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Abstract

We give a simple presentation of the six quaternionic equiangular lines in H2

as an orbit of the primitive quaternionic reflection group of order 720 (which is
isomorphic to 2 · A6, the double cover of A6). Other orbits of this group are also
seen to give optimal spherical designs (packings) of 10, 15 and 20 lines in H2, with
angles {1

3 ,
2
3}, {

1
4 ,

5
8} and {0, 1

3 ,
2
3}, respectively. We consider the origins of this

reflection group as one of Blichfeldt’s “finite collineation groups” for lines in C4,
and general methods for finding nice systems of quaternionic lines.

Key Words: finite tight frames, quaternionic equiangular lines, equi-isoclinic subspaces,
quaternionic reflection groups, representations over the quaternions, Frobenius-Schur
indicator, projective spherical t-designs, special and absolute bounds on lines, double
cover of A6.
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1 Introduction
There has been considerable interest in determining maximal sets of equiangular lines in
the Euclidean spaces Rd, Cd and Hd, as part of the theory of spherical designs, since it
began in the 1970’s [DGS77]. The existence of real equiangular lines corresponds to the
existence of certain classes of strongly regular graphs [Wal09], the existence of a maximal
set of d2 equiangular lines in Cd, i.e., a SIC, is conjectured by Zauner to hold for all
dimensions [Zau10], [ACFW18], and for quaternionic lines (see [CKM16]) no explicit
examples of maximal sets of quaternionic equiangular lines were known until Et-Taoui
[ET20] presented the following (maximal) set of six equiangular lines in H2 given by the
unit vectors

v1 =
(

1
0

)
, v2 =

√2√
5√
3√
5

 , v3 =
 √

2√
5

−
√

3
4
√

5 + 3
4i

 , v4 =
 √

2√
5

−
√

3
4
√

5 −
1
4i+ 1√

2j

 ,
v5 =

 √
2√
5

−
√

3
4
√

5 −
1
4i−

1
2
√

2j +
√

3
2
√

2k

 , v6 =
 √

2√
5

−
√

3
4
√

5 −
1
4i−

1
2
√

2j −
√

3
2
√

2k

 , (1.1)

which are said to have “projective symmetry group” A6. They are unique up to projective
unitary equivalence, and were obtained by solving the system of polynomials giving the
equiangularity, i.e.,

|〈vj, vk〉|2 = 2
5 , j 6= k, |〈vj, vj〉|2 = 1,

in the variables za, wa ∈ C2, where va = za + waj ∈ H2, and

〈v, w〉 :=
d∑
j=1

vjwj (Euclidean inner product). (1.2)

In this paper, we give a simple presentation of the six equiangular lines in H2, in
an attempt to understand quaternionic equiangular lines in general (in the context of
maximal sets of real and complex equiangular lines). The main presentation roughly
follows our investigation, showing the motivation, definitions required, and technical
details, such as computations undertaken in Magma. We summarise the key findings:

• The six equiangular lines are seen to be the orbit of an (irreducible) quaternionic
reflection group H720 of order 720, which is isomorphic to 2 ·A6, the double cover
of A6. For the purpose of comparison with (1.1), the corresponding presentation
of the lines is given by the equal-norm vectors( √

2 +
√

10√
3− i+ j +

√
3k

)
,

(√
2 +
√

10
2i− 2j

)
,

( √
2 +
√

10
−
√

3− i+ j −
√

3k

)
,(

−
√

3− i− j −
√

3k√
2 +
√

10

)
,

(
2i+ 2j√
2 +
√

10

)
,

(√
3− i− j +

√
3k√

2 +
√

10

)
. (1.3)
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• The lines are also the orbit (of a vector in H2) under the action of a subgroup of
H720 of order 24, which is the complex reflection subgroup with Shephard-Todd
number 4. Interestingly, the orbit of another (complex-valued) vector under this
subgroup gives the four equiangular lines in C2.

• The equiangular lines are not roots of the reflection group H720, which partly
explains why they have only recently been found. Indeed, the stabiliser of a line
is a reflection free subgroup of order 120 which has a faithful action on the line.

• The projective action of H720 ∼= 2·A6 (which has centre the scalar matrices {−1, 1})
on the six lines is that of A6, i.e., there are exactly two elements ±g of the reflection
group which give any even permutation of the lines.

• The quaternionic reflection groups have been classified, and H720 is Cohen’s group
of type O2 [Coh80] (page 320). This is said to be Blichfeldt’s collineation group
(C) for C4 [Bli17] (page 142). We consider Blichfeldt’s groups (A), (C) and (K)
in detail. These are neither presented as reflection groups nor as collineation
groups for quaternionic lines, but are seen to give nested (irreducible) quaternionic
reflection groups which permute various finite sets of quaternionic lines.

• In principal, it is possible to go from the abstract group 2 · A6 to its rank 2
quaternionic representation H720, and then the six quaternionic equiangular lines
in H2 (each one of which is fixed by a reducible subgroup of order 120 = 720

6 ).
This provides a general method for constructing nice (highly symmetric) sets of
quaternionic lines from abstract groups.

We assume some familiarity with the quaternions H, which are a noncommutative
division algebra, and the linear algebra over them [Coh80], [Zha97], [Wal20a], [Voi21].
This can be routine, e.g., matrix groups (don’t swap the order of multiplication), to
extremely involved, e.g., defining the determinant (it can’t reasonably be done [Asl96]).
We will provide appropriate commentary when required.

Throughout, we adopt the following conventions. The Euclidean quaternionic space
Hd will be thought of as a right H-vector space (module), so that H-linear maps are
applied on left, and we have

A(vα) = (Av)α, A ∈Md(H), v ∈ Hd, α ∈ H,

and the inner product (1.2) satisfies

〈vα, wβ〉 = α〈v, w〉β, α, β ∈ H, v, w ∈ Hd.

We use the “complexification”

g = A+Bj ∈Md(H) ⇐⇒ [g]C :=
(
A −B
B A

)
∈M2d(C),

v = z + wj ∈ Hd ⇐⇒ [v]C :=
(
z
w

)
∈ C2d, (1.4)

where [·]C is C-linear, [gv]C = [g]C[v]C, etc.
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2 The primitive quaternionic reflection group
The projective symmetry group (see [CW18], [Wal18]) of the six equiangular lines is A6,
which is generated by the permutations

a = (12)(34) (order 2), b = (1235)(46) (order 4). (2.5)

In [Wal20a], it was shown that unitary matrices which give these permutations of the
six equiangular lines (1.1) are given by

Ua =
 2√

15i−
√

2√
15j

√
2√
5i−

1√
5j√

2√
5i−

1√
5j − 2√

15i+
√

2√
15j

 ,
Ub =

 1
2
√

5 + 1
2
√

3i+ 3−
√

5
2
√

30 j +
√

5+1
2
√

10 k
√

3
2
√

10 −
1

2
√

2i+ 3+
√

5
4
√

5 j −
√

3
5+
√

5k√
3

2
√

10 + 1
2
√

2i+ 3−
√

5
4
√

5 j +
√

3
5−
√

5k −
1

2
√

5 + 1
2
√

3i−
3
√

5+5
10
√

6 j +
√

5−1
2
√

10 k

 . (2.6)

These satisfy
U2
a = −I, U4

b = −I,
and so they do not generate A6, as a matrix group.

The six equiangular lines of (1.1) and the unitary matrices of (2.6) can be put
in the Magma computer algebra system as a quaternion algebra over the field Q(ζ),
ζ = ζ120 = e

2πi
120 , which contains the required roots

√
2,
√

3,
√

5, e.g.,

F:=CyclotomicField(24);
zeta:=RootOfUnity(24);
Q<i,j,k>:=QuaternionAlgebra<F|-1,-1>;

Since i = ζ30 ∈ Q(ζ), care must be taken to distinguish (or identify) it with the i
provided by QuaternionAlgebra. We did this by entering all quaternions in the form
a1 + a2i + a3j + a4k, where aj ∈ R ∩ Q(ζ) and i, j, k are the units for the quaternion
algebra. Since Magma could form, but not calculate with, the matrix group (this feature
has subsequently been added)

H := 〈Ua, Ub〉 ⊂ U2(H), (2.7)

it was constructed as a group of complex matrices via (1.4), from which it was deduced
that H is the finite group of order 720 with small group identifier <720, 409>. This
group is 2 · A6, the double cover of A6, which is the unique (abstract) group with

composition series:

2 · A6
| A6
∗
| Z2
1

In other words:
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• H is a rank 2 faithful irreducible unitary representation of 2 · A6 over H, which
could be obtained from the complex representations of the abstract group 2 · A6.

A quaternionic reflection is defined to be a nonidentity unitary map g ∈ Ud(H)
which fixes a subspace of dimension d− 1 of Hd (for us these will have finite order, and
sometimes this is taken as part the definition), i.e.,

rank(I − g) = d− 1.
A nonzero vector in the orthogonal complement of the fixed subspace of a reflection
(which defines the fixed subspace) is called a root of the reflection, and the subspace
it gives a root line. A (usually finite) group generated by quaternionic reflections is
called a quaternionic reflection group [Coh80] or a symplectic reflection group
[BST23] (when given as a complex matrix group). The conjugate h−1gh in the unitary
group Ud(H), or Md(H), of a reflection g is a reflection, since

rank(I − h−1gh) = rank(h−1(I − g)h) = rank(I − g).
Correspondingly, the reflection groups are classified up to conjugation in Ud(H). By
directly observing that H contains reflections, and then calculating the reflection group
generated by these reflections, it was determined that

• H is a primitive quaternionic reflection group with 40 reflections, each of order 3.

• The 40 reflections correspond to 20 root lines (a reflection and its inverse have the
same root line), which is the maximum possible.

• H is generated by three reflections, but not two.

• The centre of H is the scalar matrices ±I.
Since Ua and Ub permute the six equiangular lines, so does H, with ±g giving the
same even permutation of the lines. In this way, elements of H can be indexed by the
permutation of the six equiangular lines that they give (they cover this element of A6).

Conjugacy classes of A6

order representative length
1 () 1
2 (12)(34) 45
3 (123)(456) 40
3 (123) 40
4 (1234)(56) 90
5 (12345) 72
5 (13452) 72

Conjugacy classes of 2 · A6

order length elements covered lines fixed
1 1 () 6
2 1 () 6
3∗ 40 (123)(456) none
3 40 (123) 3
4 90 (12)(34) 2
5 72 (12345) 1
5 72 (13452) 1
6 40 (123)(456) none
6 40 (123) 3
8 90 (1234)(56) none
8 90 (1234)(56) none
10 72 (12345) 1
10 72 (13452) 1

* The 40 reflections of order 3
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In particular, we observe that

• The 40 reflections form a conjugacy class of elements of order three, corresponding
to (123)(456), i.e., they fix no equiangular lines. Thus the equiangular lines are
not roots of the reflections, nor of their orthogonal complements.

• The 40 elements of order three which are not reflections form a conjugacy class,
corresponding to (123), i.e., they fix three equiangular lines and cycle the remaining
three.

The six equiangular lines of (1.1) are the orbit of v1 = e1 under the action of the
reflection group H. Therefore, the first column of each matrix in H is a vector in one
of the lines. Any unitary image of these lines is a set of six equiangular lines, which
is an orbit of the corresponding conjugate of the group H in U2(H). We now consider
such a presentation of the lines given by a conjugate of H, for which a generating set of
reflections takes a simple form.

3 The Blichfeldt generators
The (irreducible) quaternionic reflection groups were classified in Cohen [Coh80]. Cohen
classifies the primitive quaternionic reflection groups by whether their complexification
is primitive or not (also see [Sch23]). For our group H, the complexifications of the
generators Ua and Ub are elements of order 4 and 8 with eigenvalues i, i,−i,−i and
±
√
i,±i
√
i. It is easily verified that the 1-dimensional eigenspaces for [Ub]C have trivial

intersection with the 2-dimensional ones for [Ua]C, and so the complexification of H is
primitive. Cohen gives a list of 16 “exceptional” primitive quaternionic reflection groups
with primitive complexifications, in dimensions 1, 2, 3, 4, 5, of which there are six for H2,
including a unique one of order 720. Therefore

• H is the unique primitive quaternionic reflection group of order 720.

Cohen [Coh80] describes the primitive quaternionic reflection group of order 720 as
Blichfeldt’s “primitive simple group of collineations in four variables (C) of order 360φ”.
The generators for Blichfeldt’s group (C) given in [Bli17] (page 141) are, in the notation
of the day:

F1 = (1, 1, ω, ω2), ω = −1
2 +
√

3
2 i,

F2 : x1 = 1√
3

(x′1+
√

2x′4), x2 = 1√
3

(−x′2+
√

2x′3), x3 = 1√
3

(
√

2x′2+x′3), x4 = 1√
3

(
√

2x′1−x′4),

F3 : x1 = 1
2(
√

3x′1 + x′2), x2 = 1
2(x′1 −

√
3x′2), x3 = x′4, x4 = x′3,

F4 : x1 = x′2, x2 = x′1, x3 = −x′4, x4 = −x′3,
corresponding to the “substitutions of the alternating group” (permutations) (abc),
(ab)(cd), (ab)(de), (ab)(ef), respectively. It is one of the 30 types of “primitive collineation
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groups in four complex variables”, and is simple. Effectively, it is a projective repre-
sentation of the alternating group A6 (a simple group of order 360) given as a group
of matrices (to be factored by the order φ subgroup of scalar matrices). Since, as the
name suggests, collineation groups map lines to lines (here in C4), I initially thought the
permutation action was on six lines in C4, but in fact the action is conjugation on a self
normalising index 6 subgroup. We have now seen – over a hundred years later – that it
also corresponds to a permutation action on six quaternionic lines.

In modern matrix notation, the above generators are
1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2

 , 1√
3


1 0 0

√
2

0 −1
√

2 0
0
√

2 1 0√
2 0 0 −1

 ,

√

3
2

1
2 0 0

1
2 −

√
3

2 0 0
0 0 0 1
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

These all have determinant 1, and generate a group G of order 1440, with centre the
scalar matrices 〈i〉, i.e., φ = 4, and G/Z(G) ∼= A6. There is a related subgroup (A) of
order 60φ and a supergroup (K) of order 720φ given by generators:

(A) : F1, F2, F3, (C) : F1, F2, F3, F4, (K) : F1, F2, F3, F4, F
′′,

where F ′′ is given by

F ′′ : x1 = x′2, x2 = −x′1, x3 = x′4, x4 = −x′3,


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .
These both have centre 〈i〉, with G/Z(G) being A5 and S6, respectively. Blichfeldt’s
matrices are not in the form (1.4) for symplectic matrices. The first can be put in this
form by conjugation with the permutation matrix P = [e1, e3, e2, e4] of order 2, i.e.,

PF1P =


1 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 ω

 , PF2P = 1√
3


−1 0 0 −

√
2

0 −1 −
√

2 0
0 −

√
2 1 0

−
√

2 0 0 1

 ,

but the second does not have the form (1.4). By multiplying F2, F3, F4 by ±i, which
does not change the determinant, we obtain matrices which P conjugates to the desired
form. The corresponding collineation groups, thus obtained, have centre 〈−1〉, and can
be viewed as subgroups of U2(H). Consider the matrices a1, . . . , a5 so obtained from

PF 2
1P, P (iF2)P, P (−iF3)P, P (−iF4)P, P (−F ′′)P,

i.e.,

a1 =
(

1 0
0 ω2

)
, a2 =

 1√
3i −

√
2√
3k

−
√

2√
3k

1√
3i

 , a3 =
(

1
2k −

√
3

2 i 0
0 k

)
, a4 =

(
k 0
0 −k

)
, a5 =

(
j 0
0 j

)
.

(3.8)
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It is easily verified that

a3
1 = I, a2

2 = a2
3 = a2

4 = a2
5 = −I,

and that
a1, a1a2, a2a3, a3a4,

are reflections of order 3, so that the groups 〈a1, . . . , am〉, 1 ≤ m ≤ 4 are reflection groups,
as is 〈a1, . . . , a5〉. A simple calculation shows that groups 〈a1, a2, a3〉, 〈a1, a2, a3, a4〉,
〈a1, a2, a3, a4, a5〉 are exactly, i.e., have precisely the same elements, as the quaternionic
reflection groups of orders 120, 720, 1440 having a primitive complexification given by
the root systems O1, O2, O3 of [Coh80] (Table II).

The irreducible quaternionic reflection group 〈a1, a2〉 of order 24 does not have a
primitive complexification, and hence it can be viewed as a (primitive) complex reflection
group in U2(C). It is instructive to see how this happens, which leads to a final tweak
of the generators to make this apparent.

Example 3.1 Consider the irreducible quaternionic reflection group G = 〈a1, a2〉. The
action of the complexification of the generators on C4 is given by

[a1]C =


1 0 0 0
0 −1

2 −
√

3
2 i 0 0

0 0 1 0
0 0 0 −1

2 +
√

3
2 i

 , [a2]C = i√
3


1 0 0

√
2

0 1
√

2 0
0
√

2 −1 0√
2 0 0 −1

 ,

and so we have CG-invariant subspaces

V1 = spanC{e1, e4}, V2 = spanC{e2, e3},

of C4, i.e., the complexification is not irreducible. In other words, the CG-module H2

(of dimension 4) is not irreducible, as it has CG-invariant subspaces

W1 = spanC{e1, e2k}, W2 = spanC{e1i, e2j},

and can be written H2 = W ⊕C Wj, where W is either of these. By changing the
standard basis of the HG-module H2 to one for a CG-invariant subspace, we obtain a
representation where the matrices have complex entries. For example, take the basis
B = {e1i, e2j} for W1, which has basis map

u = [e1, e2k] =
(

1 0
0 k

)
, (3.9)

to obtain

[a1]B = u−1a1u =
(

1 0
0 ω

)
, [a2]B = u−1a2u =

 1√
3i

√
2√
3

−
√

2√
3 −

1√
3i

 , ω := −1
2 +
√

3
2 i.
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In view of the above discussion, we take as generators for the Blichfeldt groups, the
matrices

bj := u−1aju ∈ U2(H), j = 1, . . . , 5,
where u is given by (3.9), which are given by

b1 =
(

1 0
0 ω

)
, b2 =

 1√
3i

√
2√
3

−
√

2√
3 −

1√
3i

 , b3 =
(
−
√

3
2 i+ 1

2k 0
0 k

)
, b4 =

(
k 0
0 −k

)
, b5 =

(
j 0
0 j

)
,

(3.10)
and define a sequence of nested irreducible quaternionic reflection groups

H24 = 〈b1, b2〉, H120 = 〈b1, b2, b3〉, H720 = 〈b1, b2, b3, b4〉, H1440 = 〈b1, b2, b3, b4, b5〉,
(3.11)

indexed by their orders. The first of these is the Shephard-Todd complex reflection
group number 4. We also let H3 = 〈b1〉, which is a reducible reflection group of order 3.

4 A nice presentation of the six equiangular lines
Each of the six lines of (1.1) is fixed by a subgroup of H of order 120 (index 6), which
is therefore reducible. The corresponding equiangular lines for H720 can therefore be
found as the orbit of a vector which is fixed by a reducible subgroup of order 120. The
group H720 has two subgroups of order 120 up to conjugacy, which are isomorphic to
2 ·A5 (the binary icosahedral group), with the class length being six in both cases. One
is H120 which is an irreducible reflection group, and the other is reducible and contains
no reflections. By taking a reducible subgroup of order 120, and finding a line that it
fixes (more detail later), one obtains the following “fiducial” vector

w :=
( √

2 +
√

10√
3− i+ j +

√
3k

)
, (4.12)

whose orbit under H720 is six equiangular lines. With the ordering:

w, b1w, b2
1w, b2w, b1b2w, b2

1b2w,

they are those of (1.3), i.e.,( √
2 +
√

10√
3− i+ j +

√
3k

)
,

(√
2 +
√

10
2i− 2j

)
,

( √
2 +
√

10
−
√

3− i+ j −
√

3k

)
,

(
−
√

3− i− j −
√

3k√
2 +
√

10

)
,

(
2i+ 2j√
2 +
√

10

)
,

(√
3− i− j +

√
3k√

2 +
√

10

)
.

We observe that the six equiangular lines are an orbit of the Shephard-Todd complex
reflection group H24, and the absolute value of the ratio of coordinates is the golden ratio.
With this ordering, Blichfeldt’s generators correspond to the permutations

b1 : (123)(456), b2 : (14)(36), b3 : (23)(45), b4 : (13)(46).
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In particular, b2 fixes lines 2 and 5. The stabiliser in H720 of the line given by the
fiducial vector w is generated by b3 and an element which can have order 3, 5, 6, 10, e.g.,
the following matrix of order 5

g2 :=
 1√

3i
1

2
√

6 + 1
2
√

2i+ 1
2
√

2j −
√

3
2
√

2k
1√
6 + 1√

2j −1
2 + 1

2
√

3i

 : (24356). (4.13)

From the indexing of reflections by elements of A6, it is immediate that H720 cannot
be generated by two reflections, but it can be by three, e.g., since we following action
on the equiangular lines

b1 : (123)(456), b1b2 : (156)(234), b2b3 : (145)(263), b3b4 : (123)(465),

it follows that H720 is generated by the three reflections

b1 =
(

1 0
0 −1

2 +
√

3
2 i

)
, b1b2 =

 1√
3i

√
2√
3

1√
6 −

1√
2i

1
2 + 1

2
√

3i

 , b3b4 =
(
−1

2 +
√

3
2 j 0

0 1

)
.

(4.14)
We now give an explicit conjugation

AHA−1 = H720, A ∈Md(H),

which maps the lines (vj) of (1.1) to the lines (wj) of (1.3), i.e.,

Avj = wjαj, ∃αj ∈ H.

If ±ha and ±hb are the elements of H720 which give the permutations a and b of (2.5)
of the lines given by (vj), then a suitable A is given by one of each of the equations

AUaA
−1 = ±ha, AUbA

−1 = ±hb ⇐⇒ AUa = ±haA, AUb = ±hbA.

The latter presentation gives a homogeneous system of the linear equations in the entries
of A, which we were able to solve (for a suitable choice of the ±). In this way, we obtained
the matrix

A :=
(
−1

2 −
√

5
2 + αi− αj + (1

2 +
√

5
2 )k −2β + i− j + 2βk

−γ + (
√

2
2 + 2−

√
2
√

5
2 )i 1− 3

√
2

2 +
√

5−
√

2
√

5
2 − δi

)
, (4.15)

α =
√

2
√

3
3 +

√
2
√

3
√

5
3 − 5

√
3

6 −
√

3
√

5
6 , β =

√
2
√

3
3 −

√
3
√

5
6 ,

γ =
√

2
√

3
√

5
6 +

√
2
√

3
2 − 2

√
3

3 , δ =
√

2
√

3
√

5
6 +

√
3
√

5
3 −

√
2
√

3
6 +

√
3

3 .

The diagonal entries of the scalar matrix A∗A are c = 20
3 (4 −

√
5

5 (5
√

2 − 4) −
√

2) > 0.
Thus U = 1√

c
A is a unitary matrix which gives the desired conjugation. However, the

entries of U are not in the cyclotomic field in which we did our calculations.
The conjugates of the Ua and Ub of (2.6) give the following generators for H720

AUaA
−1 =

(
− 1

2
√

3i−
1√
3j + 1

2k
1

2
√

6 + 1
2
√

2i−
1

2
√

2j −
1

2
√

6k

− 1
2
√

6 + 1
2
√

2i−
1

2
√

2j −
1

2
√

6k − 1√
3i−

1√
3j

)
,

AUbA
−1 =

( 1
2 + 1√

3i−
1

2
√

3j
1

2
√

6 + 1
2
√

2i+ 1
2
√

2j + 1
2
√

6k

− 1
2
√

6 −
1

2
√

2i−
1

2
√

2j + 1
2
√

6k −1
2 + 1

2
√

3i+ 1√
3j

)
. (4.16)
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5 The stabiliser groups of the six equiangular lines
We now consider the action of the stabiliser group of one of the six equiangular lines on
the line that it fixes. This action of a group of order 120 on H is far from trivial (the
situation for parabolic subgroups of reflection groups and highly symmetric tight frames
[BW13]), in fact it is faithful. We first give some generalities about groups which fix a
line, and what their action on the line can be.

Let G ⊂ Md(H) be a group, and consider its action on a nonzero vector v ∈ Hd.
Two vectors gv and hv in the orbit give the same line if there is some scalar α ∈ H for
which

gv = hvα ⇐⇒ (h−1g)v = vα.

Since such an α is unique, we use the notation αg = αg,v for the nonzero scalar with
gv = vαg. (5.17)

The stabiliser (in G) of the line L = spanH{v} given by a nonzero vector v ∈ Hd, or
the projective stabiliser (in G) of the vector v, is defined by

GL = Gv := {g ∈ G : gv = vα, ∃α ∈ H},
(this depends only on L), and the corresponding set of scalars are denoted by

H∗G,v = {αg ∈ H : gv = vαg, g ∈ Gv}.
In view of (5.17), the matrix representation of g|L : L→ L, the restriction of g ∈ GL to
L, with respect to the H-basis [v] for L is [g] := [g|L][v] = [αg], and so

GL → H∗ : g 7→ αg, GL →M1(H) : g 7→ [αg],
are group homomorphisms. Here H∗ denotes the group of nonzero quaternions under
multiplication. If GL is unitary, then the images above are unit scalars and unitary
matrices, respectively.
Proposition 5.1 Let G ⊂ Md(H) be a group, and v ∈ Hd a nonzero vector. Then
the projective stabiliser Gv is a subgroup of G, and H∗G,v is a subgroup of H∗ (being the
homomorphic image of Gv → H∗ : g 7→ αg), with

Gv = Gvβ, H∗G,vβ = β−1H∗G,vβ, β ∈ H∗.

The projective stabilisers of points (lines) on the same G-orbit are conjugate and hence
are isomorphic, i.e.,

Ghv = h−1Gvh, h ∈ G.
Proof: We have already observed that H∗G,v is the isomorphic image of g 7→ αg, or

we can argue directly from (5.17) that
vαgh = (gh)v = g(hv) = g(vαh) = (gv)αh = vαgαh =⇒ αgh = αgαh.

For any β ∈ H∗, we have
HG,vβ = {α : gvβ = vβα,∃α} = β−1{βαβ−1 : gv = vβαβ−1,∃α}β = β−1H∗G,vβ,

Ghv = {g : g(hv) = hvα, ∃α} = h{h−1gh : h−1ghv = vα, ∃α}h−1 = hGvh
−1.
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If G ⊂ Md(H) is irreducible with d ≥ 2, e.g., G = H720, then Gv is reducible for v
nonzero, and so is a proper subgroup of G.

Example 5.1 For G = H720 and a v giving one of the six equiangular lines, the stabiliser
subgroup Gv has order 120, and is isomorphic to 2 ·A5, the double cover of A5. Since A5
is simple, Gv has normal subgroups of orders 1, 2 and 120. Since α−I = −1, it follows
(or by direct computation) that H∗G,v, which is a quotient of Gv by a normal subgroup, is
2 · A5. As a consequence, the orbit (gv)g∈H720 has 720 distinct vectors lying in six lines.

The faithful action of the stabiliser group of one of the six equiangular lines is given
by a subgroup H∗G,v of H∗ with order 120. The finite subgroups of H∗, i.e., the reflection
subgroups of U1(H), have been classified by Stringham [Str81] (also see [Coh80], [CS03]).

Lemma 5.1 The finite subgroups of H∗, and hence of U1(H), up to conjugation, are

(i) the cyclic group Cm = 〈e 2πi
m 〉, of order m, m ≥ 1,

(ii) the binary dihedral group Dm = 〈C2m, k〉, of order 4m, m ≥ 2,

(iii) the binary tetrahedral group T = 〈D2,
−1+i+j+k

2 〉, of order 24,

(iv) the binary octahedral group O = 〈T , i−1√
2 〉, of order 48,

(v) the binary icosahedral group I = 〈D2,
τ−τ−1i−j

2 〉, τ = 1
2(1 +

√
5), of order 120.

None of the groups above are isomorphic, and the nontrivial ones are the reflection
groups in U1(H).

Proof: The list of conjugacy classes of finite subgroups is given in [Coh80] as the
above, where Dm, has the index range m ≥ 1. It is clear that

C4 = 〈i〉, D1 = 〈k〉,

are conjugate, and hence isomorphic. The Cm and Dm on the above list are abelian
and nonabelian, respectively, and so are not isomorphic, nor are they isomorphic to the
nonabelian groups T , O, I (which contain D2), i.e., T 6∼= D6, O 6∼= D12, I 6∼= D30.

From the above list, it follows that the stabiliser group H∗G,v for any one of the six
equiangular lines is the binary icosahedral group I ∼= 2 · A5 (or a conjugate of it).

Let H be the stabiliser group of the equiangular line given by the vector w of (4.12),
i.e.,

H = (H720)w = 〈b3, g2〉,
where the generators b3 and g2 are given by (3.10) and (4.13). We have observed that
W = spanH{w} is an irreducible H-submodule of H2 on which the action of H is faithful.
Since H is unitary, it follows that the orthogonal complement W⊥ of W is an irreducible
H-submodule of H2, and so its orbit gives a set of six lines. Let

w⊥ :=
(
−
√

3− i+ j +
√

3k√
2 +
√

10

)
∈ W⊥. (5.18)
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With the ordering: w⊥, b1w
⊥, b2

1w
⊥, b2w

⊥, b1b2w
⊥, b2

1b2w
⊥, we have a second set of

equiangular lines(
−
√

3− i+ j +
√

3k√
2 +
√

10

)
,

(
2i− 2j√
2 +
√

10

)
,

(√
3− i+ j −

√
3k√

2 +
√

10

)
,( √

2 +
√

10√
3− i− j −

√
3k

)
,

(√
2 +
√

10
2i+ 2j

)
,

( √
2 +
√

10
−
√

3− i− j +
√

3k

)
, (5.19)

which are an orbit of H720. To understand the action of H720 on the line W⊥ =
spanH{w⊥}, we calculate the matrix representation for the basis B = [w,w⊥], i.e.,
[g]B = B−1gB, of the generators b3 (order 4) and g2 (order 5) for H. They are

[b3]B =
(
−
√

3
2 i+ k 0

0 k

)
, [g2]B =

 τ−1

2 + τ√
3i+ τ−1

2
√

3j 0
0 − τ

2 + τ
2
√

3i−
τ−1

2
√

3j + τ−1

2 k

 ,
(5.20)

where τ = 1
2(1 +

√
5). It is easily verified that

αb3,w⊥ = −
√

3
2 i+ k, αg2,w⊥ = τ−1

2 + τ√
3
i+ τ−1

2
√

3
j,

generate (a conjugate) of the binary icosahedral group I (of Lemma 5.1), and so the
action of H on W⊥ is faithful. However, W and W⊥ are not isomorphic H-submodules
of H2 = W ⊕W⊥, since otherwise H2 would be a homogeneous (isotypic) component for
that H-module, and hence the H-orbit of every vector in H2 would be 1-dimensional,
which is not the case. In the interest of more general calculations, we show how this
follows from character theory.

Every quaternionic representation of a finite group G as matrices in Md(H), such
as H, corresponds to a complex representation as matrices in M2d(C) via (1.4). The
irreducible complex representations ρ : G → M2d(C) that correspond to quaternionic
representations are determined by the Frobenius–Schur indicator ιχ of their character
χ, i.e.,

ιχ := 1
|G|

∑
g∈g

χ(g2) ∈ {−1, 0, 1}, χ(g) = trace(ρ(g)),

taking the value ιχ = −1 (see [SS95], [Gan11]). For H (as an abstract group) there are
two characters corresponding to quaternionic representations of rank 1, i.e.,

The rank 2 characters of H ∼= 2 · A5

class size 1 1 20 30 12 12 20 12 12
class order 1 2 3 4 5 5 6 10 10

χ1 2 −2 −1 0 τ−1 −τ 1 τ −τ−1

χ2 2 −2 −1 0 −τ τ−1 1 −τ−1 τ

There are also characters corresponding to irreducible quaternionic representations of
rank 2 and rank 3. In view of (1.4), the values of the character χ of the complexification
of a quaternionic representation G are given by

χ(g) = trace([g]C) = trace(A) + trace(A) = 2 Re(trace(g)).
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Hence, by (5.20), the values of the characters of the representations of H on W and W⊥

for the element g2 are

2 Re(trace(g2|W ) = 2 Re
(
τ−1

2 + τ√
3
i+ τ−1

2
√

3
j
)

= τ−1 2 Re(trace(g2|W⊥) = −τ,

and so these representations are different. We now summarise our calculations.

Theorem 5.1 Let G = H720 = 〈b1, b2, b3, b4〉 ∼= 2 · A6 be the primitive quaternionic
reflection group of order 720 given by (3.10), with reducible subgroup H = 〈b3, g2〉 ∼= 2·A5
of order 120, where g2 is given by (4.13), and w and w⊥ be the orthogonal vectors

w =
( √

2 +
√

10√
3− i+ j +

√
3k

)
, w⊥ =

(
−
√

3− i+ j +
√

3k√
2 +
√

10

)
. (5.21)

Then the G-orbits of w and w⊥ each consist of 720 distinct vectors which lie in set of
six equiangular lines (120 vectors in each line), and H fixes the lines through w and w⊥,
on which it therefore has a faithful irreducible action. Further, we have the orthogonal
decomposition

H2 = spanH{w} ⊕ spanH{w⊥},
of H2 into non-isomorphic irreducible H-submodules, i.e., the homogeneous (isotypic)
components.

The fact that the orthogonal complement of equiangular lines in H2 gives another
set of equiangular lines is an example of a more general phenomenon for H2 (d = 2). We
will refer to |〈v, w〉|2 as the angle between vectors v, w ∈ Hd.

Proposition 5.2 For v ∈ H2, let v⊥ be any vector orthogonal to v, with ‖v⊥‖ = ‖v‖,
e.g.,

v =
(
a
b

)
, v⊥ =

(
−a−1ba

a

)
, a 6= 0.

Then ⊥ preserves the angles between lines, i.e.,

|〈v, w〉|2 = |〈v⊥, w⊥〉|2, v, w ∈ H2.

Proof: This is by direct computation. Suppose that v = (a1, b1), w = (a2, b2), with
a1, a2 6= 0 (the other cases being trivial). Then

〈v, w〉 = a1a2 + b1b2, 〈v⊥, w⊥〉 = a1b1a
−1
1 a2

−1b2a2 + a1a2.

Using the identities

|a+ b|2 = |a|2 + |b|2 + 2 Re(ab), Re(ab) = Re(ba), |a|2a−1 = a, a 6= 0,

for a, b ∈ H, we calculate

|〈v⊥, w⊥〉|2 = |b1|2|b2|2 + |a1|2|a2|2 + 2 Re(a1b1a
−1
1 a2

−1b2a2 · a2a1)
= |a1|2|a2|2 + |b1|2|b2|2 + 2 Re(a1a2 · b2b1)
= |〈v, w〉|2,

as claimed.
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6 A general construction of interesting lines
Our construction of the six equiangular lines involved the basic idea of taking the orbit
of a vector/line which is fixed by some (ideally large) subgroup, thereby giving

“a small orbit with high symmetry”.

In this way, one can obtain a finite class of “lines with high symmetry”, by an appropriate
choice of definitions. For example:

• Let G be a finite group with an irreducible action on Hd.

• Choose a maximal reducible subgroup H ⊂ G (there are finitely many) for which
Hd has at least one irreducible one-dimensional H-submodule L = spanH{v} of
multiplicity 1, and consider the n = |G|/|H| lines {gL}gH∈G/H .

There are finitely many sets of “highly symmetric lines” which can be obtained in this
way, from any given finite abstract group G. In our case d = 2, and so every reducible
subgroup H gives and a pair of orthogonal irreducible one-dimensional H-submodules.

If the action of H on L is trivial, i.e., v is fixed, then one obtains what was called a
“highly symmetric tight frame” in [BW13] (these sets of n vectors {gv}gH∈G/H were given
for Cd). When G is a real, complex or quaternionic reflection group, the corresponding
subgroups H giving a highly symmetric tight frame are said to be “parabolic subgroups”,
and these are known to be reflection groups ([Ste64], [BST23] for the quaternionic case).

If the action of H on L is not trivial, then one obtains the “highly symmetric lines”
of [Gan22] (given for Cd, but also for 2-dimensional subspaces, so this includes Hd).

Example 6.1 The irreducible reflection groups H24 ⊂ H120 ⊂ H720 ⊂ H1440 contain
reflections of order 3, with H1440 also containing (and being generated by) reflections of
order 2. A subgroup H of one of these reflection groups has the trivial (identity) action
on a 1-dimensional subspace L of H2 if and only if each element of H acts on H2 as a
reflection with root L. Hence H must be H3 (up to conjugation), or a subgroup generated
by a reflection of order 2 in H1440\H720. These subgroups generated by a single reflection
are therefore the minimal, maximal and hence only nontrivial parabolic subgroups (see
[BST23] Lemma 4.2).

For G = H720, there are 17 reducible subgroups H of order > 3 (up to conjugation),
which therefore have a nontrivial action on some line L (and its orthogonal complement).
Three of these are maximal.

Example 6.2 The three maximal reducible subgroups of G = H720 are (as abstract
groups) <120, 5>, <48, 28>, <36, 7>, which correspond to sets of 6, 15, 20 lines, with
angles {2

5}, {
1
4 ,

5
8}, {0,

1
3 ,

2
3}, respectively. Generating (fiducial) vectors for these sets of

lines are (√
2 +
√

10
2i− 2j

)
,

(
1
j

)
,

(
1
0

)
.

The first is an equiangular vector from (1.3), and the third is a root vector (for b1).
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These lines give optimal spherical designs, as we now explain.
For a fixed t = 1, 2, . . ., a finite set unit vectors {v1, . . . , vn} in Hd, equivalently lines,

is said to be a spherical t-design (or spherical (t, t)-design) if there is equality in
n∑
j=1

n∑
k=1
|〈vj, vk〉|2t ≥ ct(Hd)

( n∑
`=1
‖v`‖2t

)2
, ct(Hd) := 2 · 3 · · · (t+ 1)

2d(2d+ 1) · · · (2d+ t− 1) ,

(6.22)
i.e.,

1
n2

n∑
j=1

n∑
k=1
|〈vj, vk〉|2t = ct(Hd) = 2 · 3 · · · (t+ 1)

2d(2d+ 1) · · · (2d+ t− 1) . (6.23)

The term “spherical design” comes from the fact that these can be viewed as cubature
rules for the quaternionic sphere, as in the original presentation, which involved harmonic
polynomials, see, e.g., [Hog84]. It is quite technical (see [Wal20b]) to show that this
definition is equivalent to the “variational characterisation” (6.23), which is easier to
verify, and can be used to find numerical constructions. A spherical (1, 1)-design is a
“tight frame” [Wal20a], which is equivalent to the orthogonal-type expansion

f =
∑
j

vj〈vj, f〉, ∀f ∈ Hd. (6.24)

Hoggar [Hog78], [Hog82] gave (special) upper bounds on the number of unit vectors
in Hd with a prescribed (small) angle set A, and (absolute) upper bounds which are
independent of the angles A. For spherical t-designs for Rd and Cd, there are lower
bounds, depending on t, which when they are (rarely) attained gives the class of so called
“tight t-designs” [BMV04], [RS14]. The corresponding theory for “tight quaternionic
spherical t-designs” has yet to be developed (see [CKM16]).

The special bounds and absolute bounds for designs in Hd

angles A special bound ν(A) absolute bound

{α} d(1− α)
1− dα d(2d− 1)

{α, β} d(2d+ 1)(1− α)(1− β)
3− (2d+ 1)(α + β) + d(2d+ 1)αβ

1
3d

2(4d2 − 1)

{0, α} d(2d+ 1)(1− α)
3− (2d+ 1)α

1
3d(4d2 − 1)

{0, α, β} d(d+ 1)(2d+ 1)(1− α)(1− β)
6− 3(d+ 1)(α + β) + (d+ 1)(2d+ 1)αβ

1
6d

2(d+ 1)(4d2 − 1)

The ν(A) involving β are subject to the restrictions α+ β ≤ 3
d+1 and α+ β ≤ 8

2d+3 , respectively.

The six equiangular lines H2 at angle 2
5 satisfy both the special and absolute bounds.

Before summarising the results of our calculations, we give some further details.
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It is easy to determine whether the n lines given by an orbit of v are a spherical
t-design by using (6.23). Indeed, since

〈gv, hv〉 = 〈v, g∗hv〉 = 〈v, g−1hv〉,

if (vj) is a set of unit vectors giving the lines, then (6.23) becomes
n∑
j=1
|〈vj, w〉|2t = ct(Hd) · n, (6.25)

where w is any vector in any line. It follows from this (with the multiplicities indicated)
that the 6 and 15 lines with angles {2

5} and {1
4 ,

5
8} are spherical (2, 2)-designs, i.e.,

1 + 5 ·
(2

5

)2
= 3

10 · 6, 1 + 6 ·
(1

4

)2
+ 8 ·

(5
8

)2
= 3

10 · 15.

Moreover, the 20 lines with angles {0, 1
3 ,

2
3} give a spherical (3, 3)-design, since

1 + 1 · 0 + 9 ·
(1

3

)3
+ 9 ·

(2
3

)3
= 1

5 · 20.

It was shown in [MW19] that higher order real and complex spherical designs could
be obtained by taking a union of orbits. This concept extends to quaternionic designs:

Example 6.3 (Mutually unbiased equiangular lines) Take the union of the two sets
of six equiangular lines in H2 at angle 2

5 given in Theorem 5.1, i.e., the orbit of the
orthogonal vectors w and w⊥. It is easily verified that the angle between any vector in
one set of lines and and any of the five from the other set which are not orthogonal to
it is 3

5 . It follows from (6.25) that these 12 vectors with angles {0, 2
3 ,

3
5} give a spherical

(3, 3)-design for H2, by the calculation

1 + 1 · 0 + 5 ·
(2

5

)3
+ 5 ·

(3
5

)3
= 1

5 · 12.

The above union of two sets of equiangular lines can be viewed as an orbit of H1440,
i.e., as highly symmetric lines for H1440.

Example 6.4 The reflection group G = H1440 has five maximal reducible subgroups of
orders 120, 72, 48, 48, 24 corresponding to sets of 12, 20, 30, 30, 60 highly symmetric lines.
Since the index of H720 in G is 2, the G-orbit of a set of n lines that are an H720-orbit
is either the same set of lines or a set of 2n lines. In this way, for the 6, 15, 20 lines of
Example 6.2, we obtain sets of 12, 30, 20 lines.

The 12 lines are those of Example 6.3. Indeed, if r ∈ H1440 is the reflection of order
2 given by

r := 1√
2

(
0 1 + k

1− k 0

)
,

then it maps the equiangular lines given by w and w⊥ of (5.21) to each other, in particular

rw = w⊥α, α = 1− k√
2
.
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Further, H1440 maps the six line orthogonal line pairs vH∪ v⊥H (crosses) to each other.
This gives a permutation representation of H1440, with kernel 〈−I〉. Hence H1440 is 2·S6,
the double cover of S6, and elements ±g in H1440 can be indexed by permutations on the
six equiangular lines (with even permutations mapping a given set of equiangular lines
to itself, and odd permutations mapping it to the set of orthogonal equiangular lines).

The 30 lines obtained from the 15 lines with angles {1
4 ,

5
8}, which is a (2, 2)-design,

give a spherical (3, 3)-design with angles {0, 1
4 ,

3
8 ,

5
8 ,

3
4}, via the calculation

1 + 1 · 0 + 6 ·
(1

4

)3
+ 8 ·

(3
8

)3
+ 8 ·

(5
8

)3
+ 6 ·

(3
4

)3
= 1

5 · 30. (6.26)

The list of [Hog82] gives one t-design in H2 meeting the special (and also absolute)
bound i.e., the 10 vectors given by the five mutually unbiased orthonormal bases

(1, 0), (0, 1), (1,±1), (1,±i), (1,±j), (1,±k), (6.27)
with angles {0, 1

2}, which form a spherical (3, 3)-design.
Our calculations have given three new spherical designs for H2 that meet the special

bound, in addition to the two others known.

The special and absolute bounds for spherical t-designs in H2

n A ν(A)
absolute
bound t

6 {2
5} 6 6 2 Equiangular lines [ET20]

10 {0, 1
2} 10 10 3 [Hog82] (Example 3)

12 {0, 2
5 ,

3
5} 12 30 3 Example 6.3, Example 6.4

15 {1
4 ,

5
8} 15 20 2 Example 6.2

20 {0, 1
3 ,

2
3} 20 30 3 Example 6.2

Interesting designs can also be found as highly symmetric lines for nonmaximal
reducible subgroups of G, e.g., the six equiangular lines for G = H1440. Here is another.

Example 6.5 Let G = H720. This has a nonmaximal reducible subgroup of order 24 (a
subgroup of the maximal reducible subgroups of orders 120 and 48), which gives a system
of 30 lines with angles {0, 1

4 ,
1
2 ,

3
4} generated by the fiducial vector( √

2i
1 +
√

3

)
.

This gives a spherical (3, 3)-design, via

1 + 1 · 0 + 8 ·
(1

4

)3
+ 12 ·

(1
2

)3
+ 8 ·

(3
4

)3
= 1

5 · 30.

This design is fixed by H1440, and so, in view of (6.26), it gives the second set of 30 lines
mentioned in Example 6.4.
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We now give details about how the calculations discussed were implemented.

7 Computational details
The calculation of all subgroups of a given group G (up to conjugacy) is a task easily
done in Magma using Subgroups(G). The identification of those subgroups that are
reducible groups of quaternionic matrices, and hence give systems of lines is a little
more involved. Serre’s condition for irreducibility of finite groups of real or complex
matrices [Ser77] (Theorem 5, Chapter 2)∑

g∈G
trace(g) trace(g−1) = |G|, (7.28)

cannot be applied, or generalised in a routine way. However, it was shown in [Wal20a]
that a finite group G ⊂ Ud(H) is irreducible if and only if every orbit of a nonzero vector
is a “tight frame”, i.e., is a spherical (1, 1)-design. From (6.23), it follows that the orbit
of a nonzero vector x ∈ Hd is spherical (t, t)-design if and only if

p
(t)
G (x) := 1

|G|
∑
g∈G
|〈x, gx〉|2t − ct(Hd)〈x, x〉2t = 0. (7.29)

In particular, for t = 1, we have the condition for being irreducible
1
|G|

∑
g∈G
|〈x, gx〉|2 − 1

d
〈x, x〉2 = 0. (7.30)

This is easily verified in Magma by using PolynomialRing to set up an appropriate
polynomial ring with the coordinates of x as variables. In this way, we calculated

p
(1)
H24 = 0, p

(2)
H720 = 0, p

(3)
H1440 = 0,

which gives

• Every H24 orbit of a nonzero vector gives a spherical (1, 1)-design.

• Every H720 orbit of a nonzero vector gives a spherical (2, 2)-design.

• Every H1440 orbit of a nonzero vector gives a spherical (3, 3)-design.

Given a reducible subgroup G ⊂ Ud(H), our method requires the calculation of any
1-dimensional G-invariant subspaces xH that may exist, i.e., those nonzero x ∈ Hd for
which

gx = xαg, ∃αg ∈ H, ∀g ∈ G. (7.31)
The Cauchy-Schwarz inequality (and equality) extends to Hd (see [Wal20a]), so that
(7.31) holds if and only if there is the equality

|〈gx, x〉|2 = 〈gx, gx〉〈x, x〉 = 〈x, x〉2, (7.32)

and hence the set of x ∈ Hd giving 1-dimensional G-invariant subspaces is an algebraic
variety.
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Lemma 7.1 Let G ⊂ U(Hd) be reducible and x ∈ Hd be nonzero. Then the line xH is
fixed by G if and only if

|〈gx, x〉|2 = 〈x, x〉2, ∀g ∈ G, (7.33)

where G is any generating set for G.

Proof: Use the condition (7.32), and the observation that G-invariance is equivalent
to invariance under a generating set for G.

We denote the real algebraic variety given by the set of solutions x ∈ Hd to the
system of polynomial equations (7.33) by V1(G). For us, the computation of V1(G) was
not completely straightforward, for the following reasons:

• The system of |G| polynomial equations (7.33) in the 4d real variables given by
the 1, i, j, k coefficients of the coordinates of x ∈ Hd is easily formed in Magma.
However, in many cases, it could not be solved there. In these cases, the software
system Maple was then used to find a numerical solutions, from which analytic
ones could then be deduced.

• For reducible subgroups H1 ⊂ H2, we have that V1(H2) ⊂ V1(H1). Often, when
finding an element of V1(H1) for a nonmaximal reducible subgroup H1 of G = H720,
it turned out to be in the algebraic variety for a maximal subgroup (Example 6.2).
Given that the whole variety was not being calculated, it was hard to form a
clear picture of whether this was some quirk of the calculation method or because
V1(H1) \ V1(H2) might be empty. This is an ongoing investigation.

8 Concluding remarks
We have shown that the unique maximal set of six equiangular lines in H2 is the orbit
of a (quaternionic) reflection group. The same is also true for the maximal sets of
equiangular lines in R2 and C2. The three equiangular lines in R2 (the Mercedes-Benz
frame) are an orbit of the faithful irreducible action of S3 on R2, and the SIC of four
equiangular lines in C2 is an orbit of the complex reflection groups with Shephard-Todd
numbers 4, 5, 6, 7 (see [BW13], Table 1). Indeed, the first of these groups is H24, and
the H24-orbit of the vector e1 = (1, 0) gives the following presentation of the SIC(

1
0

)
,

 1√
3i

−
√

2√
3

 , ( 1√
3i

1√
6 −

1√
2i

)
,

( 1√
3i

1√
6 + 1√

2i

)
.

This SIC is also the orbit of the discrete Heisenberg group [Wal18], which (in this case
d = 2) is an irreducible real reflection group of order 8.

Moreover, the Hesse SIC of nine equiangular lines in C3 is an orbit of the complex
reflection groups with Shephard-Todd numbers 25, 26 ([BW13], Example 11, Table 2).

The above examples notwithstanding, we do not expect that the maximal sets of
quaternionic equiangular lines in Hd come as orbits of quaternionic reflection groups, in
general, for the following reasons:
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• By considering eigenspaces, any element of a finite group G ⊂ U2(C) can be
multiplied by a unit scalar, to obtain a reflection of the same order. In this
way, the appearance of reflection groups for collineation groups acting on C2 is
incidental, rather than by design. Similar reasoning can be applied to collineation
groups acting on H2.

• The general method for finding maximal sets of equiangular lines in Cd is as the
orbit of a fiducial vector under the action of the Heisenberg group (an irreducible
projective representation of Z2

d). These can be viewed as highly symmetric lines
for a larger Clifford group [Wal18]. For d ≥ 3, the Heisenberg and Clifford groups
are not given by reflection groups. For Hd, Cohen’s classification [Coh80] gives
no infinite families of irreducible quaternionic reflection groups. Thus, to find
infinite families of optimal quaternionic equiangular lines in this way, one would
like an infinite family of irreducible quaternionic matrix groups, of which none are
currently known.

We conclude with a couple of obvious directions for extending number of known
maximal sets of quaternionic lines:

• Starting with a given quaternionic reflection group, find the associated sets of
highly symmetric lines – hoping for an equiangular set.

• Use the variational characterisation of (6.22), or other methods, to find sets of
quaternionic equiangular lines numerically (see [CKM16]), and then deduce the
irreducible projective quaternionic representation that they might be given by.
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