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Abstract. In this paper we prove a theorem more general than the following. Suppose that
X is Lindelöf and α-favourable and Y is Lindelöf and Čech-complete. Then for each separately
continuous function f : X × Y → R there exists a residual set R in X such that f is jointly
continuous at each point of R× Y .
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1 Introduction

If X, Y and Z are topological spaces and f : X × Y → Z is a function then we say that f is
jointly continuous at (x0, y0) ∈ X × Y if for each neighbourhood W of f(x0, y0) there exists a
product of open sets U × V ⊆ X × Y containing (x0, y0) such that f(U × V ) ⊆ W and we say that
f is separately continuous on X × Y if for each x0 ∈ X and y0 ∈ Y the functions y 7→ f(x0, y)
and x 7→ f(x, y0) are both continuous on Y and X respectively. If the range space Z is a metric
space, with metric d, and ε is a positive number then we say that f is ε-jointly continuous at
(x0, y0) ∈ X ×Y if there exists a product of open sets U ×V ⊆ X ×Y containing (x0, y0) ∈ X ×Y
such that d-diamf(U × V ) ≤ ε.

Since the paper [1] of Baire first appeared there has been continued interest in the question of
when a separately continuous function defined on a product of “nice” spaces admit a point (or
many points) of joint continuity and over the years there have been many contributions to this
area. Most of these results can be classified into one of two types. (I) The existence problem, i.e.,
if f : X × Y → R is separately continuous find conditions on either X or Y (or both) such that f
has at least one point of joint continuity. (II) The fibre problem, i.e., if f : X×Y → R is separately
continuous find conditions on either X or Y (or both) such that there exists a “big” subset R of X
such that f is jointly continuous at the points of R × Y . Our interest in this paper is in the fibre
problem. Specifically we are interested in providing a partial extension of the following result of
M. Talagrand, [9, p. 503].
“Let f : X × Y → R be a separately continuous function defined on the product of Čech-complete
spaces X and Y . If Y is Lindelöf then there exists a dense Gδ subset R of X such that f is jointly
continuous at each point of R× Y .”
This result of Talagrand is distinctive within the literature because it does not require the space
Y to be either compact (σ-compact) or second countable. What we shall do is show that the
conclusion of Talagrand’s theorem remains valid when one changes the hypothesis on X from being
Čech-complete to being Lindelöf and α-favourable. Even in the case when Y is compact this seems
to be a new result. For more information on problem (II) see [9, p. 495-536].

Some form of our first lemma may be found in many of the papers written on separate and joint
continuity.

1The second named author was supported by the Marsden Fund research grant, UOA0422, administered by the
Royal Society of New Zealand
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Lemma 1 Let X and Y be topological spaces, ε be a positive number and (Z, d) be a metric space. If
f : X×Y → Z and y 7→ f(x0, y) is continuous on Y but not ε-jointly continuous at (x0, y0) ∈ X×Y
then for each pair of open neighbourhoods U of x0 and V of y0 there exists points x and x′ in U
and y in V such that ε/3 < d(f(x, y), f(x′, y)).

Proof: Let U × V ⊆ X × Y be a product of open sets containing the point (x0, y0) ∈ X ×
Y . Since y 7→ f(x0, y) is continuous on Y we can assume, by possibly making V smaller, that
d(f(x0, y), f(x0, y0)) < ε/6 for all y ∈ V . Since f is not ε-jointly continuous at (x0, y0) there exist
points (x, y) and (x′, y′) in U × V such that ε < d(f(x, y), f(x′, y′)). On the other hand,

d(f(x, y), f(x′, y′)) ≤ d(f(x, y), f(x0, y)) + d(f(x0, y), f(x0, y
′)) + d(f(x0, y

′), f(x′, y′))
< d(f(x, y), f(x0, y)) + d(f(x0, y

′), f(x′, y′)) + ε/3

Therefore, either ε/3 < d(f(x, y), f(x0, y)) or ε/3 < d(f(x0, y
′), f(x′, y′)). k��

For a topological space Y we shall denote by C(Y ) the set of all real-valued continuous functions
defined on Y and by Cp(Y ) the set C(Y ) endowed with the topology of pointwise convergence on
Y . Further, if X is a topological space and f : X → C(Y ) then the mapping f̃ : X × Y → R
defined by, f̃(x, y) := f(x)(y) is separately continuous on X × Y if, and only if, f : X → Cp(Y ) is
continuous. Hence there is a natural correspondence between the study of real-valued separately
continuous functions on X × Y and the study of continuous mappings from X into Cp(Y ). With
this in mind, we introduce the following definitions. We say that a mapping f : X → C(Y ) is
jointly continuous at (x0, y0) ∈ X×Y if the function f̃ is jointly continuous at (x0, y0) and for each
ε > 0, we will say that f is ε-jointly continuous at (x0, y0) if the function f̃ is ε-jointly continuous
at (x0, y0).

With these definitions under our belt we can rephrase Lemma 1 as follows.

Lemma 2 Let X and Y be topological spaces and let f : X → C(Y ). If for some ε > 0, f is not
ε-jointly continuous at (x0, y0) ∈ X × Y then for each pair of open neighbourhoods U of x0 and V
of y0 there exist points x and x′ in U and y in V such that ε/3 < f(x)(y)− f(x′)(y).

In addition to the previously mentioned notions of continuity we shall also require a weaker form of
continuity. If f : X → Y is a function acting from a topological space X into a topological Y then
we say that f is quasi-continuous on X if for each pair of open subsets U of X and W of Y such
that f(U) ∩ W 6= ∅ there exists a non-empty open set V ⊆ U such that f(V ) ⊆ W . Although in
general quasi-continuous functions are not obliged to have any points of continuity, the next lemma
shows that when the domain space is Baire and the range space is metric such mappings must have
many points of continuity.

Lemma 3 [2] Let f : X → Y be a quasi-continuous mapping acting from a Baire space X into a
metric space Y . Then {x ∈ X : f is continuous at x} is residual in X (i.e., contains a countable
intersection of dense open subsets of X).

For more information on the continuity of quasi-continuous mappings see, [6].

2 Main Result

The main result of this paper (Theorem 1) is based upon Lemma 6 which in turn is based upon
the following lemma.
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Lemma 4 [3, Corollary C] Let Y be a compact and D be a dense and countable subset of Y . Then
every subset of C(Y ) which is compact with respect to the topology of pointwise convergence on D
and Lindelöf with respect to the topology of pointwise convergence on Y is separable in (C(Y ), ‖·‖∞).

The proof of Lemma 6 relies upon the careful handling of second category sets (i.e., sets that are
not of the first category). So here we shall introduce some notation that will facilitate this. Let X
be a topological space and let U be an open subset of X. We say that a subset A of X is everywhere
second category in U if A ∩ W is second category in X for each non-empty open subset W of U .
For a subset A of X we shall denote by D(A) the union of all open subsets W for which A is
everywhere second category in W . It is readily seen that A is everywhere second category in D(A)
(i.e., D(A) is the largest open subset of X in which A is everywhere second category). Although
in general D(A) may be empty, it follows from [4, Proposition 3.2.5] that if A is second category
in X then D(A) 6= ∅.

Lemma 6 also requires a version of the pigeonhole principle.

Lemma 5 (Pigeonhole principle for second category sets) Let f : X → Y be a mapping from a
second category set X into a non-empty set Y . If (Vn)n∈N is a cover of Y then for at least one
n ∈ N, f−1(Vn) is second category in X.

Lemma 6 Let Y be a Lindelöf Čech-complete space, (X, d) a complete metric space and f : X →
Cp(Y ) a quasi-continuous mapping. If there exists a Lindelöf subspace L of Cp(Y ) such that f(X) ⊆
L, then there exists a residual subset R of X such that f is jointly continuous at each point of R×Y .

Proof: Let βY denote the Stone-Čech-compactification of Y and let (Gn)n≥0 be a decreasing
sequence of open subsets of βY such that: (i) G0 := βY and (ii) Y =

⋂
n≥0 Gn. For each ε > 0

consider the set

Rε := {x ∈ X : f is ε-jointly continuous at each point of {x} × Y }.

Clearly, f is jointly continuous at each point of (
⋂

n∈N R1/n) × Y . Therefore, it will be sufficient
to show that for each ε > 0, Rε is residual in X. To this end, let us fix ε > 0. In order to obtain
a contradiction let us assume that X \Rε is second category in X [Note that for each x ∈ X \Rε

there exists an element y ∈ Y that that f is not ε-jointly continuous at (x, y)]. Let T be the set
of all finite sequences of 0’s and 1’s. We shall inductively (on the length |t| of t ∈ T ) define the
following: second category subsets Xt of X \Rε; points xt and x′t in D(Xt); non-empty open subsets
Yt of βY ; elements yt ∈ Yt ∩ Y and sequences (Ot

n)n∈N of dense open subsets of X that fulfil the
following properties:

(i) Xt ⊆ Xt′ and Yt ⊆ Yt′ whenever t′ < t (i.e., whenever t is an extension of t′);

(ii) d-diam(Xt) < 1/2|t| and Yt
βY ⊆ G|t|, where Yt

βY denotes the closure of Yt in βY ;

(iii) Xt0 ∩Xt1 = ∅;

(iv) for each x ∈ Xt there exists a yx ∈ Yt ∩ Y such that f is not ε-jointly continuous at (x, yx);

(v) ε/3 < f(xt)(yt)− f(x′t)(yt);

(vi) ε/3 < f(x)(yt)− f(x′)(yt) for all x ∈ Xt1 and all x′ ∈ Xt0;

(vii) the mapping x 7→ f(x)(yt) is continuous at the points of
⋂

n∈N Ot
n;
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(viii) if |t′| < |t| then Xt ⊆
⋂
{Ot′

k : 1 ≤ k ≤ |t|}.

Base Step. Let X∅ be any second category subset of X \Rε with d-diameter less than 1 such that
X∅ ⊆ D(X∅) (Note: such a subset exists. For example, if W is any non-empty open subset of
D(X \ Rε) of d-diameter less than 1 then one could set X∅ := W ∩ (X \ Rε)) and let Y∅ := βY .
Since X∅ is a subset of X \ Rε, for every x ∈ X∅ there exists a yx ∈ Y∅ ∩ Y such that f is not
ε-jointly continuous at (x, yx). Therefore, by Lemma 2 there exist points x∅ and x′∅ in D(X∅) and
an element y∅ ∈ Y∅ ∩ Y such that

ε/3 < f(x∅)(y∅)− f(x′∅)(y∅).

Also since the mapping x 7→ f(x)(y∅) is quasi-continuous it follows from Lemma 3 that there exists
a sequence (O∅

n)n∈N of dense open subsets of X such that the mapping x 7→ f(x)(y∅) is continuous
at the points of

⋂
n∈N O∅

n.

Assuming that we have defined the second category subsets Xt of X, the points xt and x′t ∈ D(Xt),
the non-empty open subsets Yt of βY , the elements yt ∈ Yt∩Y and the sequences (Ot

n)n∈N of dense
open subsets of X, that satisfy the properties (i)-(viii) for each t ∈ T with |t| ≤ n, we shall proceed
to the next step.

Inductive Step. Consider t ∈ T of length n. Since ε/3 < f(xt)(yt) − f(x′t)(yt) and x 7→ f(x)(yt)
is quasi-continuous there exist non-empty open sets W0 and W1 with d-diameter less than 1/2n+1

such that

∅ = W0 ∩W1 ⊆ W0 ∪W1 ⊆ D(Xt) ∩
⋂
{Ot′

k : 1 ≤ k ≤ n + 1 and |t′| < n + 1}

and ε/3 < f(x)(yt)− f(x′)(yt) for all x ∈ W1 and all x′ ∈ W0. Now, since Yt ∩ Y
Y (i.e., the closure

of Yt ∩ Y with respect to Y ) is Lindelöf there exist open subsets (Vn)n∈N of βY such that

Yt ∩ Y ⊆ Yt ∩ Y
Y ⊆

⋃
n∈N

Vn ⊆
⋃
n∈N

Vn
βY ⊆ Gn+1

Hence by Lemma 5 for each i ∈ {0, 1} there exists a second category subset Xti ⊆ Xt ∩ Wi and
a ni ∈ N such that for each x ∈ Xti there exists a yx ∈ Vni ∩ Yt ∩ Y for which f is not ε-jointly
continuous at (x, yx). Therefore by Lemma 2, for each i ∈ {0, 1} there exist points xti and x′ti in
D(Xti) and an element yti ∈ Vni ∩ Yt ∩ Y such that ε/3 < f(xti)(yti) − f(x′ti)(yti). Also since the
mapping x 7→ f(x)(yti) is quasi-continuous it follows from Lemma 3 that there exists a sequence
(Oti

n )n∈N of dense open subsets of X such that the mapping x 7→ f(x)(yti) is continuous at the
points of

⋂
n∈N Oti

n . The inductive step is completed by defining Yti := Vni ∩ Yt.

Let E := {yt : t ∈ T}. We claim that E
Y (i.e., the closure of E with respect to Y ) is a compact

subset of Y . To see this note that for each n ∈ N

E
βY ⊆

⋃
|t|=n

Yt
βY ∪ {yt : 0 ≤ |t| < n} ⊆

⋃
|t|=n

Yt
βY ∪ E ⊆

⋃
|t|=n

Yt
βY ∪ Y ⊆ Gn

and so E
βY ⊆

⋂
n≥0 Gn = Y . Therefore, E

Y = E
βY ; which is compact in βY .

By the construction, the set K :=
⋂

n∈N Kn, where Kn :=
⋃
|t|=n Xt, is a closed and totally bounded

subset of X (and hence compact, since X is complete). Furthermore, the construction also yields
that for each t ∈ T , K ⊆

⋂
n∈N Ot

n. Thus, for each t ∈ T the mapping x 7→ f(x)(yt) is continuous
on K. Note also that for each pair of distinct points x and x′ in K there exists a t ∈ T such
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that ε/3 < |f(x)(yt)− f(x′)(yt)|. Next we consider the continuous mapping R : Cp(Y ) → Cp(E
Y )

defined by, R(f) := f |
E

Y . Then (R ◦ f)(K) is a non-separable subset of (C(EY ), ‖ · ‖∞) that is
compact with respect to the topology of pointwise convergence on E. Moreover, since the topology
of pointwise convergence on E is Hausdorff in C(EY ), (R ◦ f)(K) is closed in this topology and
hence closed in Cp(E

Y ). However, by Lemma 4, this is impossible since (R ◦ f)(K) ⊆ R(L); which
is Lindelöf. Hence it must be the case that for each ε > 0, Rε is residual in X. k�� .

To formulate the statement of our main theorem we will need to consider the following topological
game.

Let X be a topological space. On X we shall consider the Choquet game played between two
players α and β. A play of this game is a decreasing sequence of, alternately chosen, non-empty
open subsets An ⊆ Bn ⊆ . . . B2 ⊆ A1 ⊆ B1, where the sets An are chosen by player α and the sets
Bn by player β. The player α is said to have won a play of the Choquet game if

⋂
n∈N Bn 6= ∅.

Otherwise player β is said to have won the play. A strategy s for the player α is a rule that tells
him or her how to play (possibly depending on all the previous moves of player β). Since the
moves of player α may depend on the previous moves of player β, we denote the nth move of
player α by, s(B1, B2, . . . Bn). Any sequence of non-empty open subsets (Bn)n∈N of X that satisfy
Bn+1 ⊆ s(B1, B2, . . . Bn) for all n ∈ N is called an s-play. We say that s is a winning strategy, if
using it, player α wins every play, independently of the moves of player β, (i.e.,

⋂
n∈N Bn 6= ∅ for

each s-play (Bn)n∈N). A topological space X is called an α-favourable space if α has a winning
strategy in the Choquet game played on X. More information on the Choquet game can be found
in [13].

Let X be an α-favourable space and let s be a winning strategy for the player α in the Choquet
game played on X. We shall denote by P the space of all s-plays endowed with the Baire metric
d, that is, if p := (Bn)n∈N and p′ := (B′

n)n∈N then d(p, p′) := 0 if p = p′ and d(p, p′) := 1/n
otherwise, where n := min{i ∈ N : Bi 6= B′

i}. It is straight forward to verify that (P, d) is a
complete metric space, [6]. In the proofs of Lemma 7 and Theorem 1 we shall use the notation:
I(p, m) := s(B1, B2, . . . Bm) for each m ∈ N and p := (Bn)n∈N ∈ P . Note also that the proofs of
Lemma 7 and Theorem 1 are based upon ideas from [8].

Lemma 7 Let X be an α-favourable space, s be a winning strategy for the player α in the Choquet
game played on X and let P denote the space of all s-plays, endowed with the Baire metric. If
f : X → Z is a quasi-continuous mapping into a topological space Z then the set-valued mapping
F : P → 2Z defined by,

F (p) :=
⋂
n∈N

f(Bn), where p := (Bn)n∈N is an s-play.

has non-empty values and is a “minimal mapping” (i.e., for every pair of open subsets U of P and
W of Z such that F (U)∩W 6= ∅ there exists a non-empty open subset V ⊆ U such that F (V ) ⊆ W ).

Proof: The fact that F has non-empty images follows directly from the observation that for each
p := (Bn)n∈N ∈ P ,

∅ 6= f(
⋂
n∈N

Bn) ⊆
⋂
n∈N

f(Bn) = F (p).

Next we deduce the minimality of F . To this end, let U be an open subset of P and W be an
open subset of Z such that F (U) ∩ W 6= ∅. Choose p := (Bn)n∈N ∈ U and m ∈ N such that
F (p) ∩W 6= ∅ and B(p; 1/m) = {p′ ∈ P : p′|m = p|m} ⊆ U . Then f(I(p, m)) ∩W 6= ∅. Since f is

5



quasi-continuous there exists a non-empty open subset V ′ of I(p, m) such that f(V ′) ⊆ W . Now,
we define p∗ := (B∗

n)n∈N ∈ P by, B∗
k := Bk for all 1 ≤ k ≤ m, B∗

m+1 := V and B∗
k+1 := s(B∗

1 , . . . B∗
k)

for all k > m. Note that this definition is well-defined since,

B∗
m+1 = V ⊆ I(p, m) = s(B1, . . . Bm) = s(B∗

1 , . . . B∗
m).

Then for every p′ ∈ V := B(p∗; 1/(m + 1)),

F (p′) =
⋂
n∈N

f(I(p′, n)) ⊆ f(I(p′,m + 1)) = f(I(p∗,m + 1)) ⊆ f(V ) ⊆ W. k��
To exploit the previous lemma we need to establish the connection between minimal mappings and
the continuity of their selections.

Lemma 8 [11, Lemma 1.1] Let F : X → 2Z be a minimal mapping acting from a topological space
X into non-empty subsets of a Hausdorff space Z and let σ : X → Z be any selection of F (i.e.,
σ(x) ∈ F (x) for all x ∈ X). If σ is continuous at x0 ∈ X then F (x0) = {σ(x0)}.

Theorem 1 Let Y be a Lindelöf Čech-complete space, X an α-favourable space and f : X → Cp(Y )
a quasi-continuous mapping. If there exists a Lindelöf subspace L of Cp(Y ) such that f(X) ⊆ L,
then there exists a residual subset R of X such that f is jointly continuous at each point of R× Y .

Proof: Let s be a winning strategy for the player α in the Choquet game played on X and let P
denote the space of all s-plays, endowed with the Baire metric d. On the complete metric space
(P, d) we define a set-valued mapping F : P → 2C(Y ) by,

F (p) :=
⋂
n∈N

f(Bn), where p := (Bn)n∈N is an s-play

By Lemma 7, the mapping F has non-empty values and is a minimal mapping. Let σ : P → C(Y )
be any selection of F . Then since F is minimal, σ is quasi-continuous. Hence, by Lemma 6, there
exists a sequence (On)n∈N of dense open subsets of P such that σ is jointly continuous at each point
of (

⋂
n∈N On)×Y . Note that in particular this means that σ is continuous on R′ :=

⋂
n∈N On when

C(Y ) is considered with the topology of pointwise convergence on Y . Therefore, by Lemma 8,
F (p) = {σ(p)} for each p ∈ R′. We shall now show that there exists a residual subset R of X and
a continuous mapping g : R → R′ such that f(x) = σ(g(x)) for each x ∈ R. To achieve this, we
shall inductively construct a sequence (Λn : n ∈ N) of subsets of P × N.

Step 0. Let Λ0 be a maximal, with respect to set inclusion, subset of P × {1} such that {I(p, m) :
(p, m) ∈ Λ0} is disjoint. By Zorn’s lemma such a maximal family exists. Moreover, it is easy to see
that for such a family, W 0 :=

⋃
{I(p, m) : (p, m) ∈ Λ0} dense in X.

For each n ∈ N, we will require the subset Λn of P × N to possess the following properties:

(an) {I(p, m) : (p, m) ∈ Λn} is a disjoint family of subsets of X;

(bn) Wn :=
⋃
{I(p, m) : (p, m) ∈ Λn} is dense in X;

(cn) {p′ ∈ P : p′|m = p|m} = B(p; 1/m) ⊆ On for each (p, m) ∈ Λn;

(dn) for each (p, m) ∈ Λn there exists a unique (p′,m′) ∈ Λn−1 such that m′ < m and p′|m′ = p|m′ .
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Step 1. Consider Λ1 ⊆ P × N satisfying the properties (a1), (c1) and (d1) and which is maximal
with respect to set inclusion. By Zorn’s lemma such a maximal family exists. We shall show that
Λ1 satisfies (b1). If W 1 :=

⋃
{I(p, m) : (p, m) ∈ Λ1} is not dense in X then there exists a non-empty

open subset U of X such that W 1 ∩ U = ∅. Since W 0 is dense in X, W 0 ∩ U 6= ∅ and so we may
assume that U ⊆ I(p, m) for some (p, m) ∈ Λ0, with p := (Bk)k∈N and m = 1. Now we define
p∗ := (B∗

k)k∈N ∈ P by, B∗
1 := B1, B∗

2 := U and B∗
k+1 := s(B∗

1 , . . . B∗
k) for all k > 1. Note that this

defines a legitimate s-play since,

B∗
2 = U ⊆ I(p, m) = I(p, 1) = s(B1) = s(B∗

1).

Next, choose p∗∗ ∈ B(p∗; 1/2) ∩ O1 6= ∅ and m∗∗ ∈ N so that 1 < m∗∗ and B(p∗∗; 1/m∗∗) ⊆
B(p∗; 1/2)∩O1. Note: this choice is possible too, since O1 is dense and open in P . Now, (p∗∗,m∗∗) 6∈
Λ1 and Λ1 ∪ {(p∗∗,m∗∗)} is a subset of P × N satisfying (a1), (c1) and (d1). This contradicts the
maximality of Λ1 and hence we may conclude that Λ1 satisfies property (b1).

Assuming that we have constructed the subsets Λk in the sequence satisfying the properties (ak),
(bk), (ck) and (dk) up to, and including the nth step, we proceed to construct the next step.

Step (n+1). Consider Λn+1 ⊆ P ×N satisfying the properties (an+1), (cn+1) and (dn+1) and which
is maximal with respect to set inclusion. We shall show that Λn+1 satisfies property (bn+1). If
Wn+1 :=

⋃
{I(p, m) : (p, m) ∈ Λn+1} is not dense in X then there exists a non-empty open subset

U of X such that Wn+1 ∩ U = ∅. Since Wn is dense in X, Wn ∩ U 6= ∅ and so we may assume
that U ⊆ I(p, m) for some (p, m) ∈ Λn, with p := (Bk)k∈N. Now we define p∗ := (B∗

k)k∈N ∈ P by,
B∗

k := Bk for all 1 ≤ k ≤ m, B∗
m+1 = U and B∗

k+1 := s(B∗
1 , . . . B∗

k) for all k > m. Note that this
defines a legitimate s-play since,

B∗
m+1 = U ⊆ I(p, m) = s(B1, . . . Bm) = s(B∗

1 , . . . B∗
m).

Next, choose p∗∗ ∈ B(p∗; 1/(m+1))∩On+1 6= ∅ and m∗∗ ∈ N so that m < m∗∗ and B(p∗∗; 1/m∗∗) ⊆
B(p∗; 1/(m + 1)) ∩ On+1. Note: this choice is possible too, since On+1 is dense and open in P .
Now, (p∗∗,m∗∗) 6∈ Λn+1 and Λn+1 ∪ {(p∗∗,m∗∗)} is a subset of P ×N satisfying (an+1), (cn+1) and
(dn+1). This contradicts that maximality of Λn+1 and hence we may conclude that Λn+1 satisfies
property (bn+1). This completes the inductive step.

Set R :=
⋂

n∈N Wn. Then each x ∈ R uniquely determines a sequence (pk,mk) ∈ Λk, k = 1, 2, . . . so
that x ∈ I(pk,mk) and the properties (ak)−(dk) are fulfilled. In particular, for every n, n′ ∈ N, pn+n′

is a continuation of pn|mn and therefore, d(pn, pn+n′
) < 1/mn. Since P is a complete metric space

there exists p∞(x) := limn→∞ pn in P which is a continuation of all the pk|mk , k = 1, 2, . . .. Thus,
by (cn), p∞(x) ∈

⋂
k∈N Ok = R′. Define g : R → R′ by, g(x) := p∞(x). This mapping is continuous

on its domain R because, for every pair x′, x′′ ∈ R∩ I(p, m) with (p, m) ∈ Λk, both g(x′) and g(x′′)
are continuations of p|m (i.e., d(g(x′), g(x′′)) < 1/m). Further, since I(p∞(x),mk) = I(pk,mk) for
all k ∈ N we may deduce that

f(x) ∈ f(
⋂
k∈N

I(pk,mk)) ⊆
⋂
k∈N

f(I(pk,mk)) =
⋂
k∈N

f(I(p∞(x),mk))

=
⋂
k∈N

f(I(p∞(x), k)) = F (p∞(x)) = F (g(x)) = {σ(g(x))};

which shows that f(x) = σ(g(x)) for all x ∈ R.

Thus, it follows that f |R is jointly continuous at each point of R. Then with a small amount of
extra effort we can deduce that f is in fact jointly continuous at each point of R. k��
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Remark If one really wanted to “squeeze the pips” out of the previous theorem one could prove
the slightly more general statement given below.

“Let Y be a Lindelöf Čech-complete space, D ⊆ Y be a dense subset, X an α-favourable space and
f : X → C(Y ) a quasi-continuous mapping with respect to the topology of pointwise convergence
on D. If {f(x)|E : x ∈ X} is contained in a Lindelöf subset of Cp(E) for each countable subset
E of D that is relatively compact in Y then there exists a residual subset R of X such that f is
jointly continuous at each point of R× Y .”

To prove this more general statement we first need to improve Lemma 1 and correspondingly
Lemma 2 so that “y ∈ V ” in their conclusions is actually, “y ∈ V ∩D”. Then use this in Lemma 6
so that we have “yt ∈ Yt ∩D” rather than just “yt ∈ Yt ∩ Y ”. Finally, notice that the only place in
Lemma 6 where the Lindelöf property was used was in showing that {f(x)|E : x ∈ K} is Lindelöf
in Cp(E), for some countable relatively compact subset E of Y .

Corollary 1 Suppose that X is Lindelöf and α-favourable and Y is Lindelöf and Čech-complete.
Then for each separately continuous function f : X × Y → R there exists a residual set R in X
such that f is jointly continuous at each point of R× Y .

Proof: Consider the mapping f̂ : X → Cp(Y ) defined by, f̂(x)(y) := f(x, y). Since f is separately
continuous f̂ : X → Cp(Y ) is continuous and hence f̂(X) is Lindelöf. The result now follows from
Theorem 1. k��
Corollary 2 Suppose that X is separable and α-favourable and Y is Lindelöf and Čech-complete.
Then for each separately continuous function f : X × Y → R there exists a residual set R in X
such that f is jointly continuous at each point of R× Y .

Proof: Consider the mapping f̂ : X → Cp(Y ) defined by, f̂(x)(y) := f(x, y). Since f is separately
continuous f̂ : X → Cp(Y ) is continuous and hence f̂(X) is separable in Cp(Y ). Thus for each
compact subset K of Y , {f(x)|K : x ∈ X} is separable in (C(K), ‖ · ‖∞) and so Lindelöf in Cp(K).
The result now follows from the Remark. k��
Corollary 3 For a non-empty closed and bounded convex subset C of a weakly Lindelöf Banach
space X the following properties are equivalent:

(i) (C,weak) is α-favourable;

(ii) (C,weak) is almost Čech-complete, i.e., contains as a dense subset a Čech-complete space;

(iii) the points of continuity of (C,weak) are a dense Gδ subset of (C,weak);

(iv) each non-empty convex relatively weak open subset of C possesses non-empty relatively weak
open subsets of arbitrarily small diameter.

Proof: The fact that (ii), (iii) and (iv) are equivalent follows from Theorem 3.1 in [10] and it is easy
to see that (ii) implies (i). So we shall complete the proof by showing that (i) implies (iii). To this
end, let C be a non-empty closed and bounded convex subset of X. We will consider the continuous
linear mapping I : (C,weak) → Cp(BX∗ ,weak∗) defined by, I(x)(x∗) := x∗(x). By our hypothesis,
(C,weak) is both Lindelöf and α-favourable. Therefore by Theorem 1 there exists a residual subset
R of C such that I is jointly continuous at each point of R×BX∗ . Since (BX∗ ,weak∗) is compact
this is equivalent to I being norm continuous at the points of R. Then, since I is an isometry it
follows that each point of R is in fact a point of continuity of (C,weak). k��
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Remark Let us end this paper by mentioning that:

(i) in [15] there is an example of a separately continuous function f : X × Y → R defined
on the product of an α-favourable space X and a compact space Y such that {x ∈ X :
f is jointly continuous at each point of {x} × Y } is empty;

(ii) in [14, p. 313] there is an example of a separately continuous function f : X ×Y → R defined
on the product of a compact metric space X and a completely metrizable (and hence Čech
complete) space Y such that {x ∈ X : f is jointly continuous at each point of {x} × Y } is
empty;

(iii) the function f : [0, 1] × Cp([0, 1]) → R defined by, f(t, g) := g(t) is separately continuous on
[0, 1] × Cp([0, 1]) but nowhere jointly continuous, despite the fact that Cp([0, 1]) is analytic
(and hence hereditarily Lindelöf);

(iv) in [12] there is an example (under additional set-theoretical assumptions) of a separately
continuous mapping f : X×Y → R defined on the product of a Baire space X and a compact
space Y such that Cp(Y ) is hereditarily Lindelöf but for which {x ∈ X : f is jointly continuous
at each point of {x} × Y } is empty;

(v) Y is Lindelöf and Čech-complete if, and only if, it is the pre-image of a Polish space under a
perfect surjective mapping (see, [5, p. 441] and [5, Corollary 3.7]);

(vi) a slight modification of the proof of Theorem 1 yields an affirmative answer to the first
question raised in Remark 1 of [7]. Namely, in terms of the definitions given in [7], if X is a
Banach space and (X, weak) is Lindelöf is X a generic continuity space?
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