2XZ2 − 3Y Z2 + 3Z3 = 0

X+
0 (139) x2y2 + xy3 − y4 + x3z + 3x2yz + 3xy2z − 2y3z + 5x2z2

+8xyz2 − 2y2z2 + 8xz3 + 3yz3 + 4z4 = 0

Setting X = y + z;Y = −x− y − 2z;Z = −y gives

X3Y +X3Z −X2Y 2 − 2X2ZY + 2XY 2Z −XZ3 + ZY 3 + 2Z2Y 2 + 2Z3Y = 0

X+
0 (149) x2y2 + xy3 + y4 + x3z + 2x2yz + 6xy2z + 4y3z + 4x2z2 + 7xyz2

+7y2z2 + 4xz3 + 5yz3 + z4 = 0

Setting X = z;Y = −x− 2z;Z = −y gives

X4 +X3Z − 2X2Y 2 −X2Y Z −X2Z2 −XY 3 − 2XY 2Z − 2XY Z2

−2XZ3 + Y 2Z2 + Y Z3 + Z4 = 0

X+
0 (151) xy3 + y4 − x3z − x2yz + 5xy2z + 8y3z − 3x2z2 + 6xyz2 + 20y2z2 + 17yz3 + 4z4 = 0

Setting X = y + z;Y = x+ 2y + 2z;Z = y gives

X3Z + 3X2Y 2 − 2X2Y Z −X2Z2 −XY 3 −XY 2Z +XY Z2

−XZ3 + ZY 3 − 2Z2Y 2 + 2Z3Y = 0

X+
0 (157) −vx+ 2wx− 5vy − 8vz + 5wz − 2xz + 5yz + z2 = 0

w2 + wx+ 4wy − xy + y2 + vz + 4wz − 2xz − 9yz − 12z2 = 0

w2 + 3wx+ x2 − vy + 9wy + 2xy + 6y2 + vz + 12wz + 5xz + 3yz − z2 = 0



CHAPTER 3. THE CANONICAL EMBEDDING OF MODULAR CURVES 33

X0(169)/W13 x2y2 + xy3 + x3z + 3x2yz + 5xy2z + 2y3z + 6x2z2

+10xyz2 + 4y2z2 + 10xz3 + 5yz3 + 4z4 = 0

X+
0 (173) x2 + wy + xy − wz + 4xz − 3yz = 0

xy2 + y3 + w2z + wxz + 2x2z + 5wyz + 6xyz + 9y2z + 3wz2

+11xz2 + 14yz2 + 12z3 = 0

Setting W = x+ y + 2z;X = −y − z;Y = w + y;Z = z gives

W 2 +WX +WZ −X2 −XY + 2XZ − 2Y Z − Z2 = 0

2W 2Z +WX2 +WXZ +WY Z + 3WZ2 − 2XY Z + 2XZ2 + Y 2Z − Y Z2 = 0

X++
0 (178) † x4 − 2x2y2 + y4 − 12x2yz − 4y3z − 4x2z2 + 20y2z2 + 32yz3 = 0

X+
0 (179) xy3 + x3z + 2x2yz + 2xy2z + 2y3z + 4x2z2 + 7xyz2 + 5y2z2

+6xz3 + 7yz3 + 3z4 = 0

Put X = −x− z;Y = −y − z;Z = z

x3z + x2z2 + 2x2yz − xz3 − 2xyz2 − xy2z − xy3x− yz3 + y3z = 0

X+
0 (181) ‡ xy + y2 − wz + xz + 3yz + 4z2 = 0

vw + 3wx+ 3vy + wy + 4xy − 2y2 + vz + 16wz − 2xz + 18yz − 10z2 = 0

vx+ 3x2 + vy − 6xy − 9y2 + 5vz + 10wz + 16xz − 14yz + 14z2 = 0

−v2w − vw2 + w3 − 3vwx− w2x+ vx2 + 2x3 + v2y − vwy + 5w2y − 3vxy

+2wxy − 4x2y − vy2 + 3wy2 − 10y3 + 3v2z + vwz − 2w2z + 7vxz + 15wxz

+9x2z − 2vyz + wyz + 3xyz + 8y2z − vz2 − 4wz2 + xz2 − 4yz2 + 2z3 = 0

v2w + vw2 − w3 + v2x+ 3vwx+ w2x+ 3vx2 + x3 + 2v2y + 3vwy − 7w2y + 8wxy

−6vy2 − 7wy2 + xy2 − 2y3 + 4v2z + 14vwz − 8w2z + 14vxz + 5x2z − 5vyz

+4wyz − xyz + 4y2z + 6vz2 − 6wz2 + 3xz2 = 0

X+
0 (199) 2wy − x2 + 3xy − 6xz − 5wz + 3yz − 6z2 = 0

−wx2 + 3w2y + 3wxy + 3wy2 + xy2 + y3 − 7w2z − 5wxz − 8wyz − 2xyz − 3y2z

+6wz2 + 4yz2 − 3z3 = 0

†This equation is not normalised. One may absorb a factor of 2 into z.
‡This is an example of a canonical genus 5 curve which is not a complete intersection. By Hartshorne [20]

exercise IV.5.5, one sees that X+
0 (181) has a linear system of dimension 1 and degree 3. This curve may therefore

be written as a plane quintic with one node, however it is not possible to obtain this model from the canonical

embedding.
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X++
0 (217) 3x2y2 + 3xy3 + 2y4 − 3x3z − 6x2yz − 4xy2z + 2y3z − 13x2z2

+xyz2 − 26y2z2 − 26xz3 + 43yz3 − 34z4 = 0

Setting X = z;Y = z − y;Z = −x− 2z gives

X4 +X3Y + 2X3Z + 6X2Y 2 − 2X2Y Z − 2X2Z2 + 4XY 3 − 7XY 2Z

−3XZ3 − 2Y 4 − 3Y 3Z − 3Y 2Z2 = 0

X+
0 (227) † −3vw − 2w2 + vx− wx− x2 − 3vy − 11wy − xy − 2y2

+5vz + 7wz + 7xz + 7yz − 3z2 = 0

−vw − 3w2 − vx− 2wx+ x2 + vy − 4xy + 3y2 + vz − 2wz + 8xz − 13yz + 12z2 = 0

2v2 + 3vw + 5w2 + 2vx+ wx− 4x2 + 2vy − 7wy + 2xy + 2y2 − 2vz

+12wz − 10xz − 7yz + 3z2 = 0

2w3 + 2v2x− vwx− 3wx2 − 2x3 − 2v2y − 4vwy − w2y − vxy − 6wxy − x2y

−vy2 − y3 + 3v2z − vwz − 2w2z + 2vxz − 4wxz + 3vyz − 6wyz − 3xyz

+2y2z − 3vz2 − wz2 + 5xz2 − yz2 − 2z3 = 0

v3 + v2w + 5vw2 + 2w3 − vwx− w2x− 2vx2 − wx2 + x3 − 3vwy − w2y

+vxy + wxy − 2x2y − vy2 − 3wy2 − xy2 − y3 − v2z + 3vwz + 8w2z − vxz

−4wxz + 5x2z + vyz + 6xyz + 2y2z + 3wz2 − 3xz2 + 4yz2 − 3z3 = 0

X+
0 (239) x2y2 − xy3 − y4 + x3z − 2x2yz + 4xy2z + 2y3z

+5x2z2 − 5xyz2 + 8xz3 − yz3 + 4z4 = 0

Setting X = −x− z;Y = z;Z = y − z gives

−X3Y +X2Y 2 +X2Z2 −XY 3 +XY Z2 +XZ3 + Y 4 + ZY 3 − Z3Y − Z4 = 0

X+
0 (251) wx− wy + xy − 2y2 + 2wz + xz + 4yz + z2 = 0

w2x− w2y + x2y − wy2 − 2xy2 + 2y3 + w2z − wxz − 3x2z + 2wyz

+7xyz − 3y2z − 21xz2 + 10yz2 − 28z3 = 0

Set W = x− y + 2z;X = −w − y + 2z;Y = −z;Z = x+ 2z

W 2 +WX − 2WZ + Y 2 + 3Y Z + Z2 = 0

2W 3 +W 2X − 5W 2Z −WX2 + 2WY 2 + 5WZ2 −X2Y − 2XY 2 − 3XY Z −XZ2

+2Y 3 + 5Y 2Z − 3Y Z2 − 2Z3 = 0

†This is another example of a genus 5 curve whose canonical model is not a complete intersection. See the

footnote to X+
0 (181) for further discussion.
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3.6 Some Tables for Genus larger than 5

We have also performed a few calculations of the canonical map when the genus is 6 or 7. Note
that, for genus ≥ 6, the image curve is never a complete intersection. Therefore it is difficult to
verify that the equations are correct (for instance, because it is hard to know if one has already
gathered all the equations needed). We already know when X0(N) is hyperelliptic but we do not
know in advance when X+

0 (p) is hyperelliptic. If a curve C of genus g is hyperelliptic then we
expect the image, of the canonical map in Pg−1, to be given by (g−1)(g−2)/2 equations, so we
may detect hyperelliptic curves in this way. The tables do give some experimental support for
our claims that the models have small coefficients, although we have not been able to perform
the usual process of choosing a linear change of variable to minimise the coefficients.

Table 2. Higher Genus Curves

X0(58) −ux+ vy + wy + vz = 0

g = 6 −uv + xy + 2xz = 0

v2 − vw − w2 − x2 + yz + z2 = 0

u2 + v2 + 3vw + 4w2 − 2x2 + yz = 0

−u2 − 2v2 + 3vw − 4w2 + 2x2 + y2 + yz = 0

−vx+ 6wx+ uy = 0

X0(79) −wx+ 2vy + wy + 2y2 + 2vz − 2wz + xz + yz + z2 = 0

g = 6 wx− vy + 2xy + y2 − vz + 3wz + 8yz + z2 = 0

−vx− x2 − vy + wy + 4y2 − 4vz − 5xz + 2yz − 5z2 = 0

−w2 − 2vx− 2wx− x2 + vy − 3wy − xy − 6vz − 5wz − 3xz + yz = 0

−vx− 2vy + wy − xy + 4y2 − 5vz + 2xz − yz + 8z2 = 0

u2 − v2 + 2vw + 2w2 − 2vx+ 2wx− x2 + 9vy + 6wy + 4xy − 4y2

−4vz + 4wz − 5xz − yz = 0
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X0(83) 3uv + 3uw + 2vw + 2w2 + 4ux+ wx− x2 + 6uy + 9vy + 11wy + 2xy

g = 7 −2y2 − 2uz − 4vz − 6wz − 7xz + 6z2 = 0

uv + uw + 2ux+ vx+ 2wx+ x2 + 2uy − 3vy − wy + 4y2 + 2uz + 8vz + 15wz

+8xz + 23yz + 4z2 = 0

There are 8 further equations. The largest coefficient occurring is 23.

X0(121) uw − 2vw + 2ux− 6vx+ 2uy + 2vy + uz = 0

g = 6 uw + vw + 2ux− 2vx+ 2uy − 10vy − 5uz + 11vz = 0

−6u2 + 6uv − 3v2 − w2 + 6wx− x2 − 8wy + 10xy − 9y2 − 4wz + 10xz = 0

6u2 + 12uv + 12v2 − 17wx− 2x2 − 5wy + 4xy + 14y2 − 6wz − 7xz − 11yz = 0

−9v2 − 8w2 + wx+ 9x2 + 7wy − 10xy + y2 − 7wz + 27xz − 11yz = 0

−6u2 − 12uv − 12v2 − 3w2 + 7wx− 6x2 + 11wy + 12xy + 10y2 + 4wz

+17xz − 11yz − 11z2 = 0

X+
0 (163) u2 − uv + uw + 4vw − 2w2 − ux+ 3vx+ wx+ 3uy + 14vy − 6wy

g = 6 +2xy + 5y2 + uz + 22vz − 4wz − 2xz + 3yz − 14z2 = 0

u2 − v2 + 3uw + 4vw + 2w2 + 2ux− vx+ 5wx+ 17uy + 5vy + 23wy − 9xy

+33y2 + 23uz + 5vz + 29wz − 9yz − 6z2 = 0

There are 4 further equations. The largest coefficient is 33.

3.7 Coefficient Size of Equations for X0(N)

Now that we have accumulated a large number of examples, we may consider the size of co-
efficients arising in models for X0(N). In a later chapter we will discuss heights of projective
varieties and discuss coefficient size further.

First let us consider models for the whole curve X0(N). We have computed equations for
the image of the canonical embedding (using eigenforms) for all non-hyperelliptic curves X0(N)
which have genus 3 ≤ g ≤ 5. The “worst case” examples are X0(43), which has a coefficient
64 (though we may simply absorb a factor of 2 into z making the coefficients much smaller),
X0(44), X0(55) and X0(67). So in every case we have coefficients of size less than N .

We have also (for most of the genus 3 and 4 cases) managed to reduce coefficient size using
a suitable linear change of variable. I make the assumption that, for the higher genus curves,
it would be possible to reduce the coefficient size in the models to a similar extent. When
the genus is larger than 4 it is too difficult to find such changes of variable. The “worst case”
examples here are X0(38) (largest coefficient 5) and X0(57) (largest coefficient 8). Certainly
we appear to be able to find a model with coefficients of size ≤ 2log(N) (this logarithm is to
base e).

Now let us consider the curves X+
0 (p) when they are not hyperelliptic. In our examples

we can find models for the canonical embedding (using eigenforms) of X+
0 (p) (here we only

consider genus at least 3) with coefficients of size O(p). The worst examples here are X+
0 (127),

X+
0 (151) and X+

0 (251). Now consider the results of reducing the coefficients using appropriate
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linear changes of variable. We see that the coefficients are generally less than log(p). The
results obtained seem to suggest that it is always possible to find canonical models of X+

0 (p)
with coefficients ≤ log(p).

It is important to stress that we have only computed models for curves of genus ≤ 5
(except for the few cases in Table 2) and that we have only had access to q-expansion data for
N < 300. Therefore our results only represent a small initial segment of all the modular curves
X0(N). The claims made in this section about coefficient size therefore cannot be considered
as watertight conjecture.

To emphasise the results obtained in our tables consider the general affine model for X0(N),
which is given by the relation between j(τ) and j(Nτ). The coefficients which appear in this
model really are enormous. The only equation of this form I have ever computed was for X0(2).
The largest coefficient appearing in that degree 3 affine model is 1.57464× 1014.

At this stage we have not included the results for genus 1 or genus 2 curves. Some genus 2
curves will be given in the next section. Certainly the elliptic curve case seems to follow the
pattern (see Section 6.7). From the point of view of coefficient size, the hyperelliptic curves
might be viewed more successfully as intersections in P3 or P4. For instance, the quotients of
X0(N) when N is equal to 51,55 or 56 were viewed as varieties in P3(C). In these cases, though,
the coefficients didn’t seem to be any nicer than those of the corresponding plane hyperelliptic
models.



Chapter 4

Equations for Hyperelliptic

Curves

The main drawback of the canonical embedding is that it cannot be used to obtain equations
for hyperelliptic curves. In this chapter we discuss a practical method to obtain equations for
hyperelliptic curves which appear as a quotient of a modular curve X0(N). We first discuss
the genus 2 case and then, in Section 4.4, we show that the techniques generalise in a trivial
manner to genus g ≥ 3.

There are various ways to obtain equations for genus 2 curves. Murabayashi [28] has listed
all the equations of genus 2 curves which appear as X0(p) or X+

0 (p) (where p is a prime). I
believe that the method used by Murabayashi is essentially the same as ours, except that it is
presented, in [28], in a very complicated manner. Also, Murabayashi apparently did not have
access to any tables of q-expansion data.

Wang [44] also gives a few equations for genus 2 curves. The paper [44] is concerned with
the 2-dimensional abelian variety which is associated to a modular newform having coefficients
in a quadratic field. The construction of this abelian variety was given by Shimura. Such
abelian varieties will always be isogenous to the Jacobian of a genus 2 curve C, since they are
principally polarised and correspond to a 2-dimensional space of cusp forms. In a very few cases
Wang gives a model for that curve. The curve C need not be a quotient of the modular curve
X0(N), though the Jacobian of C will be isogenous to a quotient of J0(N). Our method is
therefore quite different from that of Wang, as it is only useful when the curve one is interested
in is a quotient of X0(N) by some Atkin-Lehner involutions.

4.1 A Method for Genus 2 Curves

Let C be a curve of genus 2. Then the space of holomorphic differentials, Ω1(C), is a two
dimensional vector space over C. Suppose C has the plane hyperelliptic equation

C : Y 2 = p6(X), (4.1)

where p6 is a sextic polynomial. The ramification points of the double cover C → P1(C) are
precisely the roots of p6. Therefore the function X has two distinct order one poles. The
following result is well-known, although we provide a proof as it is central to this chapter.

Lemma 9 The C-vector space of holomorphic differentials Ω1(C) has a basis consisting of

ω1 =
dX

Y
and ω2 =

XdX

Y
. (4.2)

38
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Proof. From equation (4.1) we see that the divisor of poles of Y is 3 times the divisor of poles
of X. Thus the meromorphic differentials given in (4.2) are actually holomorphic differentials
on C. Furthermore they are linearly independent over C (as they have different divisors) and
thus they form a basis of Ω1(C). 2

From these differentials it is possible to reconstruct the functions X and Y which generate
the function field of the curve C, using the relations

X =
ω2

ω1
and Y =

dX

ω1
.

Now suppose C is modular. By this we mean that C is isomorphic to some quotient
X0(N)/W (where W is a group generated by Atkin-Lehner involutions). By a suitable linear
change of variable we may assume that the cusp ∞ of the modular curve corresponds to one
of the order one poles on the model (4.1) of C. Then we may identify, in the usual way, the
holomorphic differentials with weight 2 cusp forms. This suggests the following method for
constructing equations for such curves C. Suppose we have an explicit basis {f, g} for the
space of weight 2 cusp forms. Construct functions X and Y by

X =
f

g
and Y =

dX

g
.

Given these functions (we know their q-expansions explicitly) we may then find a relation
between them. For the relation to be in the nice form Y 2 = p6(X) we will need Y to have a
pole of order 3 at the cusp ∞ and we will need X to have an order 1 pole. Thus the choice of
basis {f, g} needs to be made so that f has an order 1 zero at the cusp infinity and so that g
has an order 2 zero.

In practice, using the tables of cusp forms [7], it is very simple to choose a basis {f, g} for
the space of cusp forms such that f and g have the right zeroes at the cusp ∞. The functions
X and Y therefore must span the function field of the curve C and hence they will give a model
for the curve.

This seems to be essentially the same method used by Murabayashi [28]. We give an example
to illustrate the method.

4.2 Example

The curve X0(22) has genus 2. We know it must have a plane model defined over Q. The
canonical embedding cannot be used to provide this model.

Once again we use the fact that S2(22) ∼= Ω1(X0(22)). In this case the weight 2 forms
are all old. We take f(τ) to be the normalised newform of weight 11. A basis for the weight
2 forms of level 22 is thus {f(τ), f(2τ)}. Note that, in some contexts, a more natural basis
would be {f(τ)± 2f(2τ)} (as these are both eigenforms with respect to W2). However, for this
application, we want to ensure that X and Y have the right poles at ∞, and so the basis is
chosen to satisfy that condition.

Write

X(τ) = f(τ)/f(2τ)

= q−1 − 2 + q − 2q2 − 4q3 − 4q4 + 5q5 − 6q6 + · · · .
(4.3)

This is a ratio of weight 2 forms and so it is a modular function of level 22 (equivalently, a
function on the curve C). The derivative of a modular function is a weight two form. Recall
that d/dτ = d/dq.dq/dτ = 2πiqd/dq. We tend to ignore the factor of 2πi here, as we are happy
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to work up to scalar multiples. Set

Y (τ) =
(
d
dτ
X(τ)

)
/f(2τ)

= −q−3 − q−1 − 4 + 9q − 24q2 + 44q3 − 88q4 + · · · .
(4.4)

Now, X and Y are functions on the curve and we explicitly know their integral q-expansions.
Hence we can find (using linear algebra on q-expansions) the following polynomial relation
between X and Y .

Y 2 = P (X) = X6 + 12X5 + 56X4 + 148X3 + 224X2 + 192X + 64. (4.5)

Once again we stress that the choice of basis was essentially determined by the condition
that X should have an order 1 pole and that Y should have an order 3 pole. Of course we could
have taken a basis {f(τ) + λf(2τ), f(2τ)} instead, but it is clear that this corresponds to the
simple change of variable X 7→ X + λ.

The next section contains a table of all the genus 2 modular curves obtained using this
method. Many of these curves have already been obtained as quotients of canonical models,
although finding the equations using this method usually requires less work.

4.3 Tables of Genus 2 Curves

This section lists the results of our calculations. We demand that the chosen basis {f, g} for
the weight 2 cusp forms is such that f and g have integral q-expansions of the form f = q+ · · ·
and g = q2 + · · ·. This makes the choice of g unique. The choice of f is not unique, however
the value Y obtained will be independent of the choice of f and the choice of X is well defined
up to addition by an integer. We tend to choose X so that the coefficients in the model are
minimal.

The following table lists all genus 2 modular curves X0(N) and probably all genus 2 curves
X0(N)/WN . It also lists many quotients X0(N)/Wn. Many of these equations have been
found in the previous chapter or by other authors (e.g., Murabayashi [28]). The table lists the
sextic polynomial p6(x) such that, for the functions X and Y described in Section 4.1, we have
Y 2 = p6(X).

Note that many of these models have bad reduction at the prime 2, despite the fact that
they have odd level. This is due to the fact that we have insisted on using the model y2 = p6(x)
instead of the more general model y2 + p3(x)y = p6(x) (where p3(x) is a cubic polynomial in
x and p6(x) is a sextic). This extra bad reduction shows that the models do not have minimal
discriminant. Nevertheless they are models for the curves in question and they are still of use
for studying the arithmetic of the original modular curves.
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Table 3. Genus 2 Curves

X0(22) x6 − 4x4 + 20x3 − 40x2 + 48x− 32

= (x3 + 2x2 − 4x+ 8)(x3 − 2x2 + 4x− 4)

X0(23) x6 − 8x5 + 2x4 + 2x3 − 11x2 + 10x− 7

= (x3 − x+ 1)(x3 − 8x2 + 3x− 7)

X0(26) x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x+ 1

X0(28) x6 + 10x4 + 25x2 + 28

= (x2 + x+ 2)(x2 − x+ 2)(x2 + 7)

X0(29) x6 − 4x5 − 12x4 + 2x3 + 8x2 + 8x− 7

X0(31) x6 − 8x5 + 6x4 + 18x3 − 11x2 − 14x− 3

= (x3 − 2x2 − x+ 3)(x3 − 6x2 − 5x− 1)

X0(33)/W3 x6 − 4x5 − 6x4 − 12x3 + x2 + 28x− 8

= (x3 + x2 + 3x− 1)(x2 − 4x− 8)(x− 1)

X0(35)/W7 x6 − 4x5 + 2x4 − 32x3 − 27x2 − 64x− 76

= (x3 − 5x2 + 3x− 19)(x2 + 4)(x+ 1)

X0(37) x6 + 14x5 + 35x4 + 48x3 + 35x2 + 14x+ 1

X0(38)/W2 x6 − 4x5 − 6x4 + 4x3 − 19x2 + 4x− 12

= (x3 + x2 − x+ 3)(x3 − 5x2 − 4)

X0(39)/W13 x6 − 20x4 − 6x3 + 64x2 − 48x+ 9

= (x2 − 5x+ 3)(x2 + 3x− 1)(x+ 3)(x− 1)
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X0(40)/W2 x6 + 4x5 + 8x3 − 44x2 + 48x− 16

= (x2 + 4x− 4)(x4 + 4x2 − 8x+ 4)

X0(40)/W5 x6 + 16x4 + 64x2 + 64

= (x4 + 12x2 + 16)(x2 + 4)

X0(42)/W3 x6 − 4x5 − 18x3 − 4x+ 1

= (x4 + x3 + 4x2 + x+ 1)(x2 − 5x+ 1)

X0(42)/W6 x6 + 6x5 + 7x4 − 14x3 − 23x2 + 36x− 12

X0(42)/W21 x6 + 2x5 − x4 − 6x3 + 13x2 − 12x+ 4

= (x4 + 3x3 + x2 − 8x+ 4)(x2 − x+ 1)

X0(42)/W42 x6 + 4x4 − 2x3 + 4x2 + 1

= (x4 + x3 + 4x2 + x+ 1)(x2 − x+ 1)

X0(44)/W2 x6 − 4x4 − 20x3 − 40x2 − 48x− 32

= (x3 + 2x2 + 4x+ 4)(x3 − 2x2 − 4x− 8)

X0(46)/W46 x6 + 4x5 + 2x4 − 2x3 + x2 − 2x+ 1

X0(48)/W2 x6 + 10x5 + 27x4 + 20x3 + 27x2 + 10x+ 1

= (x2 + 4x+ 1)(x2 + 6x+ 1)(x2 + 1)

X0(48)/W3 x6 + 8x4 + 32x2 + 64

= (x2 − 2x+ 4)(x2 + 2x+ 4)(x2 + 4)

X0(50) x6 − 4x5 − 10x3 − 4x+ 1

X0(52)/W2 x6 + 8x5 + 8x4 + 18x3 + 8x2 + 8x+ 1

X0(52)/W52 x6 + 4x5 + 8x4 + 6x3 + 8x2 + 4x+ 1

X0(54)/W2 x6 − 6x4 − 8x3 − 27x2 − 12x− 20

= (x3 + 3x2 + 3x+ 5)(x3 − 3x2 − 4)

X0(57)/W3 x6 + 10x5 + 15x4 + 24x3 + 15x2 + 10x+ 1
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X0(58)/W29 x6 + 4x5 + 16x4 + 22x3 + 16x2 + 4x+ 1

X0(62)/W62 x6 + 4x5 + 6x4 + 6x3 + x2 − 2x− 3

= (x3 + 4x2 + 5x+ 3)(x3 + x− 1)

X+
0 (67) x6 + 2x5 + x4 − 2x3 + 2x2 − 4x+ 1

X0(72)/W2 x6 + 6x5 + 15x4 + 28x3 + 15x2 + 6x+ 1

= (x4 + 2x3 + 6x2 + 2x+ 1)(x2 + 4x+ 1)

X+
0 (73) x6 + 2x5 + x4 + 6x3 + 2x2 − 4x+ 1

X0(74)/W74 x6 − 2x5 − x4 − x2 − 2x+ 1

X0(85)/〈W5,W17〉 x6 + 2x5 + 7x4 + 6x3 + 13x2 − 8x+ 4

= (x4 + 2x3 + 3x2 − 2x+ 1)(x2 + 4)

X0(87)/W29 x6 − 2x4 − 6x3 − 11x2 − 6x− 3

X0(88)/〈W2,W11〉 x6 − 2x5 − x4 − 12x3 − x2 − 2x+ 1

= (x3 + x2 + 3x− 1)(x3 − 3x2 − x− 1)

X0(91)/W91 x6 + 2x5 − x4 − 8x3 − x2 + 2x+ 1

X0(93)/〈W3,W31〉 x6 + 6x5 + 5x4 − 6x3 + 2x2 + 1

= (x3 + 5x2 + 2x+ 1)(x3 + x2 − 2x+ 1)

X0(100)/W2 x6 + 4x5 + 10x3 + 4x+ 1

X+
0 (103) x6 + 6x5 + 5x4 + 2x3 + 2x2 + 1

X+
0 (107) x6 + 2x5 + 5x4 + 2x3 − 2x2 − 4x− 3

X0(111)/W111 x6 + 2x5 − x4 − x2 + 2x+ 1

X0(112)/〈W2,W7〉 x6 + 2x5 + 11x4 + 4x3 + 11x2 + 2x+ 1

= (x4 + 2x3 + 10x2 + 2x+ 1)(x2 + 1)

X0(115)/〈W5,W23〉 x6 + 6x5 + 5x4 + 10x3 + 2x2 + 1

= (x3 + 5x2 − 2x+ 1)(x3 + x2 + 2x+ 1)

X0(116)/〈W2,W29〉 x6 − 4x5 + 16x4 − 22x3 + 16x2 − 4x+ 1
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X0(117)/〈W3,W13〉 x6 + 4x4 − 6x3 + 16x2 − 12x+ 9

= (x4 + x3 + 4x2 − 3x+ 9)(x2 − x+ 1)

X0(121)/W11 x6 + 6x5 + 11x4 + 8x3 + 11x2 + 6x+ 1

X0(122)/〈W2,W61〉 x6 + 4x4 − 6x3 + 4x2 + 1

X0(125)/W5 x6 + 2x5 + 5x4 + 10x3 + 10x2 + 8x+ 1

X0(129)/〈W3,W43〉 x6 + 2x5 − 9x4 − 24x3 − 9x2 + 2x+ 1

X0(165)/〈W3,W5,W11〉 x6 + 6x5 + 11x4 + 14x3 + 5x2 − 12x

X+
0 (167) x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x− 3

X0(177)/〈W3,W59〉 x6 + 2x4 − 6x3 + 5x2 − 6x+ 1

X+
0 (191) x6 + 2x4 + 2x3 + 5x2 − 6x+ 1

There are genus 2 quotients as far as the eye can see, so we stop at this stage.

4.4 Generalisation to Higher Genus

The methods of this section also apply to hyperelliptic curves of genus g > 2.
Let C be a hyperelliptic curve of genus g > 2. Then C has a plane model of the form

y2 = p2g+2(x)

where p2g+2(x) is a polynomial of degree 2g + 2 in x. The function x has degree 2 and, since
the point at infinity on the projective line is not a Weierstrass point, it has two poles of order
one. The divisor of poles of y is g+ 1 times the divisor of poles of x. Therefore the differentials

dx

y
,
xdx

y
, · · · x

g−1dx

y

span the space of holomorphic differentials Ω1(C).
Now suppose C is “modular” in the sense that Ω1(C) ∼= S for some C-vector space S of

weight 2 cusp forms. One may give S a basis of forms {f1, · · · , fg} such that each fj has
q-expansion fj = qj + · · ·. It then follows that, up to scalar multiples,

dx

y
= fg and

xdx

y
= fg−1.

Therefore, as in Section 4.1, we may set

x = fg−1/fg and y = dx/fg

and find, by linear algebra on the q-expansions, the degree 2g+ 2 polynomial relating x and y.
We give a few examples.
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Table 4. Hyperelliptic curves of genus g ≥ 3

X0(30) x8 + 6x7 + 9x6 + 6x5 − 4x4 − 6x3 + 9x2 − 6x+ 1

= (x2 + 4x− 1)(x2 + x− 1)(x4 + x3 + 2x2 − x+ 1)

X0(33) x8 + 10x6 − 8x5 + 47x4 − 40x3 + 82x2 − 44x+ 33

= (x2 − x+ 3)(x6 + x5 + 8x4 − 3x3 + 20x2 − 11x+ 11)

X0(35) x8 − 4x7 − 6x6 − 4x5 − 9x4 + 4x3 − 6x2 + 4x+ 1

= (x2 + x− 1)(x6 − 5x5 − 9x3 − 5x− 1)

X0(39) x8 − 6x7 + 3x6 + 12x5 − 23x4 + 12x3 + 3x2 − 6x+ 1

= (x4 − 7x3 + 11x2 − 7x+ 1)(x4 + x3 − x2 + x+ 1)

X0(40) x8 + 8x6 − 2x4 + 8x2 + 1

X0(41) x8 − 4x7 − 8x6 + 10x5 + 20x4 + 8x3 − 15x2 − 20x− 8

X0(46)/W2 x8 + 2x7 − 13x6 − 34x5 − 9x4 + 10x3 − 2x2 + 12x− 7

= (x3 + 2x2 + x+ 1)(x3 + 2x2 − 3x+ 1)(x2 − 2x− 7)

X0(46) x12 − 2x11 + 5x10 + 6x9 − 26x8 + 84x7 − 113x6 + 134x5

−64x4 + 26x3 + 12x2 + 8x− 7

= (x3 + x2 − x+ 7)(x3 − 2x2 + 3x− 1)(x6 − x5 + 4x4 − x3 + 2x2 + 2x+ 1)

X0(47) x10 − 6x9 + 11x8 − 24x7 + 19x6 − 16x5 − 13x4 + 30x3 − 38x2 + 28x− 11

= (x5 − x4 + x3 + x2 − 2x+ 1)(x5 − 5x4 + 5x3 − 15x2 + 6x− 11)

X0(48) x8 + 14x4 + 1
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X0(51)/W3 x8 − 6x7 + 9x6 − 14x5 + 20x4 − 2x3 − 19x2 + 18x− 15

= (x4 − 2x3 + 3x2 − 6x+ 5)(x3 − 5x2 + 3x− 3)(x+ 1)

X0(55)/W5 x8 − 6x7 − x6 + 38x5 + x4 − 84x3 − 28x2 + 44x

= (x3 − 4x− 4)(x2 + x− 1)(x2 − 7x+ 11)x

X0(56)/W2 x8 − 6x7 + 9x6 − 16x5 + 40x4 − 32x3 + 36x2 − 48x+ 16

= (x4 − 4x3 − 8x+ 4)(x2 + x+ 2)(x− 2)(x− 1)

X0(59) x12 − 8x11 + 22x10 − 28x9 + 3x8 + 40x7 − 62x6 + 40x5

−3x4 − 24x3 + 20x2 − 4x− 8

= (x9 − 7x8 + 16x7 − 21x6 + 12x5 − x4 − 9x3 + 6x2 − 4x− 4)

(x3 − x2 − x+ 2)

X0(62)/W2 x10 + 2x9 − 5x8 − 22x7 − 41x6 − 30x5 − 2x4 + 32x3 + 21x2 + 4x− 12

(x3 + 4x2 + 5x+ 3)(x3 + x− 1)(x4 − 2x3 − 3x2 − 4x+ 4)

X0(71) x14 + 4x13 − 2x12 − 38x11 − 77x10 − 26x9 + 111x8 + 148x7

+x6 − 122x5 − 70x4 + 30x3 + 40x2 + 4x− 11

= (x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1)

(x7 − 7x5 − 11x4 + 5x3 + 18x2 + 4x− 11)

4.5 Summary

In Chapters 3 and 4 we have described methods for obtaining projective models for modular
curves and we have given large tables describing the results obtained.

We have given equations for every modular curve X0(N) having genus 2 ≤ g ≤ 5. For each
of these curves we have, in most cases, given equations for all their (non genus zero) quotients
X0(N)/Wn where n|N . We have also listed equations for all curves X+

0 (p) having genus 2 or
3 and, for p ≤ 251, all curves X+

0 (p) of genus 4 or 5.
The hyperelliptic models given in this chapter do not seem to share the property of having

the strikingly small coefficients of the non-hyperelliptic models. For the hyperelliptic case we
have sought the obvious hyperelliptic model. This model is probably not, in general, the one
which has the smallest coefficients. One alternative model for genus 2 curves is a plane quartic
with a singularity, another choice is an intersection of quadrics in P4. We have not tried to find
alternative models, with small coefficients, for these hyperelliptic cases.



Chapter 5

The Hemi-Canonical Map

The standard way to embed abelian varieties (i.e., certain complex tori) in projective space is
to use theta functions. This idea was developed by Mumford [27], and it uses a very general
notion of theta function.

A variation on this process may be used to map certain modular curves into projective
space. This is described in Igusa [21].

A reason why this notion is appealing to us is that theta series may have q-expansions
which are very sparse and have small coefficients. It therefore seems plausible that the models
obtained from the projective embedding using theta series will have small coefficients.

There is a tradeoff here in that the most useful theoretical notion of theta function may not
be so useful from a computational perspective. In this chapter we aim to use a very simple
notion of theta series, with which it will be easy to compute. Namely, we will use theta series
coming from integral binary quadratic forms. The advantage will be that such theta series are
quite easy to work with. The disadvantages will be that the mapping to projective space does
not, in general, have the nice properties we desire.

In the first section of this chapter we give a summary of the classical theory of using theta
functions to give embeddings of modular curves. We then spend several sections introducing
the background on the theta series we will be working with. Later we discuss the application
of these ideas to the problem of computing equations for modular curves.

5.1 The Classical Approach

This section follows Chapter 5 of Igusa [21]. We are primarily interested in the one variable
case, so we specialise the argument if it helps to do so.

First we define two groups. The symplectic group Sp2n(R) is the subset of GL2n(R)
consisting of γ such that γEγt = E where

E =

 0 I

−I 0

 .

Thus, in the n = 1 case, Sp2(R) = SL2(R). Also, O2n(R) is defined to be the subset of Sp2n(R)
consisting of γ such that γ−1 = γt.

The Siegel upper half space of degree n is defined to be

Hn =
{
Z = X + iY ∈Mn(C) | Zt = Z and Y is positive definite

}
.

Clearly for n = 1 this is just the usual halfplane H.

47
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There is a formulation of the Siegel upper half space in terms of the symplectic group.
Namely, there is a homeomorphism (given by “evaluation at i”) between Hn and

O2n(R)\Sp2n(R).

Igusa fixes an integer e ≡ 0(mod 4) and considers the group GZ(e, 2e). This group is, in the
one variable case,

GZ(e, 2e) = Γ0(e) ∩ Γ0(2) ⊆ SL2(Z), (5.1)

where Γ0(N) is the set of matrices in SL2(Z) whose top right entry is divisible by N . As
GZ(e, 2e) ⊂ Sp2(R) it acts on H1. We define the following “modular curve”.

Ye = GZ(e, 2e)\H1. (5.2)

One may complete this by introducing cusps, just as one does for the modular curves Y0(N).
The curve Ye is the object for which Igusa gives an embedding into projective space. To show
how this is done it is first necessary to introduce theta functions.

The general notion of theta function, as used by Mumford, is the following. Let r be
the dimension we are working in (for this application we take r = 1). For m,m′ ∈ Rr,
τ ∈ H r ⊂Mr(C) and z ∈ C r define

θm,m′(τ, z) =
∑
n∈Zr

exp
(

2πi
(

1
2

(n+m)τ(n+m)t + (n+m)(z +m′)t
))

. (5.3)

In the theory of embedding of complex tori, it is z which is the “variable” and τ which is
fixed (since τ determines the lattice). When we want to obtain embeddings for modular curves
the situation is the other way around.

Igusa defines the theta constants to be θm,0(τ, 0). These are modular forms of weight r/2.
We are now in a position to quote Theorem 4 of [21] (page 189). We specialise the statement

to the one-dimensional situation.

Theorem 2 Let e ≡ 0(mod 4). Then the theta constants give a projective embedding of the
modular curve Ye. Namely we have a well-defined injective map

Ye −→ Pe−1

given by
τ 7→ [θx,0(τ, 0)]

where x runs through 1
eZ/Z.

This theorem gives a very explicit description of a projective embedding for a modular curve
closely related to our Y0(N). If N ≡ 0(mod 4) then GZ(N, 2N) = Γ0(N)∩ Γ0(2) and so Y0(N)
is a quotient of the modular curve YN of (5.2) under the involution induced from the coset
representatives of GZ(N, 2N) in Γ0(N). When N is not divisible by 4 then Y0(N) is still a
quotient, but the degree of the covering is larger than 2. There are several practical drawbacks
with this embedding.

The main drawback is that the image lies in (N − 1)-dimensional projective space. So to
embed a modular curve YN would require very large projective space. The coefficients may well
be small in this case, but one couldn’t claim that the equation is easy to write down.

Thus we are led to consider a different notion of theta series. We will work with the “average”
of the canonical map (weight 2 forms) and the method discussed in this section (weight 1/2)
and use weight 1 forms. With that goal in mind we introduce theta series of integral binary
quadratic forms. The reason for using theta series of integral binary quadratic forms is that



CHAPTER 5. THE HEMI-CANONICAL MAP 49

they have small coefficients in their q-expansions, and also that there are usually enough of them
for the process to work. The coefficients coming from single variable quadratic forms would be
much smaller, however there is only one such quadratic form and so, to obtain more than one
theta series, one would have to consider complicated characters etc. The Dedekind function
η(τ) is a theta series coming from a single variable quadratic form and it has often been used
in the past to calculate equations for modular curves. These calculations, though useful, are
less “algorithmic” than the method we will introduce. If we were to consider quadratic forms
in at least three variables then the number of different theta series would grow but so would
the coefficients. It was hoped that binary quadratic forms would be a suitable balance of these
two opposing forces.

5.2 Quadratic Forms

In this section we state a few facts from the elementary and well-known theory of quadratic
forms. This is mostly taken from [4] and [29].

A quadratic form in m variables is any expression of the form
∑
n∈Zm anx

n1
1 ...xnmm where

the nj ∈ {0, 1, 2} and
∑
j nj = 2. It is convenient to introduce a matrix notation for quadratic

forms.

Definition 8 A matrix A is said to be even if it is symmetric, has integral entries and has
even entries on the diagonal.

To any even n× n matrix A, we associate the n-variable quadratic form

QA(x1, . . . , xn) =
1
2

(x1, . . . , xn)A(x1, . . . , xn)t.

Here t denotes the transpose of a vector or matrix.
A quadratic form Q is said to be positive definite if it only takes positive values and if

the only solution to Q(n) = 0 is the trivial one n = 0. The determinant, D, of a quadratic
form QA is defined to be the determinant of the matrix A. In the two-variable case, a necessary
and sufficient condition that the quadratic form be positive definite is that the diagonal entries
of the matrix A are positive and that the determinant is positive. In the case where m (the
number of variables of the quadratic form) is an even integer 2k then we may also define the
discriminant ∆ = (−1)kdet(A). Note that ∆ ≡ 0, 1(mod 4). In particular, 2 × 2 quadratic
forms have negative discriminant and their determinant is ≡ 0,−1(mod 4). Note that for
3-variable forms the determinant is necessarily even.

Let X be any m×m matrix with integer coefficients and determinant ±1. The map x 7→ xX

induces a bijection of Zm to itself. Now

QA(xX) =
1
2
xXA(xX)t =

1
2
x(XAXt)xt = Q(XAXt)(x).

So we see that the quadratic form obtained from A represents exactly the same values as that
represented by XAXt. This motivates the following definition.

Definition 9 Two matrices A and B (or two quadratic forms QA and QB) are said to be
weakly equivalent if there is an integral matrix X with determinant ±1 such that XAXt = B.
The matrices A and B are said to be strongly equivalent if there is a matrix X ∈ SL2(Z)
such that XAXt = B.

Note that weak equivalence is designed for use with theta series. If the word “equivalent”
is used without a qualifier then it is weak equivalence which is to be used. If the application of
quadratic forms is for class number calculations then one works with strong equivalence.
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Definition 10 The level of a quadratic form QA is the least positive integer N such that
NA−1 is an even matrix.

We will see, in Theorem 3, that a quadratic form of level N will give rise to a theta series
of level N . Note that we will usually be concerned with matrices for which N = D. Also we
will usually demand that NA−1 be equivalent to A. These two restrictions are not too severe
in the two-variable case as we have

A =

 2a b

b 2c

 with det(A) = D and DA−1 =

 2c −b

−b 2a

 .

Thus it is clear that N always divides D and that, to have N < D, it is necessary that a, b and
c all have a non-trivial common factor. When a, b and c have a common factor, the quadratic
form is said to be imprimitive. If (a, b, c) = 1 then the quadratic form is primitive. If QA is
an imprimitive quadratic form then the matrix A would be a multiple of some primitive matrix
A′ of smaller determinant. This means that the theta series associated to A is an oldform
coming up from level det(A′). Finally, note that A is strongly equivalent to DA−1 under

X =

 0 −1

1 0

 .

5.3 Reduction of Quadratic Forms

Once again we deal only with the 2-variable case and leave the general situation to the literature
(see for instance Cassels [4]).

There are many different equivalent matrices A representing any given positive definite
binary quadratic form. The process of reduction gives a way to easily list a set of representatives
for all the equivalence classes.

Lemma 10 Any positive definite binary quadratic form is equivalent to a form of the shape
Q(x, y) = ax2 +bxy+cy2 where |b| ≤ a ≤ c (recall that we only consider positive definite forms,
so a, c > 0).

Note. This lemma is stated in the context of strong equivalence. For weak equivalence observe
that, by simply taking the mapping x = −x (which has determinant −1 when written in matrix
form), the variables may be chosen with 0 ≤ b ≤ a ≤ c. For either definition of equivalence we
say that the form (or matrix representing it) is reduced if the coefficients satisfy the bound
|b| ≤ a ≤ c. Note that, if a = c or |b| = a, then the two choices of b give equivalent quadratic
forms, and so one may as well assume that b ≥ 0.

Proof. We apply 2 basic operations to the quadratic form. They are

(1) x = −y′; y = x′ which maps the form to cx′2 − bx′y′ + ay′2 .

(2) x = x′ ± y′; y = y′ which maps the form to ax′2 + (b± 2a)x′y′ + (a+ c± b)y′2.

Note that a + c > |b| since the form is positive definite. These two operations are applied
repeatedly according to the following rules

(i) If a > c then apply the first operation.

(ii) If |b| > a then apply the second operation (choosing the ± sign to be the opposite of the
sign of b).
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If neither of these conditions is satisfied then the quadratic form is already reduced and the
process halts.

This process will always halt because all applications of the second rule will strictly reduce
|b|. Hence only a finite number of steps can occur. 2

Now, given that every equivalence class contains one of these representatives, we may bound
the size of the coefficients. Suppose we wish to find a representative for each (weak) equivalence
class of binary quadratic forms with determinant D. This amounts to solving D = 4ac − b2

subject to 0 ≤ b ≤ a ≤ c. The constraint on a, b and c gives 4ac − b2 ≥ 3b2 and thus we see
that it suffices to look for quadratic forms with

0 ≤ b ≤
√
D/3. (5.4)

5.4 Class Numbers

Under strong equivalence, the grouping of quadratic forms into classes is exactly as with weak
equivalence, except that it distinguishes 2a b

b 2c

 and

 2a −b

−b 2c


when 0 < b < a ≤ c.

It is well known that the number of equivalence classes (using strong equivalence) of primitive
integral binary quadratic forms of determinant D is the same as the class number hD of the
number field Q(

√
−D).

Therefore, one may estimate the number of weak equivalence classes of quadratic forms
from the class number of Q(

√
−D). In particular, if D is square-free, then all forms must be

primitive, and so the number of weak equivalence classes is between hD/2 and hD. In any case,
we see that the number of quadratic forms of discriminant D grows in a similar way to the class
number of Q(

√
−D).

5.5 Theta Series

Suppose Q(n) = 1
2nAn

t is a quadratic form with determinant D ≡ 0,−1(mod 4) and level N
(usually N = D). Define the theta series θQ(τ), as a Fourier series in q = exp(2πiτ), by

θQ(τ) =
∑
n∈Z2

exp(2πiτQ(n)) =
∑
n∈Z2

qQ(n). (5.5)

The series defining θQ converges absolutely on τ ∈ H. This may be seen by noting that,
for τ = x + iy ∈ H (so y > 0), we have |q(τ)| = exp(−2πy) = ε < 1. Now Q is positive
definite and, in fact, Q(x, y) ≥ k(x2 + y2) for some constant k (depending on a, b and c). So
|θ(τ)| ≤

∑
x

∑
y ε
k(x2+y2) ≤ (1− εk)−2. Hence the theta series is a holomorphic function on H.

In general there may be poles at the cusps. At the cusp ∞ we see that θQ takes the value 1.
In order to prove that the θQ are modular forms it is usual to generalise slightly and study

θQ(τ ;h) :=
∑
n∈Z2

n≡h (N)

qQ(n)/N2
. (5.6)

where h ∈ Z2. Note that this is a generalisation as θQ(τ) = θQ(τ ; 0). We quote the following
result without proof from Ogg [29] Theorems 20 and 20+ on pages VI-22 and VI-25, or Shimura
[34] Proposition 2.1.
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Theorem 3 For γ =

 a b

c d

 ∈ Γ0(N),

θQ(τ ;h) |γ = (cτ + d)−1θQ(γ(τ);h) = exp
(
2πiabQ(h)/N2

)
χ(d)θQ(τ ; ah).

Here the character χ is defined to be the Jacobi symbol (see Shimura [34] pg. 442)

χ(d) =
(

∆
d

)
.

Note that this is the description of the character, χ, for quadratic forms in two variables.
The general formula (for higher weight) is somewhat more complicated (see [29] or [32]).

In the applications we set h = 0 and find that θQ(τ) is a modular form of weight 1, level N
and character χ.

Theorem 3 is proved by first showing the following formula, using Poisson summation (as
always, the quadratic form Q corresponds to the matrix A).

θQ(τ ;x)
τ

i
= D−1/2

∑
n∈Z2

exp
(
2πintx− πiτ−1ntA−1n

)
. (5.7)

The general case of Theorem 3 may then be obtained by careful use of this basic relation.
In later sections we will need a generalisation of the basic transformation formula (5.7). The

rest of this section concerns the statement and proof of this generalisation. It is well known that
one may generalise the notion of theta series by putting a character in the definition, namely
θQ(τ ;ψ) =

∑
n ψ (n) qQ(n). Our analysis is motivated by this example, however we have gone

further by noting that the multiplicative property of ψ is not essential.

Definition 11 Let P be a positive integer. A function of period P is a mapping ψ : Z2 → C
such that ψ(n+m) = ψ(n) for all m ∈ PZ2.

Given a function ψ of period P , and any x ∈ R2, we define the theta series

θQ(τ ;x, ψ) :=
∑
n∈Z2

ψ (n) qQ(n+x). (5.8)

Note that the usage x ∈ R2 is similar, but not identical, to the h ∈ Z2 of equation (5.6). We
now give the generalisation of (5.7) in this context.

Proposition 8 Suppose ψ is a function of period P . Write S = {(i, j)t | 0 ≤ i, j < P} (i.e., S
is a set of representatives of Z2/(PZ2)). Suppose Q is a quadratic form arising from a matrix
A of the usual form. Then

θQ(τ ;x, ψ) = iD−1/2τ−1
∑
n∈Z2

 1
P 2

∑
s∈S

ψ(s)exp(2πints/P )

 exp
(

2
P
πintx− πintA−1n/P 2τ

)
.

(5.9)

Proof. For a fixed τ write f(x) = θQ(τ ;x, ψ). Then f is a periodic map from R2 to C of
period P . We consider f as mapping the “square” [0, P ]2 ⊆ R2 into C.

There is a standard orthogonal basis for the continuous functions on [0, P ]2, namely {fn(x) :=
exp(2πintx/P ) | n ∈ Z2}. The standard Fourier theorem states that f may be written as∑
n∈Z2 anfn, where

an =
1
P 2

∫
[0,P ]2

f(x)fn(−x)dx.
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We will calculate the Fourier coefficients of the function f(x) following the methods used in
Ogg [29] pages VI-11 and VI-12.

an =
1
P 2

∫ P

0

∫ P

0

∑
m∈Z2

ψ(m)exp(2πiτQ(m+ x))exp(−2πintx/P )dx.

We may swap the order of integration and summation so that the sum over m is on the outside.
Now break the sum over m ∈ Z2 up into P 2 parts by summing first over s ∈ S (where S is
a set of representatives of Z2/PZ2) and then over m ≡ s(mod P ). We now have isolated the
action of the function ψ. So we have

an =
1
P 2

∑
s∈S

ψ(s)

 ∑
m∈Z2

m≡ (0,0)t (mod P )

∫ P

0

∫ P

0

exp(2πiτQ(s+m+ x))exp(−2πintx/P )dx

 .
Now substitute y = m + x (noting that we have exp(−2πinty/P ) = exp(−2πintx/P )). The
sum of the double integral may now easily be turned into a double infinite integral.

an =
1
P 2

∑
s∈S

ψ(s)
[∫ ∞
−∞

∫ ∞
−∞

exp(2πiτQ(s+ y)− 2πinty/P )dy
]
. (5.10)

The next step is to “complete the square” on the inside of the exp in equation (5.10). For
typesetting considerations write w := s+ y − 1

P τ
−1A−1n. Note that τwtAw = τ(s+ y)tA(s+

y)− 2
P n

ty− 2
P n

ts+ 1
P 2n

tA−1n/τ . Hence the term in square brackets of (5.10) may be written
as ∫ ∞

−∞

∫ ∞
−∞

exp
(
πiτwtAw

)
exp
(
2πints/P − πintA−1n/P 2τ

)
dy.

The second exponential has no dependence on y, so it may be carried to the front as a constant.
The remaining integral may be evaluated using exactly the same techniques as used in Ogg ([29]
pages VI-11 and VI-12), and this gives a value of D−1/2iτ−1.

Hence we have

an =

 1
P 2

∑
s∈S

ψ(s)exp(2πints/P )

D−1/2iτ−1exp
(
−πintA−1n/P 2τ

)
and the statement of the proposition follows from this. 2

We should note that these generalised theta series with functions of period P need not
actually be modular forms. However, if the function ψ of period P satisfies certain relations,
then the theta series will be a modular form. We do not go into detail about this point, as the
definition of the hemi-canonical map will not actually use this general notion of theta series.
The functions of period P arise, in practice, when trying to analyse the behaviour of the theta
series under certain Atkin-Lehner involutions (see Section 5.6). The previous proposition gives
all the information required to understand the action of the involutions and therefore we give
no further analysis.

It is possible to generalise the definition of theta series in other ways. One may use spherical
functions to create more theta series of a given level. This changes the weight of the corre-
sponding modular form. We could use this to generate equations but, if we start with forms of
different weight, the equations will not be homogeneous. We do not explore that option in this
thesis.

We finally note one further result which will be useful in later work. Notice that this result
applies to the discriminant, D, of the form rather than the level N .
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Theorem 4 ([29] Corollary page VI-12) If Q is a quadratic form of discriminant D arising
from a matrix A and if DA−1 is equivalent to A then

θQ(τ)

∣∣∣∣∣∣∣
 0 −1

D 0

 = −iθQ(τ).

5.6 Involutions on Theta Series

It will be important to understand how the theta series behave under the involutions Wn. This
is actually quite complicated.

Theorem 4 of the previous section explains the behaviour of θ(τ) under WN when N = D.
However we will sometimes consider theta series of composite level. Thus we must understand
the action of the involutions Wq where q|N . It seems that the eigenvalues of Wn depend quite
subtly on the arithmetic properties of the quadratic forms associated with the theta series.

We give a full analysis of the case D = 76 = 2219 and we let the reader wallow in the agony
with us.

There are 3 strong equivalence classes of quadratic forms with discriminant 76. Namely

A1 =

 2 0

0 38

 A2 =

 4 2

2 20

 A3 =

 8 2

2 10

 .

Note that A1 and A3 have level 76 while A2 has level 38 (i.e., A2 corresponds to an imprimitive
form). The order having discriminant 2219 is O = 〈1,

√
−19〉 in Q(

√
−19). As there are two

weak equivalence classes of matrices which are strongly equivalent to A3 we see that the order
O has class number 3.

Define the theta series θj(τ) := θQj (τ), where Qj is the quadratic form associated with the
matrix Aj . For all γ ∈ Γ0(76) we have

θj(τ) |γ = χ(d)θj(τ), (5.11)

where χ(d) =
(
−76
p

)
for any prime p ≡ d (mod N). It is an important point that the character

here depends on the discriminant and not the level. Therefore the theta series using A2 will
have the same character as the theta series associated to A1 and A3. On the other hand, we
cannot include the theta series associated to 1

2A2 (which has level 38), as it will have a different
character.

We now study the behaviour of these the Atkin-Lehner involution W19. Note that, in
general, the theta series we consider will not be eigenforms with respect to Wn. This is not a
problem for the application, because the hemi-canonical map is a map into projective space,
therefore all that is required is that θ(τ)|Wn = µ(τ)θ(τ) where µ(τ) is the same for all the theta
series under consideration. It is usual to call µ(τ) the multiplier. We stress that the multiplier
need not be a constant, it may be a complicated function of τ . The issue is to know, for which
Wn, all the theta series of a given discriminant have the same multiplier with respect to Wn.
If this occurs then the hemi-canonical map will factor through the quotient.

The rest of this section is dedicated to proving that θj(τ)|W19 = −iθj(τ) for j = 1, 2, 3. In
this case the theta series are actually eigenforms. The arguments in this section are elementary
but detailed. It is necessary to handle the case θ2 separately from the other two cases.

We first analyse θ2(τ)|W19. On Γ0(38), the involution W19 may be chosen to be

W19 =

 19 −10

38 −19

 ∈ GL2(Q).
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Writing ω = 38τ − 19, we have

θ2(τ)|W19 =
√

19ω−1θ2

(
19τ − 10

ω

)
=
√

19ω−1θ2

(
1
2

(
1− 1

ω

))
=
√

19ω−1
∑
n∈Z2

exp (2πiQ2(n)/2) exp (−2πiQ2(n)/2ω) .

Now observe that Q2(n) ≡ 0(mod 2) and so the first exp term is identically 1. Apply equation
(5.7) (equivalently (5.9) with P = 1) by substituting −1/2ω for τ and setting x = 0. The
previous expression becomes

=
√

19ω−1i(−2ω)D−1/2
∑
n∈Z2

exp
(
πintA−1

2 n2ω
)

(5.12)

where D = 76. We now use the fact that 2ω = D
(
τ − 1

2

)
and that DA−1

2 gives the same
quadratic form (by swapping n1 and n2) as A2. Thus equation (5.12) becomes

−i
∑
n∈Z2

exp
(

2πiQ2(n)
(
τ − 1

2

))
= −iθ2(τ).

So we have shown that θ2(τ)|W19 = −iθ2(τ).
Now consider the level 76 forms θ1 and θ3. We repeat a similar argument but in this case

we collect some functions of period 2 along the way. We handle both cases together until the
last step, when the difference between the quadratic forms becomes important.

For level 76 a choice of W19 is

W19 =

 19 −5

76 −19

 .

Writing ω = 76τ − 19 we find, as before,

θ(τ)|W19 =
√

19ω−1θ

(
1
4

(
1− 1

ω

))
=
√

19ω−1
∑
n∈Z2

exp (2πiQ(n)/4) exp (−2πiQ(n)/4ω) .

(5.13)
Observe that exp (2πiQ(n)/4) is a function of period P = 2 which depends on the behaviour of
Q(n). We will simply call this ψ(n) and return to it later. Also observe that 4ω = Dω′ where
ω′ = 4τ − 1.

As in the level 38 example we must now apply a transformation formula. In this case we
need (5.9) as we are dealing with functions of period P . Again we substitute −1/4ω for τ in
(5.9) and set x = 0. We find that equation (5.13) becomes

= −2i
∑
n∈Z2

1
4

∑
s

ψ(s)exp
(
2πints/2

) exp
(
πintA−1n4ω/4

)
. (5.14)

Now use the fact that 4ω = Dω′ and that DA−1 is equivalent to A. But we must be careful,
because in the equivalence of DA−1 and A we switch the components of n. Therefore we change
the first exp term within the square brackets. We write X for the obvious equivalence matrix
and write m = Xn (so, equivalently, n = Xm).

Equation (5.14) therefore becomes

= −2i
∑
m∈Z2

1
4

∑
s

ψ(s)exp
(
2πi(Xm)ts/2

) exp(2πiQ(m)(4τ − 1)/4). (5.15)
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In order to show that these theta series have eigenvalue −i with respect to W19 it will therefore
suffice to show that

1
2

∑
s

ψ(s)exp
(
2πi(Xm)ts/2

) exp(−2πiQ(m)/4) = 1 (5.16)

for each m ∈ Z/2Z.
At this stage it is necessary to treat the two cases differently. For θ1(τ) we note that

Q(x, y) = x2 + 19y2. We see that Q(0, 0) = 0, Q(1, 0) ≡ 1(mod 4), Q(0, 1) ≡ −1(mod 4) and
finally that Q(1, 1) ≡ 0(mod 4). Recall that ψ(u, v) =exp(2πiQ(u, v)/4). Therefore, if we write
m = (x, y)t, the term∑

s

ψ(s)exp
(
2πi(Xm)ts/2

)
=
(
1 + i(−1)y − i(−1)x + (−1)x+y

)
. (5.17)

Now we may try the four possibilities for m in (5.17) and we see that the result follows.
Finally, consider the case of θ3(τ). Here Q(x, y) = 4x2 + 2xy + 5y2. We find that the

analogous equation to (5.17) is(
1 + (−1)y + i(−1)x − i(−1)x+y

)
.

Again, by trying the four possibilities for m ∈ Z2/2Z2 the result follows.
Note that θ1(τ) and θ3(τ) have the same behaviour underWN = WD. With θ2, sinceN 6= D,

one cannot analyse θ2(τ)|WN in such a direct manner. Instead, write W =

 0 −1

76 0

 and

note that

W38 = Wγ where γ =

 1/2 0

0 1

 .

Therefore θ2(τ)|W38 = θ2(τ)|W |γ = −i√
2
θ2(τ/2), and this is seen to be not equal to iθ2(τ)

by considering the q-expansions. Hence the theta series do not all behave the same under
WN . This therefore tells us that they do not all have the same eigenvalues under W2 (since
W2 = WNW19). In fact, as we will see later, these three forms give an equation for X0(76)/W19.

As one can see, the process of understanding the Atkin-Lehner involutions on theta series
comes down to the arithmetic of the quadratic forms themselves. In general one finds that
different theta series of discriminant D tend to have the same behaviour with respect to Wp

(where pα‖D) only when D/pα is small (e.g., 2, 3, 4). We conclude that general formulae
for the behaviour in this situation will be complicated to write down. In the applications, we
are usually more interested in finding equations for X0(N) or X+

0 (N) where N is not highly
composite, so the complexities discussed in this section do not tend to arise. Hence we spare
the reader and leave this topic behind.

5.7 The Hemi-Canonical Map

We now emulate the theory of the canonical embedding and that of the projective embeddings
of Mumford and Igusa, using the theta series introduced in earlier sections.

Suppose we are interested in obtaining a projective equation for the modular curve X0(N),
where N ≡ 0,−1(mod 4). We have seen that there are theta series, which are modular forms of
weight 1 and level N , coming from integral binary quadratic forms of discriminant N . Suppose
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there are at least 3 such theta series, and write them as {θ1, . . . , θn}. We may then define the
map

φ : X0(N) → Pn−1

τ 7→ [θ1(τ) : · · · : θn(τ)].
(5.18)

We will call this the hemi-canonical map (the name was chosen by Bryan Birch). That
the map does not depend on which representative, in the Γ0(N)-orbit, of τ follows from the
modularity of the θ(τ) combined with the fact that they all have the same character.

Obviously this map is not defined if all the θj vanish identically at a point. However, as
long as this only occurs at finitely many points, we still get a rational map of curves and this
is good enough for our purposes.

The more important problem is to understand when this map is an injection. Certainly, as
we have seen, all the theta series behave the same under WD. Thus (when all the theta series
have N = D) the hemi-canonical map factors through X0(N)/WN .

Note that the image corresponds, as in the case of the canonical map, to the curve defined
by some polynomials Φ. These polynomials are found by considering relations between the θj
which give the zero modular form. Such relations may be found using linear algebra on the
q-expansions in the same manner as that used in Chapters 3 and 4.

Also note that theta series naturally have small q-expansion coefficients, and indeed their
coefficients are quite sparse (meaning that zero appears quite often). This makes us optimistic
that theta series could yield projective equations for modular curves which have quite small
coefficients.

5.8 Examples

In this section we give some detailed examples of the hemi-canonical map. We analyse the
projective curves obtained as the image of this map. This gives both a demonstration of the
method in action and also an illustration of some of the difficulties inherent in this method.

5.8.1 Level 103

We find a total of three quadratic forms of determinant 103. They come from the matrices 2 1

1 52

 ,

 4 1

1 26

 and

 8 3

3 14

 .

Notice that for each of these we have N = D = 103.
Write x, y and z for the theta series corresponding to these three quadratic forms. These

theta series satisfy the relation

2x4 + x3y − 5x3z − 3x2y2 − 3x2yz + 10x2z2 − 2xy3

+6xy2z + xyz2 − 9xz3 + 6y3z − 15y2z2 + 5yz3 + 6z4 = 0.

This curve has only one singularity, and it is at [1 : −2 : −1]. We set y = u− 2x, z = v− x and
then make the curve affine by setting v = 1. This results in a curve in A2 which has a singular
point at infinity. The form of this curve is

p2(u)x2 + p3(u)x+ p′3(u) = 0
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where pj(u) represents a polynomial of degree j in u. Multiplying by p2(u) and then making
the (birational) change of variable w = p2(u)x, gives the obvious hyperelliptic genus 2 curve

w2 + p3(u)w = −p2(u)p′3(u).

Explicitly this is

w2 + (−8u3 + 46u− 43)w = −144u5 + 732u4 − 1296u3 + 781u2 + 167u− 246.

This equation is a model for the genus 2 curve X+
0 (103).

5.8.2 Level 76

As we have seen in Section 5.6, there are 3 quadratic forms of discriminant 76 = 2219, namely

A1 =

 2 0

0 38

 A2 =

 4 2

2 20

 A3 =

 8 2

2 10

 .

Set, as before, Qj(n) = 1
2nAjn

t and θj(τ) = θQj (τ). We find (using linear algebra on the
q-expansions) the following relation between the three theta series.

−3θ51 + 13θ41θ2 − 24θ31θ
2
2 + 22θ21θ

3
2 − 9θ1θ42 + θ52 + 10θ31θ

2
3 − 20θ21θ2θ

2
3 + 18θ1θ22θ

2
3 − 8θ1θ43 = 0

This gives a projective curve with one singularity at the point [1:1:0].
If we take functions x(τ) = θ2(τ)/θ1(τ) and y = θ3(τ)/θ1(τ) we see that they satisfy the

relation
(x− 1)2(x3 − 7x2 + 7x− 3) = 2y2(4y2 − 9x2 + 10x− 5).

We know that x and y are modular functions on Γ0(76) and that they are both preserved under
W19.

By the birational change of variables t := y/(x − 1) we may remove the singularity at
(x, y) = (1, 0) and obtain the non-singular equation

C : x3 − 7x2 + 7x− 3 = t2(8(x− 1)2t2 − 2(9x2 − 10x+ 5)).

The map (x, t) 7→ (x, v) (where v = t2) therefore makes C a double covering of the curve
D : x3 − 7x2 + 7x− 3 = v(8(x− 1)2v − 2(9x2 − 10x+ 5)). This cover is ramified over 4 points.
The curve D can be shown to be elliptic by the birational change of variables w = 8x, u =
8(v − 9x2 + 10x− 5)/(x+ 1) which yields

E : u2 = w3 − 7w2 + 16w + 64.

This is an elliptic curve with j-invariant −1/2519 and we see from Cremona’s tables [8] that it
has conductor 38.

The Riemann-Hurwitz formula therefore shows that the genus of C is 3. The curve X0(76)
is expected to split into curves of genus 1,3,2,2 (these are the ++,+−,−+,−− parts under the
involutions W2 and W19). We expect our curve C to be a subvariety of X0(76)/W19. Since
both curves have genus 3 we conclude that we have found a model for X0(76)/W19 using the
hemi-canonical map.

5.9 Discussion

Because the coefficients of the theta series we are considering are both small and sparse, we
had high hopes that the hemi-canonical map would give good projective models for X0(N).



CHAPTER 5. THE HEMI-CANONICAL MAP 59

Indeed, the coefficients of theta series may be rigorously bounded and it was hoped that such
bounds could be used to obtain a bound on the size of coefficients in models for X0(N).

Unfortunately these hopes were doomed to disappointment. The hemi-canonical map seems
to be much less successful than the canonical map.

One of the main problems with the hemi-canonical map is that the number of theta series is
related to the class number of Q(

√
D). Admittedly, the image of the canonical embedding sits

in space of dimension g − 1. Nevertheless, the class number seems to grow much faster than
the genus. In these cases the image of the hemi-canonical map is described by the intersection
of a large number of equations. This is sometimes not a very useful form.

Often there are not enough theta series to even get started. In these cases it may be fruitful
to generalise the definition of theta series (for instance, by using suitable functions of period 2).
In this way we obtain more forms, but the drawback is that these forms tend to be of higher
level (e.g., 4N).

Finally, even when we are lucky enough to get a sensible number of theta series to start
with, the equation relating them tends to be singular. This is not necessarily a major drawback,
though it does mean that the equation is not as simple as it could be.

The root of the trouble is that there is very little control over the degree of the image of
the hemi-canonical map, or the dimension of the projective space it lies in. In the case of the
canonical embedding, since the weight 2 cusp forms correspond to well-understood geometric
objects (the holomorphic differentials), we knew we would obtain a canonical curve of degree
2g − 2 in Pg−1. In the case of the hemi-canonical map, there doesn’t seem to be any concrete
link between the theta series and an easily understood geometric object. Correspondingly, it
is less easy to understand the geometry of the equations which arise. The dimension of the
projective space comes from the weak class number which can be understood from an arithmetic
viewpoint. However, one cannot predict the degree of the image curve.

Our original motivation for using theta series was that they have small q-expansion coeffi-
cients and so it was hoped they would give models with small coefficients. In this respect the
method has some value as the coefficients arising are quite nice. On the other hand one does
not obtain strikingly small coefficients (as we sometimes did with the canonical embedding).

5.10 Tables of Results

We list the results of some computations of equations using theta series. We only give equations
for curves having genus at least one (except for X+

0 (71), which is included because its coefficients
are nice). Since theta series tend to all have the same eigenvalues under Wn it follows that many
of the curves found do actually have small genus. The variables correspond (in alphabetical
order) to the given ordering of the matrices.
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Table 5. The Image of the Hemi-canonical Map

X0(44)/W44

 2 0

0 22


 4 2

2 12


 6 2

2 8


g = 1 x3 − 2xy2 − x2z + xz2 + z3 = 0

X0(63)/W63

 2 1

1 32


 4 1

1 16


 8 1

1 8


g = 1 2x4 − x3y − 2x2y2 + y4 − 5x3z + x2yz + 2xy2z

+7x2z2 + xyz2 − 2y2z2 − 5xz3 − yz3 + 2z4 = 0

Singular at [x : y : z] = [1 : 1 : 1] and [1 : −1 : 1]

X0(68)/W68

 2 0

0 34


 4 2

2 18


 6 2

2 12


g = 2 x2y2 − xy3 + x2z2 − 3xyz2 + 2z4 = 0

Singular at [x : y : z] = [1 : 0 : 0]

X+
0 (71)

 2 1

1 36


 4 1

1 18


 6 1

1 12


 8 3

3 10


g = 0 w2 − wx− xy + y2 − wz + yz = 0

wx− x2 − y2 − wz + xz + z2 = 0

wx− wy − xy − y2 + 2yz = 0

X0(75)/W75

 2 1

1 38


 6 3

3 14


 10 5

5 10


g = 1 2x4 − 7x3y + 7x2y2 − 7xy3 + 2y4 + x3z + x2yz − xy2z − y3z

−2x2z2 + 6xyz2 − 2y2z2 + z4 = 0

Singular at [1:-1:z] where z2 = 5.

X+
0 (79)

 2 1

1 40


 4 1

1 20


 8 3

3 10


g = 1 x3 − 2xy2 + y3 − x2z + 2xyz − 3y2z − xz2 + yz2 + 2z3 = 0
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X0(84)/W84

 2 0

0 42


 6 0

0 14


 4 2

2 22


 10 4

4 10


g = 4 w3 + wx2 − 2wy2 − w2z + x2z = 0

w2x+ x3 − w2y + x2y − 2xz2 = 0

w2xy − x2y2 − xy3 − wx2z − w2z2 + 2y2z2 + wz3 = 0

−w2xy + w2y2 − xy3 + wx2z − 4wxyz + 2wy2z

+x2z2 − 2xyz2 + 2y2z2 + wz3 = 0

Singular model which is not a complete intersection.

X0(92)/W23

 2 0

0 26


 4 2

2 24


 8 2

2 12


g = 1 2x3 − 2xy2 − y3 − 4x2z + 3y2z + 4xz2 − 3yz2 + z3 = 0

X0(99)/W99

 2 1

1 50


 10 1

1 10


 6 3

3 18


g = 3 x5 − x4y + x3y2 + x2y3 − xy4 + y5 − 2x4z − 2x2y2z

−2y4z + x3z2 + 5x2yz2 + 5xy2z2 + y3z2 − 2x2z3 − 8xyz3

−2y2z3 + xz4 + yz4 + 2z5 = 0

Singular at [1:1:1] and [1:(1±
√
−3)/2:0]

X0(100)/〈W2,W5〉

 2 0

0 50


 10 0

0 10


 4 2

2 26


g = 1 x3 − 3x2y + xy2 + y3 + 2x2z + 2xyz − 4xz2 = 0
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X+
0 (103)

 2 1

1 52


 4 1

1 26


 8 3

3 14


g = 2 2x4 + x3y − 5x3z − 3x2y2 − 3x2yz + 10x2z2 − 2xy3 + 6xy2z + xyz2 − 9xz3

+6y3z − 15y2z2 + 5yz3 + 6z4 = 0

Singular at [−1:2:1]

X+
0 (127)

 2 1

1 64


 4 1

1 32


 8 1

1 16


g = 3 4x5 + 4x4y − 20x4z − 5x3y2 − 24x3yz + 45x3z2 − 5x2y3 + 10x2y2z

+53x2yz2 − 58x2z3 + xy4 + 18xy3z − 7xy2z2 − 58xyz3 + 42xz4 + 2y5 + y4z

−13y3z2 + 2y2z3 + 23yz4 − 15z5 = 0

Singular at [−1:4:2] and [1:−1:1]

X+
0 (131)

 2 1

1 66


 6 1

1 22


 10 3

3 14


g = 1 x3 − x2y + xy2 − 2y3 − 2x2z − y2z + 2xz2 + 3yz2 − z3 = 0

X+
0 (151)

 2 1

1 72


 4 1

1 38


 8 3

3 20


g = 3 −x6 − 6x5y + 10x5z − 4x4y2 + 44x4yz − 41x4z2 + 13x3y3 − 3x3y2z

−113x3yz2 + 95x3z3 + 12x2y4 − 87x2y3z + 81x2y2z2 + 135x2yz3

−136x2z4 − 8xy5 − 4xy4z + 123xy3z2 − 149xy2z3 − 73xyz4 + 115xz5

−8y6 + 48y5z − 64z2y4 − 49z3y3 + 115z4y2 + 5yz5 − 50z6 = 0

Must have many singularities
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X+
0 (179)

 2 1

1 90


 6 1

1 30


 10 1

1 18


g = 3 x5 − x4y + 2x3y2 − x2y3 + xy4 + 2y5 − 4x3yz − x2y2z − 8xy3z

−7y4z + 3x2yz2 + 4xy2z2 + 5y3z2 + x2z3 + 4xyz3 − y2z3 = 0

Singular at [0:0:1] and [−1:1:1]

X0(188)/〈W2,W47〉

 2 0

0 94


 6 2

2 32


 14 6

6 16


g = 1 −x3y2 − x3z2 + 2x2y3 − 2x2y2z + 4x2yz2 + 2x2z3 − 2xy4 + 4xy3z

−3xy2z2 − 4xyz3 − xz4 + 2y5 = 0

Singular at [1:0:0], [1:0:1] and [1:1:−1]

X+
0 (223)

 2 1

1 112


 4 1

1 56


 8 1

1 28


 14 1

1 16


g = 6 w4 + 2w3x+ 2w2x2 + wx3 − 2x4 − 2w3y − 7w2xy − 5wx2y + 2w2y2

+7wxy2 + 6x2y2 − wy3 − 4xy3 − w3z − 3w2xz − 5wx2z + 5x3z + 4w2yz

+wxyz − x2yz − 6wy2z − 7xy2z + 5y3z + w2z2 + 9wxz2 − 3x2z2 + 3wyz2

−4y2z2 − 3wz3 + 3yz3 + 2z4 = 0

And three more equations like this first one !

X+
0 (251)

 2 1

1 126


 6 1

1 42


 14 1

1 18


 10 3

3 26


g = 4 w2x− wx2 − w2y + x2y + wy2 + xy2 − 2xz2 = 0

w3 − w2x+ 2wx2 − x3 − 2wxy + x2y + 3wy2 − 2xy2 − 2y3 − 2w2z

−2x2z + 3y2z + 2xz2 − yz2 + z3 = 0

Note that this is an intersection of two cubics, rather than an

intersection of a cubic and a quadric, therefore it must be singular.

We should make a few comments about how to check that the equations are what they
claim to be.

In almost all cases N = D and therefore the theta series all behave the same under WN .
There is the possibility that the theta series could have the same behaviour under other invo-
lutions Wn. Also one cannot rule out the chance that there are other ways for injectivity of the
hemi-canonical map to fail. Thus we expect the equations to describe some quotient of X0(N)
and usually this will be contained in X0(N)/WN .

By the Hurwitz formula, for genus at least 2, taking quotients reduces the genus. Thus we
have been able to check the correctness of our claims by calculating the genus of each of the
curves listed. The Plücker formulae given in Griffiths and Harris [17] are useful for this task.
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We briefly discuss the calculation for X0(84)/W84, as it is the hardest case included in the
tables.

The second equation listed allows us to solve birationally for y, and thus obtain the plane
curve

w6 − 3w4x2 + 8w2x2z2 + 8wx2z3 − 5w2x4 − 8wx4z − x6. (5.19)

This is singular at [1:1:−1], [−1:1:1] and [0:0:1]. The first two singularities are double points
or cusps. The third singularity has multiplicity 3. We will show that it may be removed by
blowing-up twice.

To blow-up [0:0:1] first set z = 1 to make the equation affine, with a singularity of multiplicity
3 at (0, 0). Then set x = λw and divide by w3 to get the equation

−w3λ6 − 5w3λ4 − 8w2λ4 − 3w3λ2 + 8wλ2 + 8λ2 + w3.

The singularity at (0, 0) now has multiplicity one. Blowing up again by setting λ = µw and
dividing by w2 gives an equation which is non-singular at (0, 0).

Therefore the genus of the singular plane curve (5.19) is given by

(6− 1)(6− 2)
2

− 3(3− 1)
2

− 1− 1− 1 = 4.

as expected.



Chapter 6

Heights of Modular Curves

In earlier chapters we have given explicit equations for projective embeddings of modular curves.
Some of these equations have very small coefficients. The theory of heights is a way to study
coefficient size in a precise mathematical manner. In this chapter we discuss the relationships
between different notions of height of (rather than “on”) curves. We are looking for clues which
would enable us to show why modular curves seem to have a model with small coefficients. Also
it would be interesting to know if our models with small coefficients can give any information
about the heights of abelian varieties such as J0(N).

We will show how these heights relate to some conjectures in number theory. We discuss
some problems which could be considered as steps towards the proof of these conjectures. Using
the examples of previous chapters and by examining some of the heights in detail we illustrate
the subtlety and difficulty of some of these problems. It is hoped that this chapter has value
as a companion to the more theoretical literature on this topic.

This chapter is more speculative and concerns deeper theories than the rest of the thesis.
Correspondingly we will be more terse with the description and details. The first section
contains a brief summary of some of the motivating ideas and tools.

6.1 Heights and Arakelov Theory

The guiding star in this chapter, upon which the reader’s eyes should be fixed, is the classical
logarithmic height of a point in projective space over a number field. For a point P ∈ PN (K)
fix a representative (P0, . . . , PN ) ∈ KN+1. For all finite places ν of K set nν = 1 and define
‖P‖ν =max{|Pj |ν}, where |.|ν denotes the usual (normalised) ν-adic absolute value. For each

infinite place ν of K define ‖P‖ν =
(∑

j |Pj |2ν
)1/2

and set nν = 1 if ν is a real place, or nν = 2
if ν is complex. Then the logarithmic height of P is defined to be

h(P ) =
1

[K : Q]

∑
ν

nν log‖P‖ν .

A key point is that this notion of height does not depend on the particular representative of P
chosen in KN+1. The reason for this is the well-known product formula.

Generalisations of the classical height have many applications. For instance the analysis of
the heights of rational points on elliptic curves is a major ingredient of the proof of the Mordell-
Weil theorem. A computational analysis of the heights may be used to actually compute
generators of the Mordell-Weil group.

The classical height associates a real number to a point in some space. In this chapter we
are more interested in heights which associate a real number to some geometric object (for
instance a curve or an abelian variety).

65
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It was observed that the classical height on projective space may be interpreted in the
language of Arakelov Theory (this interpretation is described in Faltings and Wüstholz [11]
II.1). Arakelov Theory is also a useful language for the construction of heights on other objects.
We aim to keep the description as simple as possible and so we refer to [39], [40] for details on
Arakelov theory in general.

In the Arakelovian approach, one of the basic objects is the metrized line bundle. It will be
necessary to mention such objects in a few places in this Chapter, so we give some discussion
about them here. A good reference for this theory is Silverman [37]. Let X be a variety defined
over a field K. We will think of X as a scheme over Spec K, with sheaf of functions OX . Let
L be a line bundle on X. For each point P of X, the stalk LP is an OP -module. Since X is
a scheme over Spec(K), the stalk OP is a K-algebra. Therefore, LP is a K-vector space. For
each infinite place ν of K one may consider the Kν-vector space LP ⊗ Kν , where Kν is the
completion of K with respect to the valuation ν. We call L a metrized line bundle if there
are metrics on each LP ⊗Kν , which are chosen so that they “vary continuously” over P in X

(see Silverman [37]).

6.2 Heights of Abelian Varieties

One of the ideas introduced by Faltings (see, for instance, [11] or [12]) in order to prove the
Mordell conjecture is the notion of a height of an abelian variety. This is a number associated
to an abelian variety which measures, in some sense, its arithmetic complexity. Suppose A is
an abelian variety defined over a number field K. Let A be the connected component of zero in
the Néron Model of A over Spec(OK). The canonical bundle ωA/OK may be given the structure
of a metrized line bundle (i.e., we give a canonical Hermitian metric on the bundle over each
infinite place, see Silverman [37] and [38] for details). The height of the abelian variety A is
defined to be

h(A) =
1

[K : Q]
deg

(
ωA/OK

)
where deg denotes the usual degree function (see Silverman [37]) for a metrized line bundle
over Spec(OK).

LetMg be the moduli space of principally polarised abelian varieties of dimension g. Assume
we have some projective embedding of Mg. The height of such an abelian variety A is closely
related to the height of the point P ∈Mg which corresponds to A.

Information about heights of abelian varieties gives vast amounts of arithmetic information.
The following few sections will start to describe some of the theory necessary to provide a
theory of heights of projective varieties.

6.3 Heights of Polynomials

Heights also arise in the theory of transcendental numbers. Working in this area Philippon [31]
(following Mahler and others) introduced the height of a polynomial. The height is defined to
be a sum of local terms, in the same way as the classical height on projective space.

Suppose P (x) is a polynomial in K[x0, . . . , xN ] (where K is a number field). Let ν be a
finite place of K. The local component, at ν, of the height of the polynomial P is defined to be

Mν(P ) := log max{|PJ |ν} (6.1)

where PJ runs through all the coefficients of the polynomial P .
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For an infinite place ν of K we define a “local height” using the Mahler measure. The
classical Mahler measure of a polynomial P is

M(P ) =
∫ 1

0

. . .

∫ 1

0

log |P (exp(2πiu0), . . . , exp(2πiuN ))| du0 . . . duN .

We will use the following variation of the Mahler measure (see Soulé [39] or [3]). For homoge-
neous polynomials in N + 1 variables, define a set S = {z ∈ CN+1 |

∑N
i=0 |zi|2 = 1}. This is

a sphere in CN+1. Let dµ be the unique U(N + 1)-invariant probability measure on S. Each
infinite place, ν, corresponds to a pair of conjugate embeddings K

σν
↪→ C. The absolute value

|α|ν on K, associated to ν, is |σν(α)|, where |.| is the usual absolute value on C. Therefore,
for an infinite place ν of K, fix a corresponding embedding σ : K ↪→ C and then consider
the polynomial σP (z) as a polynomial with coefficients in C. Define the local height of the
polynomial P at the infinite place ν to be

Mν(P ) :=
∫

S
log|σP (z)|dµ. (6.2)

Some authors discuss the Fubini-Study metric on PN (C) but the definition we have given
is less complicated and is sufficient for what we need.

To combine these local heights (6.1) and (6.2) into a height of a polynomial we set, as before,
nν = 1 for finite or real places, and nν = 2 for complex places. The height of the polynomial
P is defined to be

h(P ) =
1

[K : Q ]

∑
ν

nνMν(P ).

By the product formula we see that h(λP ) = h(P ) for any λ ∈ K×.

6.4 The Chow Form

To define the height of a projective variety we will need to associate a particular polynomial to
the variety. There is a standard method in algebraic geometry which associates a hypersurface
to a variety. The idea (see for instance Harris [19], Lecture 21) is to give a parameterised
collection of hyperplanes such that their intersection describes the variety.

To be precise, let X be a variety of degree d and dimension k in PN . A hyperplane Uj ⊂ PN

may be identified with an element of PN (i.e., the equation of Uj is u0,jx0 + · · ·+uN,jxN so we
identify Uj with [u0,j : · · · : uN,j ]). Consider the set Γ = {(p, U1, . . . , Uk+1) | p ∈ X, p ∈ Uj∀j}.
This set projects, in the obvious manner, to the set of all hyperplanes whose intersection meets
X. Indeed (see Harris [19]) it is possible to map Γ birationally to PN × . . .× PN (k + 1 times)
and a dimensions argument shows that the variety obtained is a hypersurface (i.e., it is defined
by a single polynomial). Any such choice of polynomial is called a Chow form (or Chow point)
of the variety X. Note that the Chow form is unique, up to a scalar multiple, once a choice of
embedding of X in PN is given. The Chow form is multihomogeneous of degree (d, . . . , d) in
the k + 1 sets uj of N + 1 variables uj = {u0,j , . . . , uN,j}.

A slightly more concrete description of the Chow form, in the case where X is an irreducible
curve, is given in Philippon [31] (he calls the Chow form a “forme éliminante” in this case).
Suppose the dimension k variety, X, is given by the zero locus of a C[x]-ideal I. Let u be the set
of variables ui,j where 0 ≤ i ≤ N and 1 ≤ j ≤ k+1. Write, as before, Uj = u0,jx0+. . .+uN,jxN .
Now define the C[u]-ideal

C(I) = {f ∈ C[u] | f.(x0, . . . , xN )m ⊆ (I, U1, . . . , Uk+1) for some m} .

Note here that the ideal (I, U1, . . . , Uk+1) is a C[x, u]-ideal. The ideal C(I) can be shown to be
principal. Any generator of it is a Chow form.
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Let us come down to earth and consider the case of a curve X ⊂ P2 described by a single
polynomial g(x0, x1, x2). Here k = 1 so we have U1 = u0,1x0 +u1,1x1 +u2,1u2 and similarly for
U2. We have the following relations

v1 := u2,2U1 − u2,1U2 = (u2,2u0,1 − u0,2u2,1)x0 + (u2,2u1,1 − u1,2u2,1)x1

v2 := u1,2U1 − u1,1U2 = (u1,2u0,1 − u1,1u0,2)x0 + (u1,2u2,1 − u1,1u2,2)x2.

(6.3)

Thus it is possible to “replace” all occurrences of the variables x1 and x2 in g by x0, while all
the time working in the ideal (g, U1, . . . , Uk+1).

We give an example. Let X = X0(64), so that g(x0, x1, x2) = x4
0 + 6x2

0x
2
1 + x4

1 − 8x4
2. To

remove the term x4
2, for instance, we use the second relation in (6.3). It is clear that

(u1,2u2,1 − u1,1u2,2)4g(x0, x1, x2) + 8v4
2

will have no x4
2 terms. Note that we have added terms such as x0x

3
2 in the process, but these

have lower degree in x2. Thus the process may be repeated until only x0 remains (and it
will necessarily have degree 4). The calculation is quite horrible. The following combination
eliminates all x1 and x2.

g(x0, x1, x2)(u1,1u2,2 − u1,2u2,1)4 + 8v4
2 − v4

1 − 32x0v
3
2(u1,2u0,1 − u0,2u1,1)

−4x0v
3
1(u0,2u2,1 − u2,2u0,1) + 48x2

0v
2
2(u0,1u1,2 − u0,2u1,1)2

−6x2
0v

2
1((u2,2u0,1 − u0,2u2,1)2 + (u1,1u2,2 − u2,1u1,2)2)− 32x3

0v2(u1,2u0,1 − u0,2u1,1)3

+4x3
0v1((u2,2u0,1 − u2,1u0,2)3 + 3(u2,2u0,1 − u2,1u0,2)(u1,1u2,2 − u1,2u2,1)2)

The result of this is x4
0 multiplied by the polynomial f [u] ∈ C[u] which has multihomogeneous

degree (4, 4).

f [u] = u4
2,2u

4
0,1 − 8u4

1,2u
4
0,1 + 32u3

1,2u0,2u1,1u
3
0,1 − 4u3

2,2u0,2u2,1u
3
0,1

−48u2
1,2u

2
0,2u

2
1,1u

2
0,1 + 6u4

2,2u
2
1,1u

2
0,1 − 12u3

2,2u1,2u2,1u1,1u
2
0,1 + 6u2

2,2u
2
0,2u

2
2,1u

2
0,1

+6u2
2,2u

2
1,2u

2
2,1u

2
0,1 + 32u1,2u

3
0,2u

3
1,1u0,1 − 12u3

2,2u0,2u2,1u
2
1,1u0,1

+24u2
2,2u1,2u0,2u

2
2,1u1,1u0,1 − 4u2,2u

3
0,2u

3
2,1u0,1 − 12u2,2u

2
1,2u0,2u

3
2,1u0,1 − 8u4

0,2u
4
1,1

+u4
2,2u

4
1,1 − 4u3

2,2u1,2u2,1u
3
1,1 + 6u2

2,2u
2
0,2u

2
2,1u

2
1,1 + 6u2

2,2u
2
1,2u

2
2,1u

2
1,1

−12u2,2u1,2u
2
0,2u

3
2,1u1,1 − 4u2,2u

3
1,2u

3
2,1u1,1 + u4

0,2u
4
2,1 + 6u2

1,2u
2
0,2u

4
2,1 + u4

1,2u
4
2,1.

One important observation to make is that the coefficients of the Chow form f [u] are at
worst 4 or 6 times those of g(x0, x1, x2). The reason for this is given by the following lemma.

Lemma 11 Suppose X ⊂ P2 is a curve of degree 4 defined by g(x0, x1, x2). Let gp and fp be
the maximum of the p-adic norms of the coefficients of g and the Chow form f of g respectively.
Then f2 ≤ 4g2, f3 ≤ 3g3 and fp = gp for all primes p > 3.

Proof. The polynomial g may be written as∑
i+j+k=4

ai,j,kx
i
0x
j
1x
k
2

where i, j, k ≥ 0. To eliminate the variables x1 and x2, one uses the elements v1 and v2 (see
equation (6.3)) which lie in the ideal. Write these as v1 = αx0 +βx1 and v2 = γx0−βx2, where
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α = u2,2u0,1 − u0,2u2,1, β = u2,2u1,1 − u1,2u2,1 and γ = u1,2u0,1 − u0,2u1,1. The polynomial
β4g(x0, x1, x2) is equal (in the quotient ring C[x0, x1, x2, u]/(g, U1, . . . , Uk+1)) to∑

i+j+k=4

ai,j,kβ
i(−α)jγkx4

0. (6.4)

The term βiαjγk contains terms

uj1+k10,1 ui1+j12,2 uj2+k20,2 ui2+j22,1 ui2+k11,2 ui1+k21,1 (6.5)

where i = i1 + i2, j = j1 +j2 and k = k1 +k2. We want to know when there can be two different
sets of powers i1, i2, j1, j2, k1, k2 which give the same monomial in (6.5). Fix such a choice of
monomial and write it as ua0,1u

b
2,2u

c
0,2u

d
2,1u

e
1,2u

f
1,1 so that a = j1 + k1 etc. Suppose there two

different ways of obtaining this monomial in the form (6.5), and write the corresponding powers
as i1, . . . , k2 and i′1, . . . , k

′
2. It follows that j1 6= j′1 and j2 6= j′2 (and, indeed, all the other pairs

are non-equal too). It is easy to obtain the following relations (and more).

j1 = a− k1 i1 = b− a+ k1 j2 = c− k2

i2 = d− c+ k2 i1 = f − k2 i2 = e− k1.

From these relations one sees that, to get a non-unique solution to (6.5), one would need
1 ≤ a, b, c, d, e, f . Furthermore, it is clear that a+ b+ c+ d+ e+ f = 8. Suppose one of these
variables, say a, is at least 3. Then one of j1 and k1 is at least 2, and thus b or e is at least 2, but
this would give a sum larger than 8. Therefore, if a monomial arises in a non-unique way, then
1 ≤ a, b, c, d, e, f ≤ 2. From the above relations one may also deduce that i = i1 + i2 = b+e−a,
j = a+ d− e and k = a+ f − b. and, therefore, a monomial can arise in a non-unique way only
for a single choice of i, j and k.

When taking monomials of an arbitrary form using (6.4), the coefficients will grow from
taking powers. Since 0 ≤ i, j, k ≤ 4 the powers can introduce only extra factors of 2,3,4 or 6.
From the discussion in the first part of the proof, if there is non-uniqueness in the calculation
of the monomial then it only occurs within a particular choice of i, j, k, and the extra multiples
introduced by taking powers are at most 2. Therefore combining such terms does not change
the coefficients by more than a factor of 2 or 4. In particular, different ai,j,k do not get combined
by this process. Therefore the coefficients of the Chow form are simply multiples (by 1,2,3,4 or
6) of the coefficients of the original model. 2

This lemma may be viewed as a low-dimensional coincidence. For curves in Pn (where
n > 2), which are defined as intersections of higher dimensional varieties, then there will not,
in general, be such a strong correlation between the coefficients of the Chow form and those of
the original equations. This difficulty will become relevant in later sections when we try to use
the Philippon height as a framework for the analysis of the coefficient size of models for curves.

6.5 Heights of Projective Varieties

It is now possible to associate a height to a projective variety. The method discussed in this
section is to take the Philippon height of the Chow form of the variety. This was developed in
[31], though we follow the presentation in Soulé [39].

There is another method of defining a height on projective varieties which was introduced
by Faltings [12]. It is modelled on the definition of the degree of a projective variety. One of
the ways to compute the degree of a projective variety is to use intersection theory (see Fulton
[16] page 42). Faltings adapted this definition by using Arakelov intersection theory. We will
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not give details about the definition of the Faltings height. In the next section we will discuss
the relationship between these two different notions of height.

Let X be an irreducible variety of degree d and dimension n in PNK . Let F be the Chow
form of X. As we have seen this is a homogeneous polynomial of multidegree (d, . . . , d) in the
variables Uj = {u0,j . . . uN,j} where j = 1, . . . , n+ 1. Take S = {z ∈ CN+1|

∑
i |zi|2 = 1} with

measure dµ.
For the infinite places σ : K ↪→ C we consider∫

Sn+1
log|σF |dµ.

For the finite places ν we consider the maximum of the ν-adic norm of the coefficients of the
Chow form F .

Definition 12 The Philippon height of X is defined to be

hP (X) =
∑
ν-∞

log maxJ |FJ |ν +
∑

σ:K↪→C

∫
Sn+1

log|σF |dµ

where J indexes all the coefficients of the Chow form F of X.

From the statement of Lemma 11, and from the equations forX0(N) calculated in Chapter 3,
one can give bounds for the height of some of the curves X0(N) (and X0(N)/Wn). The accuracy
of these estimates depends mainly on the estimation of the integral (i.e., the component at the
infinite places). We have not explored the subject of estimating integrals in this chapter as
there is no obvious reason, at this stage, why estimates of h(X0(N)) for known curves would
be useful. Instead we concern ourselves with trying to link heights of projective varieties with
other parts of arithmetic geometry.

6.6 Comparing Heights

We have been very vague about the Faltings height of projective varieties. Philippon [31] and
Soulé [39] have been able to explicitly relate the Faltings height with the Philippon height.
Such a situation was already alluded to by Faltings in Corollary 2.12 of [11]. In this section we
write down the relation between these two heights. For the purposes of this thesis, one may as
well define the Faltings height to be the right hand side of equation (6.6) below.

The Philippon height is suitable for practical use as it has a very explicit description.
The Faltings height is a more theoretical notion, and it is useful as one may apply geometric
techniques to prove statements about it. An important intuition to keep in mind is that heights
of projective varieties behave in a similar way to degrees. This is quite clear from the definition
of the Faltings height of a projective variety.

Theorem 5 (See Soulé [39] Theorem 3). Let X ⊂ PNK be an irreducible variety of dimension
n and degree d. Then

hF (X) = hP (X) +
1
2

(n+ 1)

 N∑
j=1

1
j

 [K : Q]deg(X). (6.6)

We emphasise that, although both these heights are related by (6.6), they both also depend
on the choice of embedding of X in PN .

It would be very nice to have some relation between these heights and a more intrinsic height
associated to the curve X. In particular it would be very useful to have a relation between the
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height of the projective variety X and the height (as an abelian variety) of its Jacobian variety
Jac(X).

In the next section we will discuss the case of elliptic curves. We know that the Philippon
height hP (E) depends on the coefficients of the projective model for the curve E. In the next
section we will prove (Corollary 1) that, for a certain special class of elliptic curves E, the
height of Jac(E) ∼= E as an abelian variety depends only on the particular τ corresponding to
E. There does not seem to be an obvious connection between the size of τ and the size of the
coefficients of E. This leads us to suspect that a relation between hP (E) and h(E) may be
rather difficult to understand.

6.7 Computation of a Height for Elliptic Curves

The article of Silverman [38] gives a concrete illustration of the theory of heights of abelian
varieties by stating all the results in the context of elliptic curves. Our intention in this section
is to provide a companion discussion, this time giving an illustration for the theory of heights
of projective varieties.

In this section we will also specialise the discussion to the case where we are working over
K = Q. There is no real theoretical saving compared to working over a general number field
but this restriction will allow us to recognise some expressions more easily.

We begin by recapitulating some of the results about the height of an elliptic curve E when
it is considered as an abelian variety.

6.7.1 Elliptic Curves as Abelian Varieties

Silverman’s paper [38] gives an explicit analysis of the height of an elliptic curve E. The primary
result ([38] Proposition 1.1) is that, for an elliptic curve E/Q with minimal discriminant ∆E ,

h(E) =
1
12
[
log|∆E | − log

(
|∆(τ)|(Im τ)6

)]
(6.7)

where τ ∈ H is such that E ∼= Eτ and where ∆(τ) is the usual modular form of weight 12.
At first glance this supports the idea that the height depends on the coefficients of a small

model (i.e., the model having minimal discriminant ∆E). We have found a corollary to (6.7)
which demonstrates that the height of E actually depends more on the modular interpretation.

Corollary 1 Suppose E/Q has a mimimal integral model of the form E : y2 = x3 + Ax + B.
Suppose τ0 ∈ H is the specific τ which corresponds to this model for E (via the usual complex
analytic map from τ ∈ H to plane elliptic curves). Then

h(E) =
−1
2
log(Im τ0).

Proof. The formulae in Silverman [35] Section III.1.3 and Chapter VI show how E and τ are
related. The elliptic curve E is isomorphic to one of the form (2y)2 = 4x3 + 4Ax + 4B and it
is known that there is some τ0 ∈ H such that g2(τ0) = −4A, g3(τ0) = −4B where g2, g3 are
the usual modular forms (see Silverman [35] VI.3). It follows that ∆(τ0) = ∆E . Substituting
τ = τ0 in equation (6.7) gives

h(E) =
1
12
[
log|∆E | − log

(
|∆E |(Im τ0)6

)]
=

1
12
log

∣∣∣∣ ∆E

∆E(Im τ0)6

∣∣∣∣
and the result follows. 2
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Note that the hypothesis in this corollary (that the minimal model for E is of the simplest
form) is quite a restriction as it implies ∆E = −16(4A3 + 27B2) and, therefore, that E has bad
reduction at the prime 2.

Silverman gives several other approximations for h(E). He demonstrates the expected
relation, between the height of an abelian variety and the height of the corresponding point in
the moduli space, in the formula |h(j(E))− 12h(E)| ≤ 6log(1 + h(j(E))) +C where h(j(E)) is
the usual height of a rational number.

For modular elliptic curves, Proposition 3.1 of Silverman [38] gives the well-known relation
between the height of E and the degree of its modular parameterisation φ : X0(N)→ E. This
relation is

1
2
log deg(φ) = h(E) + log‖fE‖+ log|cE | (6.8)

where fE is the modular form associated to E, ‖fE‖ is its Petersson norm and where cE is the
Manin constant which is conjectured to be simply ±1. This formula has been used by Cremona
[9] to compute tables of the degrees of the modular parameterisations for a large number of
modular elliptic curves.

Cremona [9] gives a comprehensive table of results. A glance through his tables quickly
reveals the following pattern: If the model for E has large coefficients then the covering map
must have high degree. Note that the tables of Cremona use the convention of writing elliptic
curves as E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 where a1, a3 ∈ {0, 1} and a2 ∈ {0,±1}.
Indeed Silverman [38], Proposition 3.4 shows that, for each ε > 0, there is some constant Cε
such that

deg φ ≥ Cεmax{|c4|1/4, |c6|1/6}2−ε. (6.9)

Here c4 and c6 are the usual quantities associated to a model for the elliptic curve E. To be
precise, suppose E : y2 + a1yx+ a3y = x3 + a2x

2 + a4x+ a6. Then c4 = a4
1 + 8a2

1a2− 24a1a3 +
16a2

2−48a4 and c6 = −a6
1−12a4

1a2 + 36a3
1a3−48a2

1a
2
2 + 72a2

1a4 +144a1a2a3−64a3
2 + 288a2a4−

216a2
3 − 864a6. Note that when a1 = a2 = a3 = 0 these formulae collapse to c4 = −48a4 and

c6 = −864a6. Equation (6.9) clearly justifies the pattern observed in Cremona’s tables.
A relationship between the height of E and the degree of the modular parameterisation is

already conjectured in the “degree conjecture” (see Frey [14]). This conjecture is related to
the height conjecture and both conjectures imply the A-B-C conjecture (and thus Fermat’s
last theorem). We discuss the height conjecture (see Frey [14]) in more detail. In our case
(restricting to elliptic curves over Q) it becomes the following.

Height Conjecture. There are numbers c, d ∈ R such that, for all elliptic curves E/Q, one
has h(E) ≤ c+ dlog(NE) (here NE is the conductor of E).

This conjecture may also be generalised to abelian varieties of higher dimension. Frey goes
on to prove the result for elliptic curves over function fields.

6.7.2 Elliptic Curves as Projective Varieties

Suppose we have a model y2 = x3+ax+b for an elliptic curve E with coefficients in Z. Certainly
this may be viewed as a quasiprojective variety over Q.

In this section we estimate the Philippon height of E. Certainly the component of the
height at the finite places just depends on which primes divide a and b.

For the component of the height at the infinite places we consider the Chow form of the
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elliptic curve E. This may be calculated to be

−bu3
0,1u

3
1,2 + u3

0,1u
2
2,2u1,2 + 3bu2

0,1u1,1u0,2u
2
1,2 − u2

0,1u1,1u
2
2,2u0,2 − au2

0,1u1,1u2,2u
2
1,2

−2u2
0,1u1,2u2,1u2,2u0,2 + au2

0,1u2,1u
3
1,2 − 3bu0,1u

2
0,2u1,2u

2
1,1 + 2au0,1u

2
1,1u0,2u1,2u2,2

+2u0,1u
2
0,2u1,1u2,1u2,2 − 2au0,1u1,1u2,1u

2
1,2u0,2 + u0,1u

2
0,2u1,2u

2
2,1 + bu3

0,2u
3
1,1

−au2
0,2u

3
1,1u2,2 − u3

1,1u
3
2,2 + au2

1,1u1,2u
2
0,2u2,1 + 3u2

1,1u1,2u2,1u
2
2,2 − u3

0,2u1,1u
2
2,1

−3u1,1u
2
1,2u

2
2,1u2,2 + u3

1,2u
3
2,1.

(6.10)

From this we estimate the integral
∫

S2 log|F |dµ. Let M = max{|3b|, |2a|, |3|, |2|} and note
that there are 20 terms in the Chow form (6.10). For points u ∈ Sn+1 it is clear that all
|ui,j | ≤ 1. A very crude estimate of the integral is therefore

∫
S2 log|F |dµ ≤ log(20M).

For the finite places, the contribution to the height is

max{2, |2a|2, |b|2}+max{3, |a|3, |3b|3}+
∑
p>3

max{|a|p, |b|p}.

If a and b are integers such that ab 6= 0 then we obtain

hP (E) ≤ log(6|ab|) + log(20M) ≤ log
(
20(6ab)2

)
. (6.11)

One knows that NE |∆E and that ∆E = 4a3 + 27b2. In order to be able to apply the theory
of the Philippon height to the height conjecture there are two difficulties to be overcome. The
first, which we have already mentioned, would be to relate the height of E as a projective
variety to its height as an abelian variety. The second obstacle is to relate the coefficients
of the model for the elliptic curve to the conductor NE . This second problem is probably
insurmountable. Although the discriminant depends precisely on the coefficients of the elliptic
curve in an explicit way, the size of the discriminant cannot usually be inferred from the size
of the coefficients. For instance, the elliptic curve E : y2 + y = x3 − x2 − 7820x − 263580 has
level 11 and discriminant −11. Also, the level NE may differ from ∆E by a large amount. The
difference between the size of NE and the size of ∆E may at least be bounded by the conjecture
of Szpiro [42]. This conjecture (when restricted to the case of elliptic curves over Q) states the
following. For each ε > 0, there is some constant C such that, for all elliptic curves E/Q,

∆E ≤ C.N6+ε
E . (6.12)

It seems that the study of heights of elliptic curves as projective varieties is probably not a
suitable angle from which to attack the height conjecture for elliptic curves.

6.8 Rational Maps Between Varieties

In several places we have come across maps from the modular curve X0(N) to curves of smaller
genus. An important example is the modular parameterisation of a rational elliptic curve E.
Another example which has arisen in this thesis is the canonical quotient X0(p) → X+

0 (p). It
would be interesting to be able to understand how the heights of curves change across such
rational maps.

Consider, for instance, the relationship given in equation (6.9) between h(E) and the degree
of the modular parameterisation φ : X0(N) → E. If it were possible to infer the height
h(X0(N)) from h(E) and deg φ, then we could have a theoretical way to get bounds on
h(X0(N)).
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In this section we consider the following slightly more general questions. Let f be a rational
map of degree d between two projective curves X and Y . Given h(X) and deg(f) what can
one say about h(Y )? Given h(Y ) and deg(f) what can one say about h(X)?

Faltings [12] mentions the behaviour of the height under the operation of projection of a
variety X ⊂ Pn from a point down to a variety in Pn−1. To be precise, choose a point x ∈ Pn−X
and let π be the projection of X from x to Pn−1. Faltings calls π a “good projection” if it
satisfies certain properties which, essentially, exclude projections which will allow the height to
grow. Faltings then proves that ([12] Proposition 2.10)

h(π(X))deg π ≤ h(X) + c (6.13)

where c is a constant depending only on the degree of the variety X. This result suggests that
heights should become smaller across rational maps. However the good projections studied by
Faltings are not sufficiently general for our application.

For the more general case, the most promising angle of attack is the following. Sup-
pose X ⊂ PnZ, Y ⊂ PmZ and suppose that f : X → Y extends to a morphism f : PnZ →
PmZ . The heights of the projective varieties X and Y are computed using an analysis of
metrized line bundles of the form O(1). The precise definition involves expressions of the
form h(X) = deg

(
ĉ1

(
O(1)

)
.X̂
)

. It is known ([40] Theorem III.3 (iii) and Theorem IV.3 (i))

that f∗
(
ĉ1

(
f∗O(1)

)
.X̂
)

= ĉ1

(
O(1)

)
.f∗X̂. Also the pushforward f∗X̂ is well-understood (see

[40] Theorem III.3 (ii)). Therefore one hopes to be able to compute a relation between h(X)
and h(Y ) using a careful analysis of the pushforwards and pullbacks, of certain metrized line
bundles, along f .

The key is to understand f∗O(1) where O(1) is the canonical metrized line bundle on PmZ .
The behaviour at the metrics over the infinite place is not the real problem here. The main
challenge is to understand the geometry. It is known (Hartshorne [20] Theorem II.7.1) that
f∗(O(1)) is a line bundle on PnZ which is generated by m+1 global sections (namely the inverse
images of the m + 1 global sections which generate O(1) on PmZ ). In the applications we will
have n > m so this shows that f∗O(1) cannot be equal to O(1). What, then, is this pullback?
No progress was made with understanding these questions.

The hope would be that, despite the fact that f∗(OPm(1)) 6= OPn(1), there is a way to
manipulate the line bundles in a suitably controlled way, so that one may still understand the
relation between h(X) and h(Y ).

The parallelism between heights and degrees suggests we consider the behaviour of the
degrees of projective varieties under rational maps. There does not seem to be any simple
relation in this case. The most obvious example of such a relation is the Hurwitz formula which
relates the genus of projective curves X and Y to the degree of the map f : X → Y between
them. The genus is related to the degree but, again, the precise relation is quite complicated.
It seems that what we are looking for is some kind of “arithmetic” analogue of the Hurwitz
formula. One would expect this to be quite difficult to analyse.

It seems that there are no further techniques available to easily relate h(X) with h(Y ).
Indeed this question seems harder than it might appear. We suffice to examine a few examples.

One noteworthy example is the case of the genus 4 curve X0(61). The canonical model for
X0(61) given in Chapter 3 is the following.

w2 − x2 + 2xy − 6xz + 3y2 + 6zy − 5z2 = 0 (6.14)

x2z + xy2 + xyz + 5xz2 + 4y2z + 5yz2 + 6z3 = 0 (6.15)

It can be shown that X+
0 (61) is an elliptic curve, and it is given by simply equation (6.15). The

quotient map from the canonical curve X0(61) ⊂ P3 to P2 simply “forgets” the variable w and
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equation (6.14). Let us compare the Philippon heights of the two curves. The Chow form for
X0(61) will be extremely complicated. I have not been able to calculate explicit expressions
for any Chow forms of varieties in P3, as the presence of extra variables makes the calculation
vastly more tedious. The Chow form will have multidegree (6, 6) in the two sets of 4 variables.
The relationship between the coefficients of the model for X0(61) and the coefficients of its
Chow form is also less transparent in this case. The Chow form of the canonical curve X+

0 (61)
will be much less horrible but, nevertheless, related to that of X0(61). The coefficients of (6.15)
are larger at the finite places than those of (6.14), so one might expect that the Chow forms
will have the same valuation at the finite places (at the primes 2, 3 and 5 the valuation may be
larger on X0(61) as there is a 6th power compared with the powers of 3 for the X+

0 (61) case).
The difference in the heights will then come down to the difference between the integrals of the
two Chow forms. The relationship between the integrals of the Chow forms is not clear.

This example shows a difficulty in the use of the Philippon height. When looking at equa-
tions (6.14) and (6.15) one is tempted to say that the heights of both X0(61) and X+

0 (61) are
the same (as they have the same “worst” coefficients). However their Chow forms are very
different and it is not clear how the integrals of the Chow forms are related.

In many cases we have been able to compute a model for X+
0 (p) when the whole curve

X0(p) is out of reach. Does the fact that the model for X+
0 (p) has small height reflect on the

model for X0(p)?
In earlier sections we noted how the coefficient size of a rational elliptic curve E depends

on the degree of its modular parameterisation φ : X0(N) → E. This fact suggests that the
coefficient size should grow, in general, across rational maps. This is the opposite of Faltings’
statement (6.13) about good projections. It is evident that there are some subtleties in this
problem.

As mentioned earlier, it would be useful to have a better theory about the behaviour of the
heights of projective varieties across rational maps. Also it would be useful to have a better
understanding about how the heights at the infinite places behave.



Chapter 7

Rational Points on Modular

Curves

The study of rational points on curves is central to number theory. For modular curves, since
their points have an interpretation as interesting objects in their own right, the study is even
more important. For instance, Mazur [24] classified the possible torsion groups of elliptic curves
over the rationals by a study of which curves X1(N) have non-cuspidal rational points.

7.1 Rational Points on X0(N)

The modular curve X0(N) will always have some rational points coming from cusps. If the
genus of X0(N) is zero then there will be an infinite number of rational points on X0(N). Mazur
[24] classified all the non-cuspidal rational points of X0(p). This programme was continued by
Kenku and others. When the dust settled the conclusion was that X0(N) has both genus
g ≥ 1 and a number nN ≥ 1 of non-cuspidal rational points for precisely those N listed in the
following table (see Kenku [23]).

Table 6. Number of points on Y0(N)(Q)

N 11 14 15 17 19 21 27 37 43 67 163

nN 3 2 4 2 1 4 1 2 1 1 1

The explanation for these rational points is the following. The cases N = 11, 19, 27, 43, 67
and 163 correspond to modular curves with Heegner points over Q. These Heegner points arise
from elliptic curves with complex multiplication by the orders in Q(

√
−N) of class number one.

Note that the class number one discriminants D = −3,−4,−7,−8,−12,−16 correspond to
genus zero modular curves. There is one further class number 1 discriminant, namely D = −28.
However, there are no points on X0(28) arising from Heegner points with complex multiplication
by the order of discriminant −28, because the equation B2−112C = −28 is insoluble subject to
(28, B,C) = 1. In later sections we will introduce Heegner points and show why this equation
is important.

The curves X0(N) where N = 11, 14, 15, 17, 21, 37 are well-known for having exceptional
rational isogenies. For instance, the curve X0(37) has 2 rational cusps and it is hyperelliptic.
The hyperelliptic involution is defined over Q, but it does not come from the action of an
element of SL2(Z) on H. The images of the cusps under the hyperelliptic involution must
be distinct rational points, and it turns out that neither of these rational points are cusps.

76



CHAPTER 7. RATIONAL POINTS ON MODULAR CURVES 77

Therefore one obtains two exceptional rational points on X0(37).
Three of these examples (N ∈ {37, 43, 67}) have been calculated in earlier chapters. In the

remainder of this section we will exhibit the rational points on our models of these curves.
For X0(37) we give all the details of the calculation. From the tables of weight 2 cusp forms

we find two eigenforms of level 37, namely h1 = q − 2q2 − 3q3 + · · · and h2 = q + q3 + · · ·. We
note that h1|W37 = h1 and h2|W37 = −h2. Setting f = h1, g = (h2 − h1)/2 = q2 + 2q3 + · · ·,
X = f , Y = (gdf − fdg)/g2 = q−1 + 7q + · · · and Z = g yields the following equation for
X0(37).

Y 2Z4 = X6 + 20X5Z + 120X4Z2 + 348X3Z3 + 544X2Z4 + 444XZ5 + 148Z6

Note that the change of variable X = U − 1 gives the equation listed in Table 3 of Chapter 4.
To compute the image of the cusp at infinity under this projective mapping we consider

[X : Y : Z] = [q + · · · : q−1 + · · · : q2 + · · ·]. Multiplying by q and evaluating at τ = i∞ (i.e.,
q = 0) gives the point [0:1:0].

To compute the image of the cusp zero we must act on the functions X,Y and Z by W37.
Note that X|W37 = X, Z|W37 = −X − Z and Y |W37 = −Y Z2/(X + Z)2 = −q + · · ·. Thus
[X|W37 : Y |W37 : Z|W37] = [q + · · · : −q + · · · : −q + · · ·]. Dividing by q and evaluating at
τ = i∞ gives the point [1:−1:−1].

There are also two non-cuspidal points on X0(37). These are the images of the cusps under
the hyperelliptic involution (which just maps the Y coordinate to −Y ). For the point [−1:1:1]
the image under the hyperelliptic involution is [1:1:−1]. For the point [0:1:0] the image under
the hyperelliptic involution is the same point [0:1:0]. The reason why there are two points at
infinity is the following. The curve X0(37) is a smooth projective curve of genus 2 and thus it
does not have a non-singular projective model in P2. The model we are calling an “equation for
X0(37)” is actually the projection of a good model down to P2, and this projection cannot be an
isomorphism. Indeed it maps a pair of points to the singular point [0:1:0] (see Section 2.6). We
stick to the convention of not worrying about the fact that our models are singular, although
it will be necessary later in this chapter to remember that there are two rational points [0:1:0]
on genus two curves in general.

For X0(43) it is fairly easy to show that we have the point [1:1:0] corresponding to the cusp
at infinity and the point [1:−1:0] corresponding to the cusp zero. One may then find the point
[0:4:−3] corresponding to the non-cuspidal point by a simple brute-force search.

For X0(67) the point [1:0:1:1:0] corresponds to the cusp infinity, the point [−1:0:1:1:0]
corresponds to the cusp zero and the point [0:0:-7:12:2] is the extra one. Under the covering
X0(67) → X+

0 (67), given explicitly in Table 1 of Chapter 3, the extra point [0:0:−7:12:2]
maps to the point (−2,−7) on the affine hyperelliptic model. We will see later that the point
[0:0:−7:12:2] must be a Heegner point which is fixed by W67.

As the study of rational points on X0(N) is already fully understood we turn to the case of
rational points on X+

0 (p). This is a particularly interesting case as it is the one not studied by
Momose [25], [26]. It is no more work to introduce the ideas for X+

0 (N) = X0(N)/WN so we
work with the greater generality.

7.2 Points of X+
0 (N)

The standard moduli interpretation of Y0(N) is that a point τ ∈ Γ0(N)\H corresponds to the
elliptic curve Eτ = C/〈1, τ〉 (where 〈1, τ〉 = Z + Zτ) together with the fixed cyclic N -element
subgroup Cτ =

〈
1
N , τ

〉
. It is a fact that, for every elliptic curve E and every cyclic N -element

subgroup C of E, there is some τ (unique up to Γ0(N)) such that E ∼= Eτ and such that C is
mapped to Cτ under this isomorphism.
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Equivalently we may interpret the pair (E,C) as a pair (E,E′) where there is a given
isogeny π : E → E′ such that kerπ = C. Note that E′ is determined, up to isomorphism,
by E and C (see Silverman [35] Proposition III.4.12). Sometimes E and E′ do not uniquely
determine C, so it is necessary to always keep the particular isogeny π in mind. Note that
Eτ/Cτ = C/〈1, τ〉/

〈
1
N , τ

〉
= C/

〈
1
N , τ

〉 ∼= C/〈1, Nτ〉.
The involution WN acts on Y0(N) by mapping τ to −1/Nτ . Therefore Eτ is mapped to

C/
〈
1, −1

Nτ

〉 ∼= C/〈1, Nτ〉 and Cτ is mapped to
〈

1
N ,
−1
Nτ

〉 ∼= 〈1, τ〉. Thus a point of Y +
0 (N) may

be interpreted as an unordered pair {E,E′} of elliptic curves with specified cyclic N -isogenies

E
π−→ E′

π′−→ E. We will often lazily write simply E
π−→ E′ to represent a Heegner point

since the dual isogeny is uniquely determined. We remark that Y +
0 (N) is Γ∗0(N)\H, where

Γ∗0(N) = Γ0(N) ∪WNΓ0(N).
Note that X+

0 (N) will always have one particular rational point, namely the cusp at infinity.
Since the cusps correspond to generalised elliptic curves they will not arise in the constructions
given in the following sections.

7.3 Heegner Points

A Heegner Point of Y0(N) is a pair (E,E′) of elliptic curves together with a cyclic N -isogeny
E

π−→ E′, such that both E and E′ have complex multiplication by the same order O.
We assume much of the theory of complex multiplication here. For future reference we

quote a few key results.

Theorem 6 (See Silverman [36] Theorem II.4.3 on page 122) Let Eτ be an elliptic curve with
complex multiplication by O then [K(j(τ)) : K] = [Q(j(τ)) : Q ] = hO the class number of the
order.

For a given τ ∈ H, all the elliptic curves Eγ(τ), where γ ∈ SL2(Z), are isomorphic to Eτ over
C. There is a particular choice of elliptic curve, in the C-isomorphism class, which is defined
over Q(j(τ)). For instance, if j 6= 0, 1728, consider the model E : y2+xy = x3− 36

j−1728x−
1

j−1728

(see Silverman [35] Section III.1). Therefore we will always assume that the elliptic curves in
question are defined over Q(j(τ)).

Also note that there are precisely hO isomorphism classes of elliptic curves E having complex
multiplication by O. This correspondence may be seen by taking, for each ideal class [a] of O,
the elliptic curve E = C/a. We sometimes use this notation of ideals and write j(a) instead of
j(E).

We emphasise the above results in the class number 1 and 2 situations.

Corollary 2 Suppose O has class number one. Then there is a unique elliptic curve E (up to
isomorphism over C) having complex multiplication by O. For this elliptic curve E we have
j(E) ∈ Q so we may consider E as being defined over Q.

Corollary 3 Suppose O has class number two. Then there are two non-isomorphic elliptic
curves, E1 and E2, each having complex multiplication by O. Suppose K is the quadratic
imaginary field associated to O. Then j(E1), j(E2) 6∈ K and if σ ∈ Gal (K(j(E1))/K) \{1}
then j(E1)σ = j(E2).

We will use the notation of Gross [18]. Suppose O is an order in a quadratic imaginary field
K and let its discriminant be D < 0. The conductor of the order is the number f such that
D/f2 is the discriminant of the full ring of integers of K. Equivalently, f is the largest integer
such that D/f2 ≡ 0, 1(mod 4). Then K = Q

(√
D
)

= Q
(√

D/f2
)

. Let a be a fractional ideal
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of O (we will write [a] for the class of a in Pic(O), the ideal class group of O). Then E = C/a
is an elliptic curve with complex multiplication by O.

In this Chapter we will be concerned with N -isogenies of curves such as E. We say that
N factors in K if (N) may be written as a product of two ideals (N) = nn′ in K, such that
both n and n′ have norm equal to N and such that O/n ∼= Z/NZ. That N factors in K implies
that all the rational primes dividing the square-free part of N either split or ramify in K.
Later, in the case where N is prime, it will be necessary to distinguish between the split and
ramified situations. Suppose N factors as nn′ in O. Then the identity map on C induces an
isogeny C/a → C/an−1 which has cyclic N -element kernel an−1/a ∼= O/n ∼= Z/NZ. We write
y = (O, n, [a]) to represent the Heegner point E = C/a which has complex multiplication by O
and which has an isogeny with kernel n. We define j(a) = j(E).

The Heegner point y = (O, n, [a]) must correspond to some τ ∈ H. Indeed, write the Z-
module a as 〈ω1, ω2〉 where the ωj are chosen so that the kernel of the isogeny is 〈ω1/N, ω2〉.
Then τ = ω2/ω1 lies in K. Let A,B,C be coprime integers such that Aτ2 + Bτ + C = 0. It
can be shown that B2− 4AC = D. Furthermore, since E′ ∼= ENτ , it follows that Nτ must also
be quadratic imaginary of discriminant D. But Nτ satisfies A(Nτ)2 + NB(Nτ) + N2C = 0
and this has discriminant N2D, so it must be possible to factor out N . This means that N |A,
i.e., A = NA′. So Nτ is a root of A′x2 + Bx + NC = 0 and (A′, B,NC) = 1. Furthermore,
any A′, B,C such that D = B2 − 4NA′C and (NA′, B,C) = (A′, B,NC) = 1 will give rise to
a Heegner point of X0(N).

Our main interest is in Heegner points on X0(N)/WN , and we will need to discuss the field
of definition of them. It is also possible to understand the field of definition of Heegner points
on X0(N) using the same ideas. This will not be needed in later work. We merely comment
that every Heegner point which comes from a class number 1 order in a quadratic imaginary
field K gives a point of X0(N) defined over K.

7.4 Heegner Points on X+
0 (N)

Suppose N factors in K. For each order, O, of K we have (N) = nn′, where both n and n′ have
norm N . Suppose y = (O, n, [a]) is a Heegner point of X0(N) with complex multiplication by
O. Write E = C/a and E′ = C/an−1 and recall that j(a) = j(E) and j(an−1) = j(E′). Then
the Atkin-Lehner involution WN takes y to (O, n′, [an−1]). The pair {y,Wp(y)} is a point on
X+

0 (N).
In this section the goal is to ascertain when such a Heegner point gives a rational point of

X+
0 (N). A point of X+

0 (N) is rational if it is fixed by Gal
(
Q/Q

)
. In this situation, it is clear

that the Heegner point will be fixed by Gal
(
Q/K(j(E))

)
. Note that K(j(E))/Q is a Galois

extension since, by the theory of complex multiplication, K(j(E)) is Galois over K (it is the
ring class field of the order O), and K/Q is a degree 2 extension. The purpose of this section
is to examine, in detail, the action of Gal (K(j(E))/Q) on these Heegner points.

Let σ be any non-trivial element of Gal(K(j(E))/K), if there is one, and let ρ be the non-
trivial element of Gal(K/Q). Consider the action of these Galois conjugations on the Heegner
point y = (O, n, [a]). Following Gross [18] we see that

(O, n, [a])ρ = (O, n′, [aρ]).

Note that aρ is a principal ideal if and only if a is.
To understand the action of σ on y it is necessary to recall the Artin map. We restrict

attention to the case where O has class number 1 or 2. Recall that K(j(E))/K is the Hilbert
class field (or ring class field, when O is not maximal) of K (i.e., it is the maximal extension
of K which is unramified everywhere). In this case the Artin map is the only possible group
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isomorphism σ[.] : Pic(O) → Gal(K(j(E))/K). Note that σ ∈ Gal(K(j(E))/K) doesn’t act
on a ⊂ K itself, this is why one must use the Artin map. For a more thorough picture of what
is going on see Shimura [33] Chapter 5. The action of Gal(K(j(E))/K) is given by

(O, n, [a])σ[b] = (O, n, [ab−1]).

If {y,WN (y)} is to give a rational point on X+
0 (N) then it follows that both of the above

expressions must be either (O, n, [a]) or (O, n′, [an−1]).
In the class number 1 situation, σ is trivial, j(a) = j(an−1), and both elliptic curves are

defined over Q. Thus ρ switches the two expressions. Therefore the Heegner point will give a
rational point of X+

0 (N). Furthermore it follows that the points (or point) of X0(N) which lie
above this Heegner point must be defined over K.

In the class number 2 situation, j(a) and j(an−1) are defined over Q(j(E)). If E ∼= E′ (i.e.,
n is a principal ideal) then σ maps the Heegner point to a completely different one, while ρ
swaps the two expressions around. Hence we obtain a point on X+

0 (N) which is defined over a
quadratic field.

If E 6∼= E′ (i.e., the ideal n of K is not principal) then E and E′ are Galois conjugate and
σ swaps the curves (though it does not necessarily swap the isogenies in the correct manner).
There are now two cases. Firstly, if N ramifies as n2 in K then ρ acts trivially and σ switches
the Heegner points, and so we get a rational point of X+

0 (N). If N does not ramify in K then
ρ maps (O, n, [a]) to (O, n′, [aρ]) which is a different Heegner point. Similarly, σ maps y to
(O, n, [an−1]) which is the companion of yρ. In this case we obtain a point of X+

0 (N) which is
defined over a quadratic extension.

The case where one obtains a rational point from a Heegner point of class number 2 is very
rare. We now restrict to the case where N = p is a prime. For p to ramify in an order O we need
p|D where D is the discriminant of the order O. Stark has proved that there are precisely 18
quadratic imaginary fields having class number 2. There are 29 orders with class number two
and their discriminants are {−15,−20,−24,−32,−35, −36,−40,−48,−51,−52,−60,−64,−72,
−75,−88, −91, −99,−100,−112, −115,−123,−147,−148,−187, −232,−235,−267, −403,
−427}. From this list it is seen that the only primes p which ramify are 2, 3, 5, 7, 11, 13, 17,
23, 29, 31, 37, 41, 47, 61, 89. In all of these cases the genus of X+

0 (p) is 0 or 1. Therefore we
have proved the following theorem.

Theorem 7 Let p be a prime such that X+
0 (p) has genus at least 2. Then Heegner points

corresponding to orders of class number 2 are never rational points of X+
0 (p).

We end this section by giving an example which shows a rational point on the genus one
curve X+

0 (61) which comes from a Heegner point of class number 2.
First note that p = 61 ramifies in the order O of discriminant −427 = −7.61 (this order is

the full ring of integers of Q(
√
−427)). The point τ ∈ H which is a root of 61τ2 + 61τ + 17

corresponds to the Heegner point of discriminant −427. Evaluating the weight 2 cusp forms
x, y and z (see the tables in Chapter 3) at τ gives the point [−30:8:3] on the model

x2z + xy2 + xyz + 5xz2 + 4y2z + 5yz2 + 6z3 = 0

for X+
0 (61). This point corresponds to the two points [±3

√
61:−30:8:3] on X0(61) and we see

that these points are defined over K = Q
(√
−427

)
as expected.

7.5 Rational Points from Heegner Points

We now combine the results of this Chapter with the explicit equations for modular curves
found in Chapters 2 and 3. The aim is to produce a list of rational points, coming from
Heegner points, on the curves X+

0 (p) of genus at least 2.
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Following the ideas of the previous section we have a method for finding explicit rational
points on the embedding of X+

0 (p) into Pn. Namely, for each class number 1 discriminant
D < 0 we find (as long as D is a square modulo 4p) integers A,B,C (here A is what we called
A′ before) such that B2 − 4pAC = D. Then evaluate the modular functions which give the
embedding of X+

0 (p) into Pn(C) at the value of τ ∈ H such that Apτ2 + Bτ + C = 0. We see
that there is a single rational point for each of these τ .

Theorem 8 Suppose D is the discriminant of a class number 1 quadratic order and suppose
D is a square modulo 4p. Then there is precisely one rational point on X+

0 (p) corresponding to
the Heegner point of discriminant D.

So one gets a single Heegner point for each class number 1 quadratic order in which p factors.
The corresponding elliptic curve E is defined over Q and is a fixed point of Wp on X0(p). Note
that it doesn’t correspond to a rational point of X0(p) as the cyclic p-element subgroup (the
kernel of the p-isogeny) will not in general be defined over Q. The corresponding points of
X0(p) will be defined over Q

(√
D
)

.
In the case of class number 2 discriminants, we saw that it was necessary for E and E′ to be

Galois conjugates. Therefore we would still only get one rational point for each discriminant.
We will only consider the case where the genus of X+

0 (p) is at least 2 and hence the class
number 2 case does not occur.

Note that, by a result of Mazur ([24] Corollary 1.5 on page 143), J+
0 (p) is torsion-free. Hence

the rational points we find will yield points of inifinite order on the Jacobian of the genus 2
curve. It would be interesting to know if these points could be used to yield a set of generators
for the Mordell-Weil group of the Jacobian.

7.6 Other Rational Points

We have seen that on X+
0 (p) there is a rational cusp and also some rational points coming from

Heegner points of class number 1. In a few cases we also get rational points coming from a
Heegner point of class number 2. It is impossible to obtain rational points which are Heegner
points of class number larger than 2. This is because such points will have at least 3 distinct
Galois conjugates, and therefore a pair of them cannot be Galois invariant.

We may now ask if there are any other rational points on X+
0 (p) and, if so, where they come

from.
The first step is the following proposition.

Proposition 9 Suppose E π−→ E′ corresponds to a rational point on X+
0 (p) which is neither

a cusp nor a Heegner point nor a rational point of X0(p). Then E and E′ do not have complex
multiplication and neither E nor E′ are defined over Q.

Proof. Since the point is not a cusp we know that E and E′ are genuine elliptic curves. To be
a rational point of X+

0 (p) it follows that, for every σ ∈ Gal
(
Q/Q

)
, we must have Eσ πσ−→ E′

σ

equal to either E π−→ E′ or E′ π′−→ E. Therefore either Eσ ∼= E and πσ ∼= π, or Eσ ∼= E′ and
πσ ∼= π′.

Suppose first that E is defined over Q. If j(E′) 6∈ Q then choose some σ ∈ Gal
(
Q/Q

)
which

acts non-trivially on E′. The conjugate of E π−→ E′ by σ is E πσ−→ E′
σ. Since E′σ � E′ this

contradicts the assumption that we have a rational point. Therefore E′ is defined over Q. An
element σ ∈ Gal

(
Q/Q

)
takes E π−→ E′ to E πσ−→ E′. If πσ = π for all σ then kerπ is defined

over Q and therefore we actually have a rational point on X0(p). Otherwise we must have
πσ = π′ for some σ and, therefore, E ∼= E′. In this case π ∈ End(E) and so E has complex
multiplication and is a Heegner point.



CHAPTER 7. RATIONAL POINTS ON MODULAR CURVES 82

Now suppose j(E) 6∈ Q. Then E must be defined over some quadratic field L/Q and E′

must be Eσ for the non-trivial element σ ∈ Gal(L/Q). The endomorphism ring of E is the
same as the endomorphism ring of Eσ. Therefore, if E has complex multiplication by O, then
so does E′ and this completes the proof. 2

The only cases where the genus of X+
0 (p) is at least 2 and where X0(p) has non-cuspidal

rational points are for p = 67 or 163. In both these cases there is only one such point on X0(p).
Therefore that point must be fixed by the involution Wp (since the action of this involution is
defined over Q). Thus the corresponding rational point on X+

0 (p) is actually a Heegner point
after all.

If X+
0 (p) has genus zero then there are an infinite number of rational points. Slightly more

interesting is the genus one case. If X+
0 (p) has genus 1 then it isomorphic to J+

0 (p) and Mazur
has shown that this abelian variety is torsion free and has positive rank. Therefore there are
an infinite number of rational points on it. In both these cases it must be that there are points
which do not come from elliptic curves having complex multiplication.

If X+
0 (p) has genus at least 2 then we know that it has only finitely many rational points.

Momose [25], [26] has studied the cases of composite level N and has shown that, in certain
cases, there are no rational points on X0(N)/WN other than the expected cusps and complex
multiplication points. We quote the statement of his theorem from [26].

Theorem 9 ([26] Theorem 0.1). Let N be a composite number. If N has a prime divisor p
which satisfies both conditions (i) and (ii) below then X0(N)/WN has no rational points other
than cusps and complex multiplication points.

(i) p ≥ 11 and p 6= 13, 37.

(ii) #J−0 (p)(Q) finite.

According to Momose, all primes 17 ≤ p ≤ 300 satisfy the condition #J−0 (p)(Q) finite
except for possibly p ∈ {151, 199, 227, 277}. The justification for this is given in Mazur [24], on
page (coincidently?) 151.

As a result of our calculations we will exhibit, for some primes p, points on X+
0 (p) which

are neither cusps nor Heegner points.
One wonders if there is an arithmetic interpretation of these exceptional rational points. It

seems a peculiar state of affairs that, when the genus of X+
0 (p) is 0 or 1, one gets an infinite

number of such points but when the genus is at least 2 one gets almost none of them.

7.7 Tables for Genus 2 Curves

In this section we present the results of some computations of rational points on genus 2 curves
arising from Heegner points. The cusp infinity will always be associated to one of the points
[0:1:0], though we write the equations in affine form in the tables. The hyperelliptic involution
is always [x : y : z] 7→ [x : −y : z], which is clearly defined over Q. For the curves X+

0 (p),
the hyperelliptic involution does not come from the action of SL2(Z) (this is unlike the X0(N)
case, where Ogg [30] showed that X0(37) is the only example of a hyperelliptic modular curve
whose hyperelliptic involution does not come from an element of SL2(Z)).

We list the discriminants D of suitable orders O (i.e., so that D is a square modulo p).
The computation of suitable τ is elementary. The evaluation of the given modular forms at
τ is, however, more involved, as the q-expansions do not usually have very good convergence.
In general one finds that a q-expansion of about 80 terms will suffice in order to obtain a
recognisable form for most of the Heegner points. Sometimes, though, the convergence is very
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bad. Even using 300 term q-expansions and optimising the choice of τ using the action of Γ∗0(p)
does not allow us to calculate these points to even crude accuracy. In these cases we mark the
Heegner point with a question mark. Note that since the modular functions should evaluate to
a rational number we may get a feel for the error in our calculation by looking at the size of
the imaginary part.

The model for the curve is that used in Chapter 4. Thus we have modular forms f and g with
X = f/g and Y = dX/g. The projective model Y 2Z4 = p6(X,Z) corresponds to X = f, Z = g

and Y = (gdf − fdg)/g2. Thus a point τ corresponds to ∞ = [0:1:0] if X(τ) = f(τ) and
Z(τ) = g(τ) are very small compared with Y (τ). Care must be taken here as it is easy to
mistakenly identify ∞ in this way. Set d = gdf − fdg = −q3 + · · ·. It therefore follows that
d/f3 = −1 + · · ·. Thus, at the cusp i∞, the function d/f3 must take the value −1. For the
“other” point which falls at ∞, the modular forms must behave in the same way. Therefore
we recognise points at ∞ by checking to see that d/f3 = −1. We use this criterion to confirm
that our candidate τ does give the point ∞.

We have performed a search for all points [X:Y :Z] on the projective model of the curve such
that X,Y, Z ∈ Z and |X|, |Y |, |Z| < 300. Note that, in the genus 2 case, we tend to represent
the points in affine form as (x, y) or as ∞. One suspects there will be no other rational points
on these curves but I do not have the tools to show this. We list all the points found in the
search which are not already listed as Heegner points.

One confidently expects that the question marks in the list of Heegner points may be filled
with a suitable choice from among the points found by the brute-force search. Indeed, the
correspondence may be deduced, in many cases, by lifting the rational points from X+

0 (p) to
X0(p) and then examining their field of definition.

An interesting case arises when there are points “left over”. In these cases we genuinely have
rational points which do not arise as Heegner points. It is clear from our computations that
these points are very rare. Unfortunately we cannot “invert” our modular forms so we cannot
find which τ correspond to these stray points. As a result we have no clues to the arithmetic
interpretation of these points.
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Table 7. Rational Points on Genus 2 X+
0 (p)

X+
0 (67) y2 = x6 + 2x5 + x4 − 2x3 + 2x2 − 4x+ 1

D = −3 (−1,1) D = −7 (0,1)

D = −8 (0,−1) D = −11 ∞

D = −12 (1,1) D = −27 (−1,−3)

D = −28 (−2,−7) D = −43 (1,−1)

D = −67 (−2, 7) (from X0(67)(Q))

X+
0 (73) y2 = x6 + 2x5 + x4 + 6x3 + 2x2 − 4x+ 1

D = −3 ( 1
2 ,

5
8 ) D = −4 (−1,−1)

D = −8 (0,−1) D = −12 ∞

D = −16 (1,−3) D = −19 (0,1)

D = −27 (−1, 1) D = −67 (1, 3)

( 1
2 ,−

5
8 )

X+
0 (103) y2 = x6 + 6x5 + 5x4 + 2x3 + 2x2 + 1

D = −3 (2,−19) D = −11 (0, 1)

D = −12 (0,−1) D = −27 (−1, 1)

D = −43 (−1,−1) D = −67 ∞

(2, 19)

X+
0 (107) y2 = x6 + 2x5 + 5x4 + 2x3 − 2x2 − 4x− 3

D = −7 (1,−1) D = −8 ∞

D = −28 (−1, 1) D = −43 (1,1)

D = −67 (−1,−1)

X+
0 (167) y2 = x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x− 3

D = −43 ∞ D = −67 (−1,−1)

D = −163 (−1, 1)

X+
0 (191) y2 = x6 + 2x4 + 2x3 + 5x2 − 6x+ 1

D = −7 (0,1) D = −11 (0,−1)

D = −19 ∞ D = −28 (2, 11)

(2,−11)

So X+
0 (73), X+

0 (103) and X+
0 (191) each have an extra rational point and, as we have shown,

this cannot come from a Heegner point or a complex multiplication point. In the case of X+
0 (73)
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we may trace (from the tables in Chapter 3) the point ( 1
2 ,
−5
8 ) back to [

√
−127:−2

√
−127:−3:19:2]

on X0(73) and so it follows that this point is the non-Heegner point as it isn’t defined over any
of the fields having class number one discriminant.

7.8 Tables for Higher Genus Curves

We now perform a similar analysis for curves X+
0 (p) of genus 3 ≤ g ≤ 5. In all cases the points

given lie on the model (using eigenforms) listed in Chapter 2.
First we consider genus 3 curves X+

0 (p). Once again we have occasional trouble with con-
vergence of the q-expansions. Nevertheless we compute points corresponding to most of the
applicable discriminants and we perform a search over all integral points [X : Y : Z] with
|X|, |Y |, |Z| < 300. We assume, as before, that the points with bad convergence (marked with
a “?”) can be paired with the unmatched points found in the search. We find that all the
rational points arise as either the cusp (in this case always [1:0:0]) or as a Heegner point. So
there are no exceptional points in these cases.

Note that, in this case, our modular parameterisation really is projective. Therefore the
modular forms do not evaluate to rational numbers themselves, but taking ratios yields eas-
ily recognised rational numbers. In theory we could use the PARI−GP function algdep to
recognise these rational numbers, but in all our examples they have such small height that it
is obvious by sight.

Table 8. Rational Points on Genus 3 X+
0 (p)

X+
0 (97) cusp [1:0:0]

D = −3 ? D = −4 ?

D = −8 [−1:0:1] D = −11 [0:1:0]

D = −12 [1:1:−1] D = −16 [−2:0:1]

D = −27 [−2:1:1] D = −43 [1:1:0]

D = −163 [−7:3:2]

[0:1:0] [0:0:1]

X+
0 (109) cusp [1:0:0]

D = −3 ? D = −4 ?

D = −7 [1:1:−1] D = −12 [0:1:0]

D = −16 [−1:0:1] D = −27 [2:1:−1]

D = −28 [−3:1:1] D = −43 [0:−1:1]

[−4:1:2] [1:2:−1]
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X+
0 (113) cusp [1:0:0]

D = −4 [1:2:−1] D = −7 [−1:1:0]

D = −8 [1:1:−1] D = −11 [0:1:0]

D = −16 [−1:0:1] D = −28 [1:1:−2]

D = −163 [3:3:−1]

X+
0 (127) cusp [1:0:0]

D = −3 ? D = −7 [2:1:−1]

D = −12 [0:1:0] D = −27 [−2:0:1]

D = −28 [0:−1:1] D = −43 [−1:1:0]

D = −67 [3:2:−1]

[4:3:−2]

X+
0 (139) cusp [1:0:0]

D = −3 ? D = −8 [1:1:−1]

D = −12 [−1:0:1] D = −19 [−2:0:1]

D = −27 [2:1:−1] D = −43 [0:−1:1]

[−5:2:1]
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X+
0 (149) cusp [1:0:0]

D = −4 ? D = −7 [−1:0:1]

D = −16 [2:1:−1] D = −19 [1:1:−1]

D = −28 [1:2:−1] D = −67 [−3:1:1]

[0:−1:1]

X+
0 (151) cusp [1:0:0]

D = −3 ? D = −7 [−1:1:0]

D = −12 [−2:0:1] D = −27 [0:−1:1]

D = −28 [1:1:−2] D = −67 [1:−2:1]

D = −163 [1:0:1]

[0:−4:1]

X+
0 (179) cusp [1:0:0]

D = −7 [−1:0:1] D = −8 [0:1:0]

D = −11 [1:1:−1] D = −28 [1:2:−1]

D = −163 [3:3:−1]

X+
0 (239) cusp [1:0:0]

D = −7 [−1:0:1] D = −19 [−2:0:1]

D = −28 [−1:2:1] D = −43 [−2:1:1]

We now give a table for some genus 4 curves X+
0 (p). In this case the brute-force search

is over a smaller region, namely w, x, y, z ∈ Z such that |w|, |x|, |y|, |z| ≤ 60. We find that
X+

0 (137) has an exceptional rational point.



CHAPTER 7. RATIONAL POINTS ON MODULAR CURVES 88

Table 9. Rational Points on Genus 4 Curves X+
0 (p)

X+
0 (137) cusp [1:0:0:0]

D = −4 [2:−4:−3:2] D = −7 [2:−1:−2:1]

D = −8 [−1:1:0:0] D = −11 [1:1:−1:0]

D = −16 [2:0:−1:0] D = −19 [1:−2:−1:1]

D = −28 [0:1:2:−1]

[19:2:−16:4]

X+
0 (173) cusp [1:0:0:0]

D = −4 [0:−4:0:1] D = −16 [2:−2:−2:1]

D = −43 [0:1:−1:0] D = −67 [3:−3:−2:1]

D = −163 [12:−9:−5:2]

Now for genus 5 curves. Here the bound for the search for rational points is reduced to 45.
No further exceptional rational points are found.

Table 10. Rational Points on Genus 5 Curves X+
0 (p)

X+
0 (157) cusp [1:0:0:0:0]

D = −3 [6:11:−13:−6:4] ? D = −4 [0:0:2:1:−1] ?

D = −11 [1:−2:−1:1:0 ] D = −12 [2:1:−1:0:0]

D = −16 [2:2:−4:−1:1] D = −19 [1:2:−3:−1:1]

D = −27 [3:−1:−4:0:1] D = −67 [2:1:−5:0:1 ]

X+
0 (181) cusp [1:0:0:0:0]

D = −3 [13:9:−11:−3:2] ? D = −4 [2:2:−7:−1:2] ?

D = −11 [2:−3:−1:1:0] D = −12 [1:−3:−1:1:0]

D = −16 [2:−2:−1:1:0] D = −27 [2:0:−4:0:1]

D = −43 [3:1:−1:0:0] D = −67 [2:6:−4:−2:1]



Chapter 8

Future Paths

We have accumulated some evidence about the size of coefficients occurring in models for
X0(N). It is clear that these modular curves (and their quotient curves by Atkin-Lehner
involutions) do have remarkably small coefficients. Our computations only give information for
small values of N and for low genus curves. Therefore we find ourselves in a poor position to
make inferences about the general case.

We have seen that the theory of heights is a language in which one may phrase statements
about the coefficient size of equations. Using heights we may bring questions about coefficient
size into more well-known areas of number theory. There is much potential for further research
in this direction, although some of the questions are doubtless very difficult to answer.

Another problem which begs further analysis is to interpret the exceptional rational points
on X+

0 (p) in terms of elliptic curves. It would also be interesting to know if there are ex-
ceptional rational points on other modular curves (for instance Xsplit(p) = X0(p2)/Wp and
Xnon−split(p)).

One interesting problem which has arisen during this research is the following. Suppose we
have a genus 3 curve D given as a double cover of an elliptic curve E. Suppose further that
the Jacobian of D is isogenous to the product of E with the Jacobian of some genus 2 curve C.
Then, is it possible to find an equation for the curve C from the explicit equations for D → E?
For example, X0(43) has genus 3 and it is a double cover of the elliptic curve X+

0 (43). It can
be shown that J0(43) ' E × Jac(C) for some genus 2 curve C. By studying the period lattice
of J0(43) and using techniques such as those of Wang [44], it might be possible to obtain an
equation for C. Is there a more simple and direct way to obtain equations in this case?

It is fascinating to witness the hidden depth in even the most simple equations. For instance,
the rational points on our equations contain large amounts of arithmetic information. The
equations themselves are constrained by the task of reflecting this (and more) information −
and yet they find the freedom to assume such elegant forms. This small illustration of the
beauty of mathematics is payment enough for all the hard and dirty work.
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