An explicit construction of the unitarily invariant quaternionic polynomial spaces on the sphere

Mozhgan Mohammadpour and Shayne Waldron

May 21, 2024

Abstract

The decomposition of the polynomials on the quaternionic unit sphere in \mathbb{H}^{d} into irreducible modules under the action of the quaternionic unitary (symplectic) group and quaternionic scalar multiplication has been studied by several authors. Typically, these abstract decompositions into "quaternionic spherical harmonics" specify the irreducible representations involved and their multiplicities.

The elementary constructive approach taken here gives an orthogonal direct sum of irreducibles, which can be described by some low-dimensional subspaces, to which commuting linear operators L and R are applied. These operators map harmonic polynomials to harmonic polynomials, and zonal polynomials to zonal polynomials. We give explicit formulas for the relevant "zonal polynomials" and describe the symmetries, dimensions, and "complexity" of the subspaces involved.

Possible applications include the construction and analysis of desirable sets of points in quaternionic space, such as equiangular lines, lattices and spherical designs (cubature rules).

Key Words: irreducible representations of the quaternionic unitary group, symplectic group, quaternionic polynomials, spherical harmonic polynomials, zonal functions, projective spherical t-designs, finite tight frames, quaternionic equiangular lines,

AMS (MOS) Subject Classifications: primary 15B33, 20G20, 33C55, 42C15, secondary $17 \mathrm{~B} 10,42-08,46 \mathrm{~S} 05,51 \mathrm{M} 20$,

1 Introduction

There are several desirable sets of points that have been, and are, studied in real, complex and quaternionic space, which includes equiangular lines [ACFW18], Wal18, spherical designs (cubature rules) Hog84 and lattices [BN02]. These are usually classified up to "unitary equivalence", and are often constructed as a group orbit of a "unitary action". These considerations have led to this paper.

We consider the invariant subspaces of harmonic polynomials on quaternionic space \mathbb{H}^{d} under the natural action of the quaternionic unitary matrices (the symplectic group) and scalar multiplication by quaternions (acting on the other side), and the associated zonal polynomials and reproducing kernels. This question has been considered several times, independently, e.g., [Smi75], [BN02], $\left.\mathrm{BDE}^{+} 14\right]$, DBSW17], [ACMM20]. The exact answer given depends on the precise definition of the harmonic polynomials, in particular, the field in which they may take values, and the precise group and its action. The devil is in the details.

Here we give an elementary examples driven development of this question, motivated by the more well known real and complex cases, the only partly trivial case of \mathbb{H}^{1}, and our interest in the construction of spherical designs for the quaternionic sphere Wal20b, Wal20a. This proceeds from certain unambiguous definitions and well known facts (the details). We hope that this illuminates the above literature as it applies, and our results can be used for practical computations. Key aspects of our development include:

- By considering the action of scalar multiplication by quaternions on polynomials $\mathbb{H}^{d} \rightarrow \mathbb{C}$, we are naturally led to the operators L and R. The operator R appears in $\left[\overline{\left.\mathrm{BE}^{+} 18\right]}\right.$ as ε^{\dagger}, and implicitly in the development of the irreducible representations of the multiplicative group \mathbb{H}^{*} given in [Fol95].
- There is a natural correspondence between results for homogeneous polynomials and for harmonic polynomials (given by the Fisher decomposition). Ultimately, we are primarily interested in irreducible representations of harmonic polynomials. Sometimes we start with the homogeneous polynomials, as these have natural inner products and explicit bases (of monomials).
- There are many technical calculations that could clutter the presentation. Some of these are proved later, and we often give explicit examples, e.g., the operator R in one dimension, or a zonal polynomial with pole $e_{1}=(1,0, \ldots 0)$, to convey the basic ideas behind the results.

2 The devil is in the details

We assume basic familiarity with the quaternions \mathbb{H}, with the basis elements $1, i, j, k$. The noncommutative multiplication requires subtle modifications to the associated linear algebra (see [Bre51], Wal20b]). Of particular use is the "commutativity" formula

$$
\begin{equation*}
j z=\bar{z} j, \quad z \in \mathbb{C} \tag{2.1}
\end{equation*}
$$

We will consider polynomials on real, complex and quaternionic space $\mathbb{R}^{d}, \mathbb{C}^{d}$ and \mathbb{H}^{d}. With the Euclidean inner product

$$
\begin{equation*}
\langle v, w\rangle:=v^{*} w=\sum_{j} \overline{v_{j}} w_{j}, \quad v, w \in \mathbb{F}^{d}, \quad \mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \tag{2.2}
\end{equation*}
$$

where \bar{q} is the conjugate on \mathbb{H} (and hence \mathbb{R} and \mathbb{C}). In the sum above, j is an index, rather than the quaternion j, for which we also use the same symbol (this is commonly done). We will use \mathbb{F} and \mathbb{K} to stand for either of $\mathbb{R}, \mathbb{C}, \mathbb{H}$, independently (9 cases in all for maps $\left.\mathbb{F}^{d} \rightarrow \mathbb{K}\right)$. Given our choice (2.2), it is natural to then treat \mathbb{H}^{d} as a right \mathbb{H}-module, with the \mathbb{H}-linear maps L acting on the left, i.e.,

$$
\begin{equation*}
\langle v \alpha, w \beta\rangle=\bar{\alpha}\langle v, w\rangle \beta, \quad(L v) \alpha=L(v \alpha) \tag{2.3}
\end{equation*}
$$

and in turn, to make the identification (2.8).
There are natural identifications of \mathbb{F}^{d} with $\mathbb{R}^{m d}$, where $m:=\operatorname{dim}_{\mathbb{R}}(\mathbb{F})$, given by the Cayley-Dickson construction of \mathbb{C} and \mathbb{H} from \mathbb{R}, e.g., with $\left(i_{1}, i_{2}, i_{3}, i_{4}\right):=(1, i, j, k)$, we have (the \mathbb{R}-linear map) $[\cdot]_{\mathbb{R}^{m d}}: \mathbb{F}^{d} \rightarrow \mathbb{R}^{m d}$ given by

$$
\begin{equation*}
\left[x_{1}+i_{2} x_{2}+\cdots+i_{m} x_{m}\right]_{\mathbb{R}^{m d}}=\left(x_{1}, \ldots, x_{m}\right), \quad x_{1}, \ldots, x_{m} \in \mathbb{R}^{d} \tag{2.4}
\end{equation*}
$$

We say $f: \mathbb{F}^{d} \rightarrow \mathbb{R}$ is a polynomial if $f\left([\cdot]_{\mathbb{R}^{m d}}^{-1}\right): \mathbb{R}^{m d} \rightarrow \mathbb{R}$ is a polynomial (of $m d$ real variables). In this way, we can define homogeneous and (homogeneous) harmonic polynomials $f: \mathbb{F}^{d} \rightarrow \mathbb{R}$ of degree k. These polynomials are real-valued, and naturally form \mathbb{R}-vector spaces, which we denote by $\operatorname{Hom}_{k}\left(\mathbb{F}^{d}, \mathbb{R}\right)$ and $\operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{R}\right)$.

There is a purely algebraic way to make a finite-dimensional real-vector space into a complex-vector space, and into a (left or right) \mathbb{H}-vector space (\mathbb{H}-module), by formally multiplying by complex and quaternion scalars. In this way, we define the \mathbb{K}-valued \mathbb{K}-vector spaces of homogeneous and harmonic polynomials $\mathbb{F}^{d} \rightarrow \mathbb{K}$, which we denote by $\operatorname{Hom}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)$ and $\operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)$. Clearly, with $r=\operatorname{dim}_{\mathbb{R}}(\mathbb{K})$, we have

$$
f=f_{1}+f_{2} i_{2}+\cdots+f_{r} i_{r} \in \operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right) \quad \Longleftrightarrow \quad f_{1}, \ldots, f_{r} \in \operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{R}\right)
$$

and similarly for $\operatorname{Hom}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)$. Such a \mathbb{K}-vector spaces can also be viewed as a \mathbb{L}-vector spaces, where $\mathbb{L} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ and $\mathbb{L} \subset \mathbb{K}$. We thereby have (from the real case) the following dimension formulas

$$
\begin{align*}
& \operatorname{dim}_{\mathbb{L}}\left(\operatorname{Hom}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)\right)=\binom{k+m d-1}{m d-1} \operatorname{dim}_{\mathbb{L}}(\mathbb{K}) \\
& \operatorname{dim}_{\mathbb{L}}\left(\operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)\right)=\left\{\binom{k+m d-1}{m d-1}-\binom{k+m d-3}{m d-1}\right\} \operatorname{dim}_{\mathbb{L}}(\mathbb{K}), \quad m d \neq 1 \\
&=(2 k+m d-2) \frac{(k+m d-3)!}{(m d-2)!k!} \operatorname{dim}_{\mathbb{L}}(\mathbb{K}), \quad k+m d-3 \geq 0 \tag{2.5}
\end{align*}
$$

For polynomials $f: \mathbb{F}^{d} \rightarrow \mathbb{K}$, we can define an action of a group G from its action on \mathbb{F}^{d} via

$$
\begin{equation*}
(g \cdot f)(x):=f(g \cdot x), \quad x \in \mathbb{F}^{d} \tag{2.6}
\end{equation*}
$$

provided that $[g]_{\mathbb{R}^{m d}}: \mathbb{R}^{m d} \rightarrow \mathbb{R}^{m d}:[x]_{\mathbb{R}^{m d}} \mapsto[g \cdot x]_{\mathbb{R}^{m d}}$ is \mathbb{R}-linear. Such a group action preserves the harmonic polynomials of degree k provided that $[g]_{\mathbb{R}^{m d}}$ is orthogonal. Since we are only interested in the invariant polynomial subspaces under such an action, it makes no essential difference if we take a left or right action. We say that a nonzero \mathbb{K}-subspace V of harmonic polynomials $\mathbb{F}^{d} \rightarrow \mathbb{K}$ is irreducible (under the action of G) if its only G-invariant subspaces are V and $\{0\}$, i.e., for every nonzero $f \in V$ we have $\operatorname{span}_{\mathbb{K}}\{f\}=V$.

We are primarily concerned with polynomials restricted to the (unit) sphere

$$
\mathbb{S}:=\left\{x \in \mathbb{F}^{d}:\left\|[x]_{\mathbb{R}^{m d}}\right\|=1\right\}
$$

Hence the linear maps $[g]_{\mathbb{R}^{m d}}$ above must be orthogonal, i.e., belong to the orthogonal group $O(m d)=U\left(\mathbb{R}^{m d}\right)$. We note that $\left.f \mapsto f\right|_{\mathbb{S}}$ gives a \mathbb{K}-vector space isomorphism between $\operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right)$ and $\operatorname{Harm}_{k}\left(\mathbb{F}^{d}, \mathbb{K}\right) \mid s$, with terms solid and surface used if it is necessary to distinguish between them. The basic principles in play are:

- We mostly consider polynomials $\mathbb{H}^{d} \rightarrow \mathbb{C}$, since \mathbb{H}-valued polynomials do not commute, and there is a well developed theory of representations over \mathbb{C}.
- Smaller subgroups G of $O(m d)$ give smaller irreducible subspaces, which may lead to finer decompositions (more irreducibles).
- Enlarging the field \mathbb{K} (to \mathbb{C} or $\mathbb{H})$ preserves invariance of subspaces, but may not preserve irreducibility, which may lead to finer decompositions (Example 5.1).
- The irreducibles that are involved in a decomposition are of interest. The sum of all subspaces isomorphic to a given irreducible is called the homogeneous or isotypic component (for the irreducible), and it is unique. As an extreme case, all the irreducibles for the action of the trivial group are the 1-dimensional subspaces, and there is a single (uninteresting) homogeneous component.
- The reproducing kernel $K(x, y)$ for a unitarily invariant polynomial space should depend only on the inner product $\langle x, y\rangle$.
- We begin with general homogeneous polynomials for which there are natural (monomial) bases and useful inner products. We then specialise to those which are harmonic, and then, ultimately, zonal.
To develop explicit formulas, we use the Cayley-Dickson identifications $\mathbb{C}^{d} \cong \mathbb{R}^{2 d}$ of (2.4), and $\mathbb{H}^{d} \cong \mathbb{C}^{2 d}$ given by

$$
\begin{align*}
x+i y \in \mathbb{C}^{d} & \longleftrightarrow \tag{2.7}
\end{align*}[x+i y]_{\mathbb{R}}:=[x+i y]_{\mathbb{R}^{2 d}}=(x, y) \in \mathbb{R}^{2 d}, ~ 子 ~[z+j w]_{\mathbb{C}}:=(z, w) \in \mathbb{C}^{2 d} .
$$

In particular, the identification (2.8) ensures that $[\cdot]_{\mathbb{C}}: \mathbb{H}^{d} \rightarrow \mathbb{C}^{2 d}$ is \mathbb{C}-linear, for \mathbb{H}^{d} as a right vector space, i.e.,

$$
[(z+j w) \alpha]_{\mathbb{C}}=[z \alpha+j w \alpha]_{\mathbb{C}}=\binom{z \alpha}{w \alpha}=\binom{z}{w} \alpha=[(z+j w)]_{\mathbb{C}} \alpha, \quad \alpha \in \mathbb{C}
$$

It is convenient to define an identification $\mathbb{H}^{d} \cong \mathbb{R}^{4 d}$ by

$$
\begin{equation*}
[z+j w]_{\mathbb{R}}:=\left[[(z+j w)]_{\mathbb{C}}\right]_{\mathbb{R}}=[(z, w)]_{\mathbb{R}}=(\operatorname{Re}(z), \operatorname{Re}(w), \operatorname{Im}(z), \operatorname{Im}(w)) \tag{2.9}
\end{equation*}
$$

We note that

$$
[z+j w]_{\mathbb{R}^{4 d}}=(\operatorname{Re}(z), \operatorname{Im}(z), \operatorname{Re}(w),-\operatorname{Im}(w)]
$$

We will use standard multi-index notation for monomials of degree k, e.g.,

$$
z^{\alpha}:=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{d}^{\alpha_{d}}, \quad|\alpha|:=\alpha_{1}+\cdots+\alpha_{d}, \quad \alpha \in \mathbb{Z}_{+}^{d}
$$

By a dimension count, the $\binom{k+4 d-1}{4 d-1}$ monomials

$$
\begin{equation*}
m_{a}: \mathbb{H}^{d} \rightarrow \mathbb{C}: z+j w \mapsto z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}}, \quad|a|=k, \quad a=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}_{+}^{4 d} \tag{2.10}
\end{equation*}
$$

are a basis for $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$. We will often write $z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}}$ for the monomial m_{a}.
For $z=x+i y \in \mathbb{C}$, we define the Wirtinger derivatives in the usual way, i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) . \tag{2.11}
\end{equation*}
$$

Let Δ be the Laplacian operator on functions $\mathbb{H}^{d} \rightarrow \mathbb{C}$, which is given by

$$
\begin{equation*}
\frac{1}{4} \Delta=\sum_{j=1}^{d}\left(\frac{\partial^{2}}{\partial \overline{z_{j}} \partial z_{j}}+\frac{\partial^{2}}{\partial \overline{w_{j}} \partial w_{j}}\right) \tag{2.12}
\end{equation*}
$$

By applying this, we see that the monomials

$$
z^{\alpha} w^{\beta}, \quad \bar{z}^{\alpha} \bar{w}^{\beta}, \quad z^{\alpha} \bar{w}^{\beta}, \quad \bar{z}^{\alpha} w^{\beta}
$$

are harmonic, i.e., in the kernel of Δ.
Let $U \in \mathbb{C}^{4 d \times 4 d}$ be the unitary matrix given by

$$
[z+w j]_{\mathbb{R}}=\left(\begin{array}{c}
\operatorname{Re}(z) \\
\operatorname{Re}(w) \\
\operatorname{Im}(z) \\
\operatorname{Im}(w)
\end{array}\right)=U\left(\begin{array}{c}
z \\
w \\
\bar{z} \\
\bar{w}
\end{array}\right), \quad z, w \in \mathbb{C}, \quad U=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
-i & 0 & i & 0 \\
0 & -i & 0 & i
\end{array}\right) .
$$

Example 2.1 Right scalar multiplication of \mathbb{H}^{d} by $\alpha+j \beta \in \mathbb{H}$ under these identifications is given by

$$
\begin{aligned}
& \mathbb{H}^{d} \rightarrow \mathbb{H}^{d}: z+j w \mapsto(z+j w)(\alpha+j \beta)=(z \alpha-\bar{w} \beta)+j(\bar{z} \beta+w \alpha), \\
& \mathbb{C}^{2 d} \rightarrow \mathbb{C}^{2 d}:\binom{z}{w} \mapsto\binom{z \alpha-\bar{w} \beta}{z \beta+w \alpha}, \\
& \mathbb{R}^{4 d} \rightarrow \mathbb{R}^{4 d}:[z+w j]_{\mathbb{R}} \mapsto M_{\alpha+j \beta}[z+w j]_{\mathbb{R}}, \\
M_{\alpha+j \beta}= & U\left(\begin{array}{cccc}
\alpha & 0 & 0 & -\beta \\
0 & \alpha & \beta & 0 \\
0 & -\bar{\beta} & \bar{\alpha} & 0 \\
\bar{\beta} & 0 & 0 & \bar{\alpha}
\end{array}\right) \otimes I U^{*}=\frac{1}{2}\left(\begin{array}{cccc}
\operatorname{Re}(\alpha) & -\operatorname{Re}(\beta) & -\operatorname{Im}(\alpha) & -\operatorname{Im}(\beta) \\
\operatorname{Re}(\beta) & \operatorname{Re}(\alpha) & \operatorname{Im}(\beta) & -\operatorname{Im}(\alpha) \\
\operatorname{Im}(\alpha) & -\operatorname{Im}(\beta) & \operatorname{Re}(\alpha) & \operatorname{Re}(\beta) \\
\operatorname{Im}(\beta) & \operatorname{Im}(\alpha) & -\operatorname{Re}(\beta) & \operatorname{Re}(\alpha)
\end{array}\right) \otimes I,
\end{aligned}
$$

where $I=I_{d}$ is the $d \times d$ identity matrix. Note that this map is only \mathbb{R}-linear, and so there are no matrix representations for it as a map from $\mathbb{H}^{d} \rightarrow \mathbb{H}^{d}$ or $\mathbb{C}^{2 d} \rightarrow \mathbb{C}^{2 d}$.

Example 2.2 Consider left multiplication by a linear map $L=A+j B, A, B \in \mathbb{C}^{d \times d}$. By (2.1), we obtain the following matrix representations under our identifications

$$
\begin{aligned}
& \mathbb{H}^{d} \rightarrow \mathbb{H}^{d}: z+j w \mapsto(A+j B)(z+j w)=A z-\bar{B} w+j(B z+\bar{A} w), \\
& \mathbb{C}^{2 d} \rightarrow \mathbb{C}^{2 d}:\binom{z}{w} \mapsto\left(\begin{array}{cc}
A & -\bar{B} \\
B & \bar{A}
\end{array}\right)\binom{z}{w}, \\
& \mathbb{R}^{4 d} \rightarrow \mathbb{R}^{4 d}:[z+w j]_{\mathbb{R}} \mapsto M_{\alpha, \beta}[z+w j]_{\mathbb{R}}, \\
& M_{A, B}= U\left(\begin{array}{cccc}
A & -\bar{B} & 0 & 0 \\
B & \bar{A} & 0 & 0 \\
0 & 0 & \bar{A} & -B \\
0 & 0 & \bar{B} & A
\end{array}\right) U^{*}=\frac{1}{2}\left(\begin{array}{cccc}
\operatorname{Re}(A) & -\operatorname{Re}(B) & -\operatorname{Im}(A) & -\operatorname{Im}(B) \\
\operatorname{Re}(B) & \operatorname{Re}(A) & -\operatorname{Im}(B) & \operatorname{Im}(A) \\
\operatorname{Im}(A) & \operatorname{Im}(B) & \operatorname{Re}(A) & -\operatorname{Re}(B) \\
\operatorname{Im}(B) & -\operatorname{Im}(A) & \operatorname{Re}(B) & \operatorname{Re}(A)
\end{array}\right) .
\end{aligned}
$$

Matrix multiplication on the left (which includes left scalar multiplication) commutes with right scalar multiplication, by the associative law

$$
\begin{equation*}
(L v) \alpha=L(v \alpha), \quad v \in \mathbb{H}^{d}, \alpha \in \mathbb{H} . \tag{2.13}
\end{equation*}
$$

Conversely, those matrices in $\mathbb{R}^{4 d} \times \mathbb{R}^{4 d}$ which commute with all $M_{\alpha+j \beta}$ (equivalently M_{1}, M_{i}, M_{j} and M_{k}) correspond to the matrices $L \in \mathbb{H}^{d \times d}$, and are said to be symplectic.

The compact symplectic group $\mathrm{Sp}(d)$, quaternionic unitary group $U\left(\mathbb{H}^{d}\right)$ or hyperunitary group (see Hal15] §1.2.8) is the group of unitary matrices in $\mathbb{H}^{d \times d}$ for the inner product 2.2 , or, equivalently, the symplectic matrices in $\mathbb{R}^{4 d \times 4 d}$ which are orthogonal. These may also be viewed as the unitary matrices of the form

$$
\mathbb{C}^{2 d} \rightarrow \mathbb{C}^{2 d}:\binom{z}{w} \mapsto\left(\begin{array}{cc}
A & -\bar{B} \\
B & \bar{A}
\end{array}\right)\binom{z}{w}, \quad A^{*} A+B^{*} B=I, \quad A^{T} B-B^{T} A=0
$$

In particular, $\mathrm{Sp}(1)=\mathbb{H}^{*}$ is the group of unit quaternions or, the special unitary group

$$
S U(2)=\left\{\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right):|\alpha|^{2}+|\beta|^{2}=1, \alpha, \beta \in \mathbb{C}\right\}
$$

which therefore have the same irreducible representations (see [Fol95] §5.4).

3 The operators R and L

A subspace V of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is invariant under the right multiplication by \mathbb{H}^{*} if $f(z+j w) \in V$ implies $f((z+j w)(\alpha+j \beta)) \in V$, and similarly for left multiplication. The following elementary example shows how we came to the operators R and L.

Example 3.1 Suppose that $V \subset \operatorname{Harm}_{3}\left(\mathbb{H}^{1}, \mathbb{C}\right)$ is invariant under right multiplication by \mathbb{H}^{*}, and $f((z+j w))=z^{2} w \in V$, then

$$
\begin{aligned}
f((z+j w)(\alpha+j \beta)) & =(z \alpha-\bar{w} \beta)^{2}(\bar{z} \beta+w \alpha) \\
& =\alpha^{3} z^{2} w+\alpha^{2} \beta\left(z^{2} \bar{z}-2 z w \bar{w}\right)+\alpha \beta^{2}\left(w \bar{w}^{2}-2 z \overline{z w}\right)+\beta^{3} \overline{z w}^{2} \in V
\end{aligned}
$$

By taking different choices for α and β, it is not hard to see that the "coefficients" of the monomials $\alpha^{3}, \alpha^{2} \beta, \alpha \beta^{2}, \beta^{3}$ above are in V, i.e.,

$$
z^{2} w, z^{2} \bar{z}-2 z w \bar{w}, w \bar{w}^{2}-2 z \overline{z w}, \overline{z w^{2}} \in V
$$

This example naturally generalises as follows.
Lemma 3.2 Let $f \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ be given by $f=f(z+j w)=F(z, w, \bar{z}, \bar{w})$, and V_{f} be the subspace invariant under right multiplication by \mathbb{H}^{*} generated by f. Then V_{f} contains

$$
f((z+j w)(\alpha+j \beta))=F(z \alpha-\bar{w} \beta, \bar{z} \beta+w \alpha, \overline{z \alpha}-w \bar{\beta}, z \bar{\beta}+\overline{w \alpha}), \quad \alpha, \beta \in \mathbb{C},
$$

and all its partial derivatives in the variables $\alpha, \bar{\alpha}, \beta, \bar{\beta}$, including

$$
\begin{equation*}
R_{a} f:=\left.\frac{\partial^{a_{1}+a_{2}+a_{3}+a_{4}}}{\partial \alpha^{a_{1}} \partial \beta^{a_{2}} \partial \bar{\alpha}^{a_{3}} \partial \bar{\beta}^{a_{4}}} f((z+j w)(\alpha+j \beta))\right|_{\alpha=1, \beta=0} . \tag{3.1}
\end{equation*}
$$

Moreover, if f is harmonic, then so are all the polynomials in V_{f}.
Proof: Clearly, V_{f} is the subspace of $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by

$$
V_{f}=\operatorname{span}_{\mathbb{C}}\left\{f((z+j w) q): q=\alpha+j \beta \in \mathbb{H}^{*}\right\}
$$

and hence for $q=\alpha+j \beta$ nonzero, we have

$$
f((z+j w)(\alpha+j \beta))=|q|^{k} f((z+j w)(q /|q|)) \in V_{f} .
$$

Since V_{f} is a finite-dimensional vector space, it follows that the first order partials in $\alpha, \bar{\alpha}, \beta, \bar{\beta}$, which are limits of Newton quotients in V_{f}, are in V_{f}, and therefore so are all the partial derivatives.

A calculation shows that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic, then so is $f \circ U$ for $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ orthogonal. Since scalar multiplication of \mathbb{H}^{d} by a unit quaternion (left or right) is an orthogonal map $\mathbb{R}^{4 d} \rightarrow \mathbb{R}^{4 d}$, it follows that if $f(z+j w)$ is harmonic, then so is $f((z+j w) q), q \in \mathbb{H}^{*}$, and hence every polynomial in V_{f}.

In other words, if a subspace $V \subset \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is invariant under right multiplication by \mathbb{H}^{*}, then it is invariant under the action of the operators R_{a} of (3.1). Since the partial derivatives in (3.1) for $|a|=a_{1}+a_{2}+a_{3}+a_{4}=k$ do not depend on $\alpha, \beta, \bar{\alpha}, \bar{\beta}$, they can be "evaluated" at $\alpha=0, \beta=0$, to obtain the Taylor formula

$$
\begin{equation*}
f((z+j w)(\alpha+j \beta))=\sum_{|a|=k} R_{a}(f) \frac{\alpha^{a_{1}} \beta^{a_{2}} \bar{\alpha}^{a_{3}} \bar{\beta}^{a_{4}}}{a_{1}!a_{2}!a_{3}!a_{4}!}, \quad f \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) \tag{3.2}
\end{equation*}
$$

We therefore have the following converse result.
Proposition 3.3 A subspace $V \subset \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is invariant under right multiplication by \mathbb{H}^{*} if and only if it is invariant under the operators $R_{a},|a|=k$.

Proof: As already observed, the forward implication follows from Lemma 3.2.
Conversely, suppose that V is invariant under right multiplication by \mathbb{H}^{*}, and $f \in V$. Since the monomials in $\alpha, \beta, \bar{\alpha}, \bar{\beta}$ in the Taylor formula (3.2) are linearly independent, it follows that

$$
V_{f}=\operatorname{span}_{\mathbb{C}}\left\{R_{a} f:|a|=k\right\} \subset V,
$$

and so V is invariant under right multiplication by the operators $R_{a},|a|=k$.

This observation means that

- We can replace invariance under right multiplication by the continuous group \mathbb{H}^{*} by invariance under the discrete set of operators $\left\{R_{a}\right\}_{|a|=k}$.

This is the basic spirit of our development, where

- The operators $\left\{R_{a}\right\}_{|a|=k}$ are homogeneous differential operators of order k which are replaced by two first order operators R and R^{*}, with $R^{k+1}=\left(R^{*}\right)^{k+1}=0$.

There is an obvious parallel development for the left multiplication by \mathbb{H}^{*} where the role of R_{a} is played by L_{a}, where

$$
\begin{gather*}
f((\alpha+j \beta)(z+j w))=F(\alpha z-\bar{\beta} w, \bar{\alpha} w+\beta z, \overline{\alpha z}-\beta \bar{w}, \alpha \bar{w}+\bar{\beta} \bar{z}), \\
L_{a} f:=\left.\frac{\partial^{a_{1}+a_{2}+a_{3}+a_{4}}}{\partial \alpha^{a_{1}} \partial \beta^{a_{2}} \partial \bar{\alpha}^{a_{3}} \partial \bar{\beta}^{a_{4}}} f((\alpha+j \beta)(z+j w))\right|_{\alpha=1, \beta=0} . \tag{3.3}
\end{gather*}
$$

Example 3.4 For the Example 3.1, i.e., $f=z^{2} w$, the nonzero terms in (3.2) are
$R_{3,0,0,0} f=6 z^{2} w, \quad R_{2,1,0,0} f=2 z^{2} \bar{z}-4 z w \bar{w}, \quad R_{1,2,0,0} f=2 w \bar{w}^{2}-4 z \overline{z w}, \quad R_{0,3,0,0} f=6 \overline{z w}^{2}$.
The nonzero polynomials $R_{a} f$ are not a basis for V_{f} in general, e.g., for $f=z \bar{w}$ one has

$$
R_{1,0,1,0} f=z \bar{w}, \quad R_{0,1,0,1} f=-z \bar{w}, \quad R_{1,0,0,1} f=z^{2}, \quad R_{0,1,1,0} f=-\bar{w}^{2} .
$$

To illustrate the nature of the definition (3.1) of R_{a}, we consider the mechanics of calculating $R_{0,1,0,0} f$ for $d=1$. Let $C=(z \alpha-\bar{w} \beta, \bar{z} \beta+w \alpha, \overline{z \alpha}-w \bar{\beta}, z \bar{\beta}+\overline{w \alpha})$. Then differentiating gives

$$
\begin{aligned}
\frac{\partial}{\partial \beta} f((z+j w)(\alpha+j \beta)) & =D_{1} F(C) \frac{\partial}{\partial \beta}(z \alpha-\bar{w} \beta)+D_{2} F(C) \frac{\partial}{\partial \beta}(\bar{z} \beta+w \alpha)+\cdots \\
& =-\bar{w} D_{1} F(C)+\bar{z} D_{2} F(C)+0 D_{3} F(C)+0 D_{4} F(C)
\end{aligned}
$$

and evaluating this at $\alpha=1, \beta=0$ gives $C=(z, w, \bar{z}, \bar{w})$, and hence

$$
\begin{equation*}
R_{0,1,0,0} f=\left.\frac{\partial}{\partial \beta} f((z+j w)(\alpha+j \beta))\right|_{\alpha=1, \beta=0}=-\bar{w} \frac{\partial f}{\partial z}+\bar{z} \frac{\partial f}{\partial w} . \tag{3.4}
\end{equation*}
$$

The calculation for $d \geq 1$, is the same, leading to

$$
R_{0,1,0,0} f=\sum_{j=1}^{d}\left(-\overline{w_{j}} \frac{\partial f}{\partial z_{j}}+\overline{z_{j}} \frac{\partial f}{\partial w_{j}}\right)
$$

For readability, we will often give the $d=1$ case, with general case following by replacing z by z_{j}, etc, and summing over j (or applying the Einstein summation convention).

For the first order differential operators R_{a}, we will use the suggestive notation

$$
R_{\alpha}:=R_{1,0,0,0}=\frac{\partial}{\partial \alpha}\left|, \quad R_{\beta}:=R_{0,1,0,0}=\frac{\partial}{\partial \beta}\right|
$$

$$
R_{\bar{\alpha}}:=R_{0,0,1,0}=\frac{\partial}{\partial \bar{\alpha}}\left|, \quad R_{\bar{\beta}}:=R_{0,0,0,1}=\frac{\partial}{\partial \bar{\beta}}\right|
$$

and similarly for $L_{\alpha}, L_{\beta}, \ldots$. All of these first order operators T satisfy the product rule

$$
\begin{equation*}
T(f g)=T(f) g+f T(g) \tag{3.5}
\end{equation*}
$$

For $d=1$, they are

$$
\begin{array}{rlrl}
R_{\beta}=-\bar{w} \frac{\partial}{\partial z}+\bar{z} \frac{\partial}{\partial w}, & R_{\bar{\beta}}=-w \frac{\partial}{\partial \bar{z}}+z \frac{\partial}{\partial \bar{w}} \\
R_{\alpha} & =z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w}, & R_{\bar{\alpha}}=\bar{z} \frac{\partial}{\partial \bar{z}}+\bar{w} \frac{\partial}{\partial \bar{w}} \\
L_{\beta} & =z \frac{\partial}{\partial w}-\bar{w} \frac{\partial}{\partial \bar{z}}, & L_{\bar{\beta}}=\bar{z} \frac{\partial}{\partial \bar{w}}-w \frac{\partial}{\partial z} \\
L_{\alpha} & =z \frac{\partial}{\partial z}+\bar{w} \frac{\partial}{\partial \bar{w}}, & L_{\bar{\alpha}}=w \frac{\partial}{\partial w}+\bar{z} \frac{\partial}{\partial \bar{z}} \tag{3.9}
\end{array}
$$

Of particular interest, are the operators

$$
\begin{equation*}
R:=-R_{\beta}, \quad R^{*}:=R_{\bar{\beta}}, \quad L:=-L_{\bar{\beta}}, \quad L^{*}:=L_{\beta} \tag{3.10}
\end{equation*}
$$

which in the 1-dimensional case have the form

$$
\begin{align*}
R & =\bar{w} \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial w}, & R^{*}=-w \frac{\partial}{\partial \bar{z}}+z \frac{\partial}{\partial \bar{w}} \tag{3.11}\\
L & =w \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{w}}, & L^{*}=z \frac{\partial}{\partial w}-\bar{w} \frac{\partial}{\partial \bar{z}} \tag{3.12}
\end{align*}
$$

and for general d are given by

$$
\begin{array}{rlrl}
R & =\sum_{j=1}^{d}\left(\overline{w_{j}} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial w_{j}}\right), & R^{*} & =\sum_{j=1}^{d}\left(-w_{j} \frac{\partial}{\partial \overline{z_{j}}}+z_{j} \frac{\partial}{\partial \overline{w_{j}}}\right), \\
L & =\sum_{j=1}^{d}\left(w_{j} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right), & L^{*}=\sum_{j=1}^{d}\left(z_{j} \frac{\partial}{\partial w_{j}}-\overline{w_{j}} \frac{\partial}{\partial \overline{z_{j}}}\right) . \tag{3.14}
\end{array}
$$

The notation R^{*} and L^{*} is used, as we will see (Lemma 4.1) that they are the adjoints of R and L, respectively, for two natural inner products. The operators R and R^{*} (but not
 of this type (for $d=1$) also appear in the construction of irreducible representations of $S U(2)=\mathbb{H}^{*}$ on the homogeneous polynomials in z and w of degree k given in [Fol95].

The following "ansatz" indicates our approach.
Ansatz 3.5 On $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, each operator $R_{a},|a|=k$, can be written as a polynomial of degree k with real coefficients in the noncommuting variables R and R^{*}. Therefore, a subspace of $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is invariant under right multiplication by scalars in \mathbb{H}^{*} if and only if it is invariant under R and R^{*}.

The analogous statement holds for left multiplication and the action of L and L^{*}. It was hoped to prove this, by exhibiting the polynomials in R and R^{*} explicitly, or by a simple inductive argument, but this is complicated by the fact that R and R^{*} do not commute. We now discuss some relevant algebraic properties of R, R^{*}, etc.

Lemma 3.6 We have the commutativity relations

$$
\begin{align*}
& R_{\beta} R_{\bar{\beta}}-R_{\bar{\beta}} R_{\beta}=R_{\alpha}-R_{\bar{\alpha}}, \quad R_{\alpha} R_{\bar{\alpha}}=R_{\bar{\alpha}} R_{\alpha}, \tag{3.15}\\
& R_{\beta} R_{\alpha}-R_{\alpha} R_{\beta}=R_{\beta}, \quad R_{\alpha} R_{\bar{\beta}}-R_{\bar{\beta}} R_{\alpha}=R_{\bar{\beta}}, \tag{3.16}\\
& R_{\bar{\alpha}} R_{\beta}-R_{\beta} R_{\bar{\alpha}}=R_{\beta}, \quad R_{\bar{\beta}} R_{\bar{\alpha}}-R_{\bar{\alpha}} R_{\bar{\beta}}=R_{\bar{\beta}} . \tag{3.17}
\end{align*}
$$

Furthermore, on $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ we have

$$
\begin{equation*}
R_{\alpha}+R_{\bar{\alpha}}=k I \tag{3.18}
\end{equation*}
$$

and hence

$$
\begin{equation*}
R_{\alpha}=\frac{1}{2}\left(R^{*} R-R R^{*}+k I\right), \quad R_{\bar{\alpha}}=\frac{1}{2}\left(R R^{*}-R^{*} R+k I\right) . \tag{3.19}
\end{equation*}
$$

Proof: The relations (3.15), (3.16) and (3.17) directly from the formulas of the type (3.6) and (3.7), e.g., the first is proved in Lemma 5.3. For (3.18), apply R_{α} and $R_{\bar{\alpha}}$ to a monomial $f=z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}},|a|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\left|a_{4}\right|=k$,

$$
\begin{aligned}
& R_{\alpha} f=\sum_{j}\left(z_{j} \frac{\partial f}{z_{j}}+w_{j} \frac{\partial f}{w_{j}}\right)=\sum_{j}\left(\left(a_{1}\right)_{j} f+\left(a_{2}\right)_{j} f\right)=\left(\left|a_{1}\right|+\left|a_{2}\right|\right) f, \\
& R_{\bar{\alpha}} f=\sum_{j}\left(\overline{z_{j}} \frac{\partial f}{\overline{z_{j}}}+\overline{w_{j}} \frac{\partial f}{\overline{w_{j}}}\right)=\sum_{j}\left(\left(a_{3}\right)_{j} f+\left(a_{4}\right)_{j} f\right)=\left(\left|a_{3}\right|+\left|a_{4}\right|\right) f,
\end{aligned}
$$

and add to get $R_{\alpha} f+R_{\bar{\alpha}} f=k f$. The equations (3.19) then follow by using (3.18) to eliminate $R_{\bar{\alpha}}$ and R_{α} from $R_{\beta} R_{\alpha}-R_{\alpha} R_{\beta}=R_{\beta}$.

In view of (3.19) all "polynomials" in $R_{\beta}, R_{\bar{\beta}}, R_{\alpha}, R_{\bar{\alpha}}$ can be written as polynomials in the noncommuting variables R and R^{*}.

Example 3.7 The commutativity relations (3.16) and (3.17) can be used to exchange α and β factors as follows

$$
\begin{array}{ll}
R_{\beta} R_{\alpha}=\left(R_{\alpha}+I\right) R_{\beta}, & R_{\alpha} R_{\beta}=R_{\beta}\left(R_{\alpha}-I\right), \\
R_{\alpha} R_{\bar{\beta}}=R_{\bar{\beta}}\left(R_{\alpha}+I\right), & R_{\bar{\beta}} R_{\alpha}=\left(R_{\alpha}-I\right) R_{\bar{\beta}}, \\
R_{\bar{\alpha}} R_{\beta}=R_{\beta}\left(R_{\bar{\alpha}}+I\right), & R_{\beta} R_{\bar{\alpha}}=\left(R_{\bar{\alpha}}-I\right) R_{\beta}, \\
R_{\bar{\beta}} R_{\bar{\alpha}}=\left(R_{\bar{\alpha}}+I\right) R_{\bar{\beta}}, & R_{\bar{\alpha}} R_{\bar{\beta}}=R_{\bar{\beta}}\left(R_{\bar{\alpha}}-I\right) .
\end{array}
$$

In this way, one might hope to put the "polynomials" giving R_{a} in terms of R and R^{*} alluded to in Ansatz 3.5 into some canonical form, which could then be proved, e.g., by verifying it on the monomials. To this end, we have formulas such as

$$
\begin{gathered}
\left.R_{a_{1}, a_{2}, a_{3}, 0}=\frac{\partial^{a_{1}+a_{2}+a_{3}}}{\partial \alpha^{a_{1}} \partial \beta^{a_{2}} \partial \bar{\alpha}^{a_{3}}} \right\rvert\,=\left(\prod_{j_{1}=0}^{a_{1}-1}\left(R_{\alpha}-j_{1} I\right)\right) R_{\beta}^{a_{2}}\left(\prod_{j_{3}=0}^{a_{3}-1}\left(R_{\bar{\alpha}}-j_{3} I\right)\right), \\
\left.R_{a_{1}, 0, a_{3}, a_{4}}=\frac{\partial^{a_{1}+a_{3}+a_{4}}}{\partial \alpha^{a_{1}} \partial \bar{\alpha}^{a_{3}} \partial \bar{\beta}^{a_{4}}} \right\rvert\,=\left(\prod_{j_{3}=0}^{a_{3}-1}\left(R_{\bar{\alpha}}-j_{3} I\right)\right) R_{\bar{\beta}}^{a_{4}}\left(\prod_{j_{1}=0}^{a_{1}-1}\left(R_{\alpha}-j_{1} I\right)\right), \\
\left.\frac{\partial^{b_{1}+b_{2}}}{\partial \beta^{b_{1}} \partial \bar{\beta}^{b_{2}}} \right\rvert\,=R_{\beta}^{b_{1}} R_{\bar{\beta}}^{b_{2}}+b_{1} b_{2} R_{\beta}^{b_{3}-1} R_{\bar{\alpha}} R_{\bar{\beta}}^{b_{2}-1}+\text { lower order terms },
\end{gathered}
$$

where the lower order terms are zero when either of b_{1} or b_{2} takes the value 0 or 1 , and

$$
\begin{gathered}
\text { l.o. } \left.t=b_{1}\left(b_{1}-1\right) \frac{\partial}{\partial \bar{\alpha}^{2} \partial \beta^{b_{1}-2}} \right\rvert\,, \quad b_{2}=2 \\
\text { l.o.t }=3 b_{1}\left(b_{1}-1\right) \frac{\partial}{\partial \bar{\alpha}^{2} \partial \beta^{b_{1}-2} \partial \bar{\beta}}\left|-2 b_{1}\left(b_{1}-1\right)\left(b_{1}-2\right) \frac{\partial}{\partial \bar{\alpha}^{3} \partial \beta^{b_{1}-3}}\right|, \quad b_{2}=3
\end{gathered}
$$

However, a general formula has yet to be obtained.

4 Inner products on the quaternionic sphere

There are two natural (unitarily invariant) inner products defined on polynomials from $\mathbb{H}^{d} \rightarrow \mathbb{C}$ that we consider. Let

$$
\mathbb{S}=\mathbb{S}\left(\mathbb{F}^{d}\right):=\left\{x \in \mathbb{F}^{d}:\|x\|=1\right\}=\left\{x \in \mathbb{R}^{m d}:\|x\|=1\right\}
$$

be the unit sphere in \mathbb{F}^{d}, and σ be the surface area measure on \mathbb{S}, normalised so that $\sigma(\mathbb{S})=1$. We note that surface area measure invariant under unitary maps on \mathbb{F}^{d}, i.e., for U unitary

$$
\int_{\mathbb{S}\left(\mathbb{F}^{d}\right)} f(U x) d \sigma(x)=\int_{\mathbb{S}\left(\mathbb{F}^{d}\right)} f(x) d \sigma(x), \quad \forall f
$$

The first inner product we consider is defined on complex-valued functions restricted to the quaternionic sphere $\mathbb{S}=\mathbb{S}\left(\mathbb{H}^{d}\right)$ by

$$
\begin{equation*}
\langle f, g\rangle=\langle f, g\rangle_{\mathbb{S}}:=\int_{\mathbb{S}\left(\mathbb{H}^{d}\right)} \overline{f(x)} g(x) d \sigma(x) \tag{4.1}
\end{equation*}
$$

This can be calculated from the well known integrals of the monomials in $z, w, \bar{z}, \bar{w} \in \mathbb{C}^{d}$ (polynomials in $2 d$ complex variables)

$$
\int_{\mathbb{S}(\mathbb{H} d)} z^{\alpha_{1}} w^{\beta_{1}} \bar{z}^{\alpha_{2}} \bar{w}^{\beta_{2}} d \sigma=\int_{\mathbb{S}\left(\mathbb{C}^{2 d}\right)} z^{\alpha_{1}} w^{\beta_{1}} \bar{z}^{\alpha_{2}} \bar{w}^{\beta_{2}} d \sigma(z, w),
$$

which are zero for $\left(\alpha_{1}, \beta_{1}\right) \neq\left(\alpha_{2}, \beta_{2}\right)$, and otherwise

$$
\begin{equation*}
\int_{\mathbb{S}\left(\mathbb{H}^{d}\right)} z^{\alpha_{1}} w^{\beta_{1}} \bar{z}^{\alpha_{2}} \bar{w}^{\beta_{2}} d \sigma=\frac{(2 d-1)!\alpha_{1}!\beta_{1}!}{\left(2 d-1+\left|\alpha_{1}\right|+\left|\beta_{1}\right|\right)!}=\frac{\alpha_{1}!\beta_{1}!}{(2 d)_{\left|\alpha_{1}\right|+\left|\beta_{1}\right|}}, \quad\left(\alpha_{1}, \beta_{1}\right)=\left(\alpha_{2}, \beta_{2}\right) . \tag{4.2}
\end{equation*}
$$

Here $(x)_{n}:=x(x+1) \cdots(x+n-1)$ is the Pochhammer symbol.
For a polynomial $f=\sum_{\alpha} f_{\alpha} z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}$ mapping $\mathbb{H}^{d} \rightarrow \mathbb{C}$, let \tilde{f} be the polynomial obtained by replacing the coefficient $f_{\alpha} \in \mathbb{C}$ by its conjugate $\overline{f_{\alpha}}$, and $f(\partial)$ be the differential operator obtained replacing z by $\frac{\partial}{\partial z}$, etc, i.e.,

$$
\tilde{f}=\sum_{\alpha} \overline{f_{\alpha}} z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}, \quad f(\partial)=\sum_{\alpha} f_{\alpha} \frac{\partial^{\alpha_{1}+a_{2}+\alpha_{3}+\alpha_{4}} f}{\partial z^{\alpha_{1}} \partial w^{\alpha_{2}} \partial \bar{z}^{\alpha_{3}} \partial \bar{w}^{\alpha_{4}}} .
$$

The second inner product is given by

$$
\begin{equation*}
\langle f, g\rangle_{\partial}:=\tilde{f}(\partial) g(0)=\sum_{\alpha} \alpha!\overline{f_{\alpha}} g_{\alpha} \tag{4.3}
\end{equation*}
$$

The inner products (4.1) and (4.3) are both prominent in the theory of spherical harmonics. The first is natural for Fourier expansions on the sphere, and the second, which is variously known as the apolar [Veg00, Bombieri [Zei94] or Fischer inner product $\left[\mathrm{BDE}^{+} 14\right]$, is also widely used. Not withstanding the fact that they are defined on different spaces, these inner products are different, since the monomials are orthogonal in the second, but not in the first in general, e.g.,

$$
\left\langle z_{1} \overline{z_{1}}, w_{1} \overline{w_{1}}\right\rangle=\int_{\mathbb{S}\left(\mathbb{H}^{d}\right)}\left|z_{1} w_{1}\right|^{2} d \sigma=\frac{1}{2 d(2 d+1)} \neq 0, \quad\left\langle z_{1} \overline{z_{1}}, w_{1} \overline{w_{1}}\right\rangle_{\partial}=0 .
$$

Nevertheless, these inner product are scalar multiples of each other in the following sense

$$
\langle f, g\rangle_{\partial}=(2 d)_{k}\langle f, g\rangle, \quad f \in \operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right), g \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right),
$$

which follows from DX13 (Theorem 1.1.8) as presented in DBSW17 (Lemma 2).
The homogeneous polynomials of different degrees are orthogonal to each other for both inner products, giving the orthogonal direct sums

$$
\left.\bigoplus_{k \geq 0} \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right|_{\mathbb{S}\left(\mathbb{H}^{d}\right)}, \quad \bigoplus_{k \geq 0} \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)
$$

respectively. For simplicity, we will primarily consider the further decomposition of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, with it being understood that this leads to a corresponding refinement of the direct sums

$$
\begin{align*}
& \bigoplus_{k \geq 0} \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{k \geq 0} \tag{4.4}\\
& \bigoplus_{0 \leq j \leq \frac{k}{2}}\|\cdot\|^{2 j} \operatorname{Harm}_{k-2 j}\left(\mathbb{H}^{d}, \mathbb{C}\right), \tag{4.5}\\
&\left.\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right|_{\mathbb{S}}=\bigoplus_{0 \leq j \leq \frac{k}{2}} \operatorname{Harm}_{k-2 j}\left(\mathbb{H}^{d}, \mathbb{C}\right)
\end{align*}
$$

of the polynomials $\mathbb{H}^{d} \rightarrow \mathbb{C}$ into irreducibles for the action of $S O(4 d)$. The direct sum (4.4) is sometimes referred to as the Fischer decomposition [$\left.\mathrm{BDE}^{+} 14\right]$.

The adjoints of R and L are the same for both of these inner products.

Lemma 4.1 The operators R^{*} and L^{*} are the adjoints of R and L with respect to both the inner products (4.1) and (4.3) defined on $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$.

Proof: This is by direct computation. See Section 14 .
This result for R was given in [$\left.\overline{\mathrm{BDE}^{+} 14}\right]$ Lemma 5 for the inner product (4.3).
The adjoint can also be calculated using the following property.
Example 4.2 An elementary calculation shows the identities

$$
\begin{equation*}
\overline{R f}=-R^{*}(\bar{f}), \quad \overline{L f}=-L^{*}(\bar{f}), \tag{4.6}
\end{equation*}
$$

and so, on subspaces V, we have

$$
\begin{equation*}
\overline{R^{\alpha} V}=\left(R^{*}\right)^{\alpha} \bar{V}, \quad \overline{\left.\operatorname{ker} R^{*}\right|_{V}}=\left.\operatorname{ker} R\right|_{\bar{V}} \tag{4.7}
\end{equation*}
$$

The next result follows from the fact that scalar multiplication by \mathbb{H}^{*} is in $O\left(\mathbb{R}^{4 d}\right)$, and hence maps harmonic polynomials to harmonic polynomials.

Lemma 4.3 The operators R, R^{*}, L and L^{*} commute with the Laplacian Δ, and so map harmonic functions to harmonic functions.

Proof: A direct proof is given in Section 14.
It follows from (2.13) that the action of R and R^{*} commutes with that of $U \in U\left(\mathbb{H}^{d}\right)$. In this regard, recall from (2.6) and (3.1) that

$$
(U \cdot f)(z+j w)=f(U(z+j w))
$$

Lemma 4.4 The operators R and R^{*} commute with the action of $U\left(\mathbb{H}^{d}\right)$.
Proof: We will show, more generally, that the operators R_{a} of (3.1) commute with the action of $U\left(\mathbb{H}^{d}\right)$. Let $U \in U\left(\mathbb{H}^{d}\right)$. Then for $f=f(z+j w)$, we have

$$
\begin{aligned}
\left(U \cdot R_{a} f\right) & =\left.\frac{\partial^{a_{1}+a_{2}+a_{3}+a_{4}}}{\partial \alpha^{a_{1}} \partial \beta^{a_{2}} \partial \bar{\alpha}^{a_{3}} \partial \bar{\beta}^{a_{4}}} f(U(z+j w)(\alpha+j \beta))\right|_{\alpha=1, \beta=0} \\
& =\left.\frac{\partial^{a_{1}+a_{2}+a_{3}+a_{4}}}{\partial \alpha^{a_{1}} \partial \beta^{a_{2}} \partial \bar{\alpha}^{a_{3}} \partial \bar{\beta}^{a_{4}}}(U \cdot f)((z+j w)(\alpha+j \beta))\right|_{\alpha=1, \beta=0} \\
& =R_{a}(U \cdot f) .
\end{aligned}
$$

i.e., R_{a} commutes with the action of $U\left(\mathbb{H}^{d}\right)$.

We note that, by the same reasoning, the operators L and L^{*} do not commute with the (left) action of $U\left(\mathbb{H}^{d}\right)$.

5 The action of R and L on polynomials

Using (3.11) to apply R to a univariate monomial $f=z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}}$ gives

$$
\begin{aligned}
R f & =\bar{w} \frac{\partial}{\partial z}\left(z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}}\right)-\bar{z} \frac{\partial}{\partial w}\left(z^{a_{1}} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}}\right) \\
& =a_{1} z^{a_{1}-1} w^{a_{2}} \bar{z}^{a_{3}} \bar{w}^{a_{4}+1}-a_{2} z^{a_{1}} w^{a_{2}-1} \bar{z}^{a_{3}+1} \bar{w}^{a_{4}}
\end{aligned}
$$

which is a sum of monomials in which the degree in z and w has decreased by 1 , whilst the degree in \bar{z} and \bar{w} has increased by 1. This type of phenomenon occurs for all of the operators R, R^{*}, L, L^{*} (in every dimension), and we now make definitions which allow us to account for these changes in degrees. With standard multi-index notation, we have

$$
\begin{aligned}
\operatorname{Hom}_{H}(p, q) & :=\operatorname{span}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}:\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=p,\left|\alpha_{3}\right|+\left|\alpha_{4}\right|=q\right\} \\
\operatorname{Hom}_{K}(p, q) & :=\operatorname{span}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}:\left|\alpha_{1}\right|+\left|\alpha_{4}\right|=p,\left|\alpha_{2}\right|+\left|\alpha_{3}\right|=q\right\}, \\
\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) & :=\operatorname{Hom}_{K}(k-a, a) \cap \operatorname{Hom}_{H}(k-b, b) \\
& =\operatorname{span}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}:\left|\alpha_{1}\right|+\left|\alpha_{4}\right|=k-a,\left|\alpha_{2}\right|+\left|\alpha_{3}\right|=a,\right. \\
& \left.\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=k-b,\left|\alpha_{3}\right|+\left|\alpha_{4}\right|=b\right\} .
\end{aligned}
$$

We observe that

$$
\overline{\operatorname{Hom}_{H}(p, q)}=\operatorname{Hom}_{H}(q, p), \quad \overline{\operatorname{Hom}_{K}(p, q)}=\operatorname{Hom}_{K}(q, p) .
$$

$$
\Delta \operatorname{Hom}_{H}(a, b)=\operatorname{Hom}_{H}(a-1, b-1), \quad \Delta \operatorname{Hom}_{K}(a, b)=\operatorname{Hom}_{K}(a-1, b-1) .
$$

The subspaces of harmonic polynomials contained in these are denoted

$$
\begin{array}{rlr}
H(p, q) & :=\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) \cap \operatorname{Hom}_{H}(p, q), \quad p+q=k, \\
K(p, q) & :=\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) \cap \operatorname{Hom}_{K}(p, q), & p+q=k, \\
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) & :=\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) \cap \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) \\
& =K(k-a, a) \cap H(k-b, b) .
\end{array}
$$

When either p or q above is negative, then we have, by definition, the zero subspace. The subspaces $H(p, q)$ are the irreducible subspaces of $\operatorname{Harm}_{k}\left(\mathbb{C}^{2 d}, \mathbb{C}\right) \cong \operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ under the action of (left) multiplication by $U\left(\mathbb{C}^{2 d}\right)$, e.g., see Rud80], from where we borrow the notation $H(p, q)$. Since $U\left(\mathbb{H}^{d}\right)$ is a subgroup of $U\left(\mathbb{C}^{2 d}\right)$, the decomposition of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ into $U\left(\mathbb{H}^{d}\right)$-irreducibles is obtained by decomposing each $H(p, q)$.

The following dimensions are easily calculated

$$
\begin{gather*}
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{H}(p, q)\right)=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{K}(p, q)\right)=\binom{p+2 d-1}{2 d-1}\binom{q+2 d-1}{2 d-1} \tag{5.1}\\
\operatorname{dim}_{\mathbb{C}}(H(p, q))=\operatorname{dim}_{\mathbb{C}}(K(p, q))=(p+q+2 d-1) \frac{(p+2 d-2)!(q+2 d-2)!}{p!q!(2 d-1)!(2 d-2)!} \tag{5.2}
\end{gather*}
$$

whilst those of $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ and $H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ are more complicated (Lemmas 7.1 and 7.4).

Example 5.1 Let $H(p, q)^{\mathbb{R}}$ be $H(p, q) \subset \operatorname{Harm}_{k}\left(\mathbb{C}^{2 d}, \mathbb{C}\right)$ viewed as a real vector space, which is invariant under the action of $U\left(\mathbb{C}^{2 d}\right)$. Complexifying this space gives

$$
\mathbb{C} H(p, q)^{\mathbb{R}}=H(p, q) \oplus H(q, p)
$$

Thus we observe that enlarging the field, which preserves the invariance of subspaces, does not always preserve irreducibility.

Lemma 5.2 For all integers a and b, we have

$$
\begin{array}{ll}
R \operatorname{Hom}_{H}(a, b) \subset \operatorname{Hom}_{H}(a-1, b+1), & R^{*} \operatorname{Hom}_{H}(a, b) \subset \operatorname{Hom}_{H}(a+1, b-1), \\
L \operatorname{Hom}_{K}(a, b) \subset \operatorname{Hom}_{K}(a-1, b+1), & L^{*} \operatorname{Hom}_{K}(a, b) \subset \operatorname{Hom}_{K}(a+1, b-1),
\end{array}
$$

and $\operatorname{Hom}_{K}(a, b)$ is invariant under right multiplication by $\mathbb{H}^{*}, \operatorname{Hom}_{H}(a, b)$ is invariant under left multiplication by \mathbb{H}^{*}, and more generally by $U\left(\mathbb{H}^{d}\right)$, which gives

$$
\begin{aligned}
R \operatorname{Hom}_{K}(a, b) \subset \operatorname{Hom}_{K}(a, b), & R^{*} \operatorname{Hom}_{K}(a, b) \subset \operatorname{Hom}_{K}(a, b), \\
L \operatorname{Hom}_{H}(a, b) \subset \operatorname{Hom}_{H}(a, b), & L^{*} \operatorname{Hom}_{H}(a, b) \subset \operatorname{Hom}_{H}(a, b) .
\end{aligned}
$$

In particular, for $\alpha, \beta \geq 0$, we have

$$
\begin{align*}
L^{\alpha} R^{\beta} \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right) & \subset \operatorname{Hom}_{k}^{(a+\alpha, b+\beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right), \tag{5.3}\\
\left(L^{*}\right)^{\alpha}\left(R^{*}\right)^{\beta} \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right) & \subset \operatorname{Hom}_{k}^{(a-\alpha, b-\beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right) \tag{5.4}
\end{align*}
$$

Moreover, for the inner products (4.1) and (4.3) we have the orthogonal direct sums

$$
\begin{equation*}
\operatorname{Hom}_{H}(k-a, a)=\left(\operatorname{Hom}_{H}(k-a, a) \cap \operatorname{ker} R^{*}\right) \oplus R \operatorname{Hom}_{H}(k-a+1, a-1), \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Hom}_{H}(k-a, a)=\left(\operatorname{Hom}_{H}(k-a, a) \cap \operatorname{ker} R\right) \oplus R^{*} \operatorname{Hom}_{H}(k-a-1, a+1), \tag{5.6}
\end{equation*}
$$

Proof: The inclusions follow by (elementary) direct calculations.
Let $f \in \operatorname{Hom}_{H}(k-a, a)$. Since $R^{*} f \in \operatorname{Hom}_{H}(k-a+1, a-1)$, we have

$$
\begin{aligned}
f \in \operatorname{ker} R^{*} & \Longleftrightarrow R^{*} f=0 \quad \Longleftrightarrow\left\langle R^{*} f, g\right\rangle=0, \quad \forall g \in \operatorname{Hom}_{H}(k-a+1, a-1) \\
& \Longleftrightarrow\langle f, R g\rangle=0, \quad \forall g \in \operatorname{Hom}_{H}(k-a+1, a-1) \\
& \Longleftrightarrow f \in\left(R \operatorname{Hom}_{H}(k-a+1, a-1)\right)^{\perp}
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{Hom}_{H}(k-a, a) & =\left(R \operatorname{Hom}_{H}(k-a+1, a-1)\right)^{\perp} \oplus R \operatorname{Hom}_{H}(k-a+1, a-1) \\
& =\left(\operatorname{Hom}_{H}(k-a, a) \cap \operatorname{ker} R^{*}\right) \oplus R \operatorname{Hom}_{H}(k-a+1, a-1),
\end{aligned}
$$

which gives (5.5). The proof of (5.6) is similar.

By restricting (5.3), (5.4), (5.5), and (5.6) to the harmonic polynomials, we have

$$
\begin{gather*}
L^{\alpha} R^{\beta} H_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right) \subset H_{k}^{(a+\alpha, b+\beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right), \tag{5.7}\\
\left(L^{*}\right)^{\alpha}\left(R^{*}\right)^{\beta} H_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right) \subset H_{k}^{(a-\alpha, b-\beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right), \tag{5.8}\\
H(k-a, a)=\left(H(k-a, a) \cap \operatorname{ker} R^{*}\right) \oplus R H(k-a+1, a-1), \tag{5.9}\\
H(k-a, a)=(H(k-a, a) \cap \operatorname{ker} R) \oplus R^{*} H(k-a-1, a+1), \tag{5.10}
\end{gather*}
$$

Henceforth, all "orthogonal" direct sum decompositions will hold for both the inner products (4.1) and (4.3), unless stated otherwise.

We now give some technical results, related to the following commutativity relations.
Lemma 5.3 The operators L and L^{*} commute with R and R^{*}, and we have

$$
\begin{align*}
R^{*} R-R R^{*} & =\sum_{j}\left(z_{j} \frac{\partial}{\partial z_{j}}+w_{j} \frac{\partial}{\partial w_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}-\overline{w_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right), \tag{5.11}\\
L^{*} L-L L^{*} & =\sum_{j}\left(z_{j} \frac{\partial}{\partial z_{j}}-w_{j} \frac{\partial}{\partial w_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}+\overline{w_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right) . \tag{5.12}
\end{align*}
$$

Proof: This is by direct computation. See Section 14 .
Clearly, the right hand side of (14.1) and of (14.2) maps the monomial m_{a} of (2.10) to a scalar multiple of itself, and so we obtain

$$
\begin{align*}
R^{*} R f & =R R^{*} f+(a-b) f, & & f \in \operatorname{Hom}_{H}(a, b), \tag{5.13}\\
L^{*} L f & =L L^{*} f+(a-b) f, & & f \in \operatorname{Hom}_{K}(a, b) . \tag{5.14}
\end{align*}
$$

We can iterate these to obtain formulas which interchange R and R^{*}, and L and L^{*}.
Lemma 5.4 We have

$$
\begin{align*}
R^{*} R^{\beta} f=R^{\beta} R^{*} f+\beta(a-b-\beta+1) R^{\beta-1} f, & f \in \operatorname{Hom}_{H}(a, b), \tag{5.15}\\
L^{*} L^{\beta} f=L^{\beta} L^{*} f+\beta(a-b-\beta+1) L^{\beta-1} f, & f \in \operatorname{Hom}_{K}(a, b), \tag{5.16}
\end{align*}
$$

which also holds for $\beta=0$ (in the obvious way).
Proof: We now prove the first equation, using induction on β. The case $\beta=0$ is trivial, and the case $\beta=1$ is 5.13 . Suppose the formula holds for $\beta-1 \geq 0$, then $R f \in \operatorname{Hom}_{H}(a-1, b+1)$, and so, using (5.13), we have

$$
\begin{aligned}
R^{*} R^{\beta} f & =R^{*} R^{\beta-1}(R f)=R^{\beta-1} R^{*} R f+(\beta-1)((a-1)-(b+1)-(\beta-1)+1) R^{\beta-2} R f \\
& =R^{\beta-1}\left(R^{*} R f\right)+(\beta-1)(a-b-\beta) R^{\beta-1} f \\
& =R^{\beta-1}\left(R R^{*} f+(a-b) f\right)+(\beta-1)(a-b-\beta) R^{\beta-1} f \\
& =R^{\beta} R^{*} f+\beta(a-b-\beta+1) R^{\beta-1} f
\end{aligned}
$$

which completes the induction. The proof of the second equation is very similar.

Here are the most general formulas, which we will use.
Lemma 5.5 For all choices of α and β, we have

$$
\begin{array}{ll}
\left(R^{*}\right)^{\alpha} R^{\beta} f=\sum_{c=0}^{\alpha}\binom{\alpha}{c}(-\beta)_{c}(b-a+\beta-\alpha)_{c} R^{\beta-c}\left(R^{*}\right)^{\alpha-c} f, & f \in \operatorname{Hom}_{H}(a, b), \\
R^{\alpha}\left(R^{*}\right)^{\beta} f=\sum_{c=0}^{\alpha}\binom{\alpha}{c}(-\beta)_{c}(a-b+\beta-\alpha)_{c}\left(R^{*}\right)^{\beta-c} R^{\alpha-c} f, & f \in \operatorname{Hom}_{H}(a, b), \\
\left(L^{*}\right)^{\alpha} L^{\beta} f=\sum_{c=0}^{\alpha}\binom{\alpha}{c}(-\beta)_{c}(b-a+\beta-\alpha)_{c} L^{\beta-c}\left(L^{*}\right)^{\alpha-c} f, & f \in \operatorname{Hom}_{K}(a, b), \\
L^{\alpha}\left(L^{*}\right)^{\beta} f=\sum_{c=0}^{\alpha}\binom{\alpha}{c}(-\beta)_{c}(a-b+\beta-\alpha)_{c}\left(L^{*}\right)^{\beta-c} L^{\alpha-c} f, \quad f \in \operatorname{Hom}_{K}(a, b) . \tag{5.20}
\end{array}
$$

Here the terms involving a negative power of an operator have a zero coefficient.
Proof: We now prove (5.17), by induction on α, with β fixed. The case $\alpha=0$ is immediate. Suppose that (5.17) holds for $\alpha-1 \geq 0$, then

$$
\left(R^{*}\right)^{\alpha} R^{\beta} f=\sum_{c^{\prime}=0}^{\alpha-1}\binom{\alpha-1}{c^{\prime}}(-\beta)_{c^{\prime}}(b-a+\beta-\alpha+1)_{c^{\prime}} R^{*} R^{\beta-c^{\prime}}\left(R^{*}\right)^{\alpha-1-c^{\prime}} f
$$

Since $g=\left(R^{*}\right)^{\alpha-1-c^{\prime}} f \in H\left(a+\alpha-1-c^{\prime}, b-\left(\alpha-1-c^{\prime}\right)\right)$, 5.15) of Lemma 5.4 gives

$$
\begin{aligned}
R^{*} R^{\beta-c^{\prime}} g & =R^{\beta-c^{\prime}} R^{*} g+\left(\beta-c^{\prime}\right)\left(a+\alpha-1-c^{\prime}-\left(b-\left(\alpha-1-c^{\prime}\right)\right)-\left(\beta-c^{\prime}\right)+1\right) R^{\beta-c^{\prime}-1} g \\
& =R^{\beta-c^{\prime}}\left(R^{*}\right)^{\alpha-c^{\prime}} f+\left(-\beta+c^{\prime}\right)\left(b-a-2 \alpha+1+c^{\prime}+\beta\right) R^{\beta-c^{\prime}-1}\left(R^{*}\right)^{\alpha-1-c^{\prime}} f
\end{aligned}
$$

and we have

$$
\begin{aligned}
\left(R^{*}\right)^{\alpha} R^{\beta} f=\sum_{c^{\prime}=0}^{\alpha-1} & \binom{\alpha-1}{c^{\prime}}(-\beta)_{c^{\prime}}(b-a+\beta-\alpha)_{c^{\prime}}\left\{R^{\beta-c^{\prime}}\left(R^{*}\right)^{\alpha-c^{\prime}} f\right. \\
& \left.+\left(-\beta+c^{\prime}\right)\left(b-a-2 \alpha+1+c^{\prime}+\beta\right) R^{\beta-c^{\prime}-1}\left(R^{*}\right)^{\alpha-1-c^{\prime}} f\right\}
\end{aligned}
$$

The coefficient of $R^{\beta-c}\left(R^{*}\right)^{\alpha-c} f$ in the above formula for $\left(R^{*}\right)^{\alpha} R^{\beta} f$ is

$$
\begin{aligned}
& \binom{\alpha-1}{c}(-\beta)_{c}(b-a+\beta-\alpha+1)_{c} \\
& +\binom{\alpha-1}{c-1}(-\beta)_{c-1}(b-a+\beta-\alpha+1)_{c-1}(-\beta+c-1)(b-a-2 \alpha+1+(c-1)+\beta) \\
& \quad=\frac{(\alpha-1)!}{c!(\alpha-c)!}(-\beta)_{c}(b-a+\beta-\alpha+1)_{c-1}\{\quad\}=\frac{\alpha!}{c!(\alpha-c)!}(-\beta)_{c}(b-a+\beta-\alpha)_{c},
\end{aligned}
$$

where

$$
\}=(\alpha-c)(b-a+\beta-\alpha+c)+c(b-a-2 \alpha+c+\beta)=\alpha(b-a+\beta-\alpha) .
$$

Thus we obtain the desired formula for $\left(R^{*}\right)^{\alpha} R^{\beta} f$, which completes the induction.
The other formulas follow in a similar fashion.

$6 \quad U\left(\mathbb{H}^{d}\right)$-invariant subspaces

It follows from Lemma 5.5 that R and R^{*} inverses of each other in some sense.
Lemma 6.1 For $\alpha \leq \beta$, and $\beta>\alpha+a-b$ or $\beta \leq a-b$, we have

$$
\begin{align*}
\left(R^{*}\right)^{\alpha} R^{\beta}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(a, b)\right) & =R^{\beta-\alpha}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(a, b)\right) \tag{6.1}\\
R^{\alpha}\left(R^{*}\right)^{\beta}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(b, a)\right) & =\left(R^{*}\right)^{\beta-\alpha}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(b, a)\right) \tag{6.2}
\end{align*}
$$

otherwise

$$
\begin{equation*}
\left(R^{*}\right)^{\alpha} R^{\beta}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(a, b)\right)=0, \quad R^{\alpha}\left(R^{*}\right)^{\beta}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(b, a)\right)=0 \tag{6.3}
\end{equation*}
$$

Proof: For $f \in \operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(a, b), R^{*} f=0$, and so (5.17) reduces to

$$
\left(R^{*}\right)^{\alpha} R^{\beta} f=(-\beta)_{\alpha}(b-a+\beta-\alpha)_{\alpha} R^{\beta-\alpha} f
$$

The condition for the constant above to be nonzero is $\alpha \leq \beta$, and the α factors

$$
b-a+\beta-\alpha, \quad b-a+\beta-\alpha+1, \quad \ldots \quad b-a+\beta-1
$$

of $(b-a+\beta-\alpha)_{\alpha}$ are not zero, i.e., $b-a+\beta-\alpha>0$ or $b-a+\beta-1<0$. This gives the first case, with the other following by the same argument.

By repeated applications of (5.5) and 5.6), we obtain the following.
Lemma 6.2 We have the orthogonal direct sums

$$
\begin{align*}
& \operatorname{Hom}_{H}(k-b, b)=\bigoplus_{j=0}^{b} R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right), \quad b \leq k-b \tag{6.4}\\
& \operatorname{Hom}_{H}(k-b, b)=\bigoplus_{j=0}^{k-b}\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right), \quad k-b \leq b \tag{6.5}
\end{align*}
$$

Further
(i) For $a>b, R$ is 1-1 on $\operatorname{Hom}_{H}(a, b)$.
(ii) For $a \leq b, R$ maps $\operatorname{Hom}_{H}(a, b)$ onto $\operatorname{Hom}_{H}(a-1, b+1)$.

Proof: Apply (5.5) and (5.6) repeatedly. For $b \leq k-b$, we have

$$
\begin{aligned}
& \operatorname{Hom}_{H}(k-b, b)=\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b, b)\right) \oplus R \operatorname{Hom}_{H}(k-b+1, b-1) \\
& =\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b, b)\right) \\
& \quad \oplus R\left\{\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b+1, b-1)\right) \oplus R \operatorname{Hom}_{H}(k-b+2, b-2)\right\} \\
& =\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b, b)\right) \oplus R\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b+1, b-1)\right) \\
& \quad \oplus R^{2}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-b+2, b-2)\right) \oplus \cdots \oplus R^{b}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k, 0)\right) .
\end{aligned}
$$

Similarly, for $k-b \leq b$, we have

$$
\begin{gathered}
\operatorname{Hom}_{H}(k-b, b)=\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(k-b, b)\right) \oplus R^{*}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(k-b-1, b+1)\right) \\
\oplus\left(R^{*}\right)^{2}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(k-b-2, b+2)\right) \oplus \cdots \\
\cdots \oplus\left(R^{*}\right)^{k-b}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(0, k)\right)
\end{gathered}
$$

which gives $\sqrt{6.4}$) and (6.5).
To show the injectivity of (i), it suffices to show that for $k-b>b$, i.e., $b+1 \leq k-b$, R is 1-1 on each summand in (6.4), i.e.,

$$
R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right), \quad 0 \leq j \leq b
$$

This follows from

$$
R^{*} R R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right),
$$

which is (6.1) of Lemma 6.1 for $\alpha=1, \beta=b-j+1, a=k-j, b=j$, since

$$
b+1 \leq k-b, \quad j \leq b \quad \Longrightarrow \quad b+j+1 \leq k, \quad \text { i.e., the condition } \beta \leq a-b \text { holds. }
$$

For $a \leq b$, a similar argument shows that R^{*} is $1-1$ on $\operatorname{Hom}_{H}(a-1, b+1)$. Here, when $a=0, \operatorname{Hom}_{H}(a-1, b+1)=0$. Therefore, $\left(\left.R^{*}\right|_{\operatorname{Hom}_{H}(a-1, b+1)}\right)^{*}=\left.R\right|_{\operatorname{Hom}_{H}(a, b)}$ is onto, and we have (ii).

The following result says that the j-terms in the expansions of Lemma 6.2 (only one of which holds for a given $b, 2 b \neq k)$ are in fact equal. This then allows for a single expansion for both cases (Lemma 6.4).

Lemma 6.3 (Row movements) For $0 \leq j \leq \frac{k}{2}$, we have

$$
\begin{align*}
R^{k-2 j+1}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) & =0 \tag{6.6}\\
\left(R^{*}\right)^{k-2 j+1}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) & =0, \tag{6.7}
\end{align*}
$$

and for $j \leq a \leq k-j$, we have

$$
\begin{equation*}
R^{a-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=\left(R^{*}\right)^{k-a-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) . \tag{6.8}
\end{equation*}
$$

Furthermore, all of the results above hold with $\operatorname{Hom}_{H}(p, q)$ replaced by $H(p, q)$.
Proof: The equations (6.6) and (6.7) follow from Lemma 6.1 for the choice $\alpha=0$, $\beta=k-2 j+1, a=k-j, b=j$. These give the inclusions

$$
\begin{gathered}
R^{k-2 j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) \subset \operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j) \\
\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) \subset \operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)
\end{gathered}
$$

We now prove the cases $a=k-j$ and $a=j$ in (6.8), i.e.,

$$
\begin{align*}
R^{k-2 j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) & =\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j), \tag{6.9}\\
\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) & =\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j), \tag{6.10}
\end{align*}
$$

Taking $\alpha=\beta=k-2 j$ in Lemma 6.1 gives

$$
\begin{align*}
& \left(R^{*}\right)^{k-2 j} R^{k-2 j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j), \tag{6.11}\\
& \quad R^{k-2 j}\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right)=\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j) .
\end{align*}
$$

Thus we have

$$
\begin{aligned}
\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j) & =R^{k-2 j}\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) \\
& \subset R^{k-2 j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) \\
& \subset \operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)
\end{aligned}
$$

which gives (6.9), with (6.10) following similarly. Now (6.11) and (6.9) give

$$
\begin{align*}
R^{a-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) & =R^{a-j}\left(R^{*}\right)^{k-2 j} R^{k-2 j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) \\
& =R^{a-j}\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) . \tag{6.12}
\end{align*}
$$

Taking $\alpha=a-j, \beta=k-2 j$ in Lemma 6.1 gives

$$
R^{a-j}\left(R^{*}\right)^{k-2 j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right)=\left(R^{*}\right)^{k-j-a}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right),
$$

which together with (6.12) gives (6.8).
We now present a key technical result.
Lemma 6.4 We have the orthogonal direct sum decompositions

$$
\begin{align*}
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) & =\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} \operatorname{Hom}_{H}(k-b, b)_{k-2 j}, \tag{6.13}\\
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) & =\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} H(k-b, b)_{k-2 j}, \tag{6.14}
\end{align*}
$$

into $U\left(\mathbb{H}^{d}\right)$-invariant subspaces, where

$$
\begin{align*}
\operatorname{Hom}_{H}(k-b, b)_{k-2 j} & :=R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) \\
& =\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) \\
& \subset \operatorname{Hom}_{H}(k-b, b), \tag{6.15}\\
H(k-b, b)_{k-2 j} & :=R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right) \\
& =\left(R^{*}\right)^{k-b-j}(\operatorname{ker} R \cap H(j, k-j)) \\
& \subset H(k-b, b) . \tag{6.16}
\end{align*}
$$

Proof: Since the Laplacian operator Δ commutes with R and R^{*} (Lemma 4.3), the decomposition (6.14) follows from (6.13) by taking the intersection with the harmonic polynomials. We therefore consider just the decomposition of $\operatorname{Hom}_{H}(k-b, b)$.

Since $\operatorname{Hom}_{H}(k-b, b)$ and $H(k-b, b)$ are invariant under $U\left(\mathbb{C}^{2 d}\right)$, they are invariant under $U\left(\mathbb{H}^{d}\right)$. Moreover, the action of $U\left(\mathbb{H}^{d}\right)$ commutes with R and R^{*} (Lemma 4.4), and
so the summands in (6.13) and (6.14) are $U\left(\mathbb{H}^{d}\right)$-invariant. As an indicative calculation, let $U \in U\left(\mathbb{H}^{d}\right)$, then

$$
f \in \operatorname{ker} R^{*} \quad \Longleftrightarrow U \cdot\left(R^{*} f\right)=0 \quad \Longleftrightarrow \quad R^{*}(U \cdot f)=0 \quad \Longleftrightarrow \quad U \cdot f \in \operatorname{ker} R^{*},
$$

and so

$$
\begin{aligned}
U \cdot H(k-b, b)_{k-2 j} & =U \cdot R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=R^{b-j}\left(U \cdot \operatorname{ker} R^{*} \cap U \cdot H(k-j, j)\right) \\
& =R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=H(k-b, b)_{k-2 j} .
\end{aligned}
$$

Since

$$
j \leq b \leq k-j \quad \Longleftrightarrow \quad j \leq b, \quad j \leq k-b \quad \Longleftrightarrow \quad j \leq \min \{b, k-b\}
$$

the direct sum (6.13) can be rearranged as

$$
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq b \leq k} \bigoplus_{j=0}^{\min \{b, k-b\}} \operatorname{Hom}_{H}(k-b, b)_{k-2 j}
$$

By Lemma 6.3.

$$
R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right),
$$

which gives the equalities in (6.15) and (6.16), and so it suffices to show the orthogonal direct sums

$$
\begin{aligned}
& \operatorname{Hom}_{H}(k-b, b)=\bigoplus_{j=0}^{b} R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right), \quad b \leq k-b, \\
& \operatorname{Hom}_{H}(k-b, b)=\bigoplus_{j=0}^{k-b}\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right), \quad k-b \leq b
\end{aligned}
$$

These are given by Lemma 6.2.
To calculate the dimensions of various irreducibles, we will need the following.
Lemma 6.5 Let $0 \leq j \leq \frac{k}{2}$. For $d=1$, we have the following dimensions
$\operatorname{dim}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=k-2 j+1, \quad \operatorname{dim}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)= \begin{cases}1, & j=0 ; \\ 0, & j \neq 0 .\end{cases}$
For $d \geq 2$, we have

$$
\begin{align*}
& \operatorname{dim}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)=(k-2 j+1) \frac{(k-j+2 d-1)!(j+2 d-2)!}{(k-j+1)!j!(2 d-1)!(2 d-2)!}, \tag{6.17}\\
& \operatorname{dim}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=(k-2 j+1)(k+2 d-1) \frac{(k-j+2 d-2)!(j+2 d-3)!}{(k-j+1)!j!(2 d-1)!(2 d-3)!} . \tag{6.18}
\end{align*}
$$

Proof: From (5.5), and the fact R is $1-1$ on $\operatorname{Hom}_{H}(k-j+1, j-1)$ (Lemma 6.2), we have
$\operatorname{dim}\left(\operatorname{Hom}_{H}(k-j, j) \cap \operatorname{ker} R^{*}\right)=\operatorname{dim}\left(\operatorname{Hom}_{H}(k-j, j)\right)-\operatorname{dim}\left(R \operatorname{Hom}_{H}(k-j+1, j-1)\right)$

$$
=\operatorname{dim}\left(\operatorname{Hom}_{H}(k-j, j)\right)-\operatorname{dim}\left(\operatorname{Hom}_{H}(k-j+1, j-1)\right)
$$

Using this and (5.1), with $p=k-j, q=j$, we calculate (6.17) for $d \geq 1$

$$
\begin{aligned}
\operatorname{dim} & \left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right) \\
& =\frac{1}{(2 d-1)!^{2}}\left\{\frac{(p+2 d-1)!(q+2 d-1)!}{p!q!}-\frac{(p+2 d)!(q+2 d-2)!}{(p+1)!(q-1)!}\right\} \\
& =\frac{(p+2 d-1)!(q+2 d-2)!}{(p+1)!q!(2 d-1)!^{2}}\{(q+2 d-1)(p+1)-(p+2 d) q\} \\
& =\frac{(p+2 d-1)!(q+2 d-2)!}{(p+1)!q!(2 d-1)!^{2}}(p-q+1)(2 d-1) .
\end{aligned}
$$

The other formula follows in a similar way, from

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=\operatorname{dim}(H(k-j, j))-\operatorname{dim}(H(k-j+1, j-1)) \\
& \quad=\binom{k-j+2 d-1}{2 d-1}\binom{j+2 d-1}{2 d-1}-\binom{k-j+2 d}{2 d-1}\binom{j+2 d-2}{2 d-1},
\end{aligned}
$$

with the $d=1$ case calculated separately, which completes the proof.
Example 6.6 For $j=0$, 6.18 reduces to

$$
\operatorname{dim}\left(\operatorname{ker} R^{*} \cap H(k, 0)\right)=\frac{(k+2 d-1)!}{k!(2 d-1)!}=\operatorname{dim}(H(k, 0)),
$$

so that $\operatorname{ker} R^{*} \cap H(k, 0)$ is the holomorphic polynomials, i.e.,

$$
\operatorname{ker} R^{*} \cap H(k, 0)=H(k, 0)=\bigoplus_{|\alpha+\beta|=k} \operatorname{span}\left\{z^{\alpha} w^{\beta}\right\} \quad \text { (orthogonal direct sum). }
$$

We also observe, from the proof of Lemma 6.5, that for $0 \leq j \leq \frac{k}{2}$, we have

$$
\operatorname{ker} R^{*} \cap H(k-j, j)=\left\{f \in H(k-j, j): f \perp \bigoplus_{0 \leq a<j} H(k-a, a)\right\}
$$

so the by applying Gram-Schmidt to a spanning sequence ordered so that its elements are in $H(k, 0), H(k-1,1), \ldots H(k-j, j)$, successively, the corresponding elements are an orthonormal basis for ker $R^{*} \cap H(k, 0), \ldots$, $\operatorname{ker} R^{*} \cap H(k-j, j)$.

The results of this section can found or deduced from those of the work of $\left[\mathrm{BDE}^{+} 14\right]$. Their variables $z_{1}, \ldots, z_{2 p}$ correspond to ours via

$$
z_{1}, \ldots, z_{2 p} \quad \longleftrightarrow \quad z_{1}, w_{1}, \ldots, z_{p}, w_{p},
$$

and they define operators

$$
\varepsilon=R^{*}, \quad \varepsilon^{\dagger}=R
$$

The decomposition (6.14) for $H(k-b, b)$ of Lemma 6.4 is presented as the two cases in Lemma 6.2 (Theorems 5.1 and 5.2 of $\left.\S 5\left[\mathrm{BDE}^{+} 14\right]\right)$.

7 Visualising the action of L and R on subspaces

The action of L and R given in Lemma 5.2 leads to the following orthogonal direct sums.
Lemma 7.1 We have the orthogonal direct sum decomposition into $(k+1)^{2}$ subspaces

$$
\begin{equation*}
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq a, b \leq k} \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) \tag{7.1}
\end{equation*}
$$

For $0 \leq a, b \leq k$, let $m_{a}=m_{a}^{(k)}:=\min \{a, k-a\}, m_{b}=m_{b}^{(k)}:=\min \{b, k-b\}$, and

$$
\begin{equation*}
m=m_{a, b}^{(k)}:=\min \left\{m_{a}, m_{b}\right\}, \quad M=M_{a, b}^{(k)}:=\max \left\{m_{a}, m_{b}\right\}, \quad c:=\min \{a, b\} \tag{7.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}\right\}_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \in A}, \tag{7.3}
\end{equation*}
$$

where $A=A_{a, b, k}$ is given by
$A:=\left\{\alpha:\left|\alpha_{1}\right|=k-(a+b-c)-j,\left|\alpha_{2}\right|=a-c+j,\left|\alpha_{3}\right|=c-j,\left|\alpha_{4}\right|=b-c+j, 0 \leq j \leq m\right\}$.
In particular, we have

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right)= & \sum_{j=0}^{m}\binom{k-M-j+d-1}{d-1}\binom{j+d-1}{d-1} \\
& \times\binom{ m-j+d-1}{d-1}\binom{M-m+j+d-1}{d-1} . \tag{7.4}
\end{align*}
$$

Proof: To establish (7.1), it suffices to show that the direct sums

$$
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{a+b=k} \operatorname{Hom}_{H}(a, b)=\bigoplus_{p+q=k} \operatorname{Hom}_{K}(p, q)
$$

are orthogonal, which follows immediately since the monomials are orthogonal for (4.3).
We now consider (7.3). Let $f=z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}} \in \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, i.e.,

$$
\left|\alpha_{1}\right|+\left|\alpha_{4}\right|=k-a, \quad\left|\alpha_{2}\right|+\left|\alpha_{3}\right|=a, \quad\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=k-b, \quad\left|\alpha_{3}\right|+\left|\alpha_{4}\right|=b
$$

The above equations imply that once an allowable value of $\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\left|\alpha_{3}\right|,\left|\alpha_{4}\right|$ is specified, then the others are uniquely determined. The allowable values are determined by an equation where the right hand side is $m=\min \{a, k-a, b, k-b\}$, and so we must treat (four) cases. First consider the case $a \leq b$, i.e., $m=a, k-b$, for which we have

$$
0 \leq j=\left|\alpha_{2}\right| \leq m \in\{a, k-b\}, \quad\left|\alpha_{3}\right|=a-j, \quad\left|\alpha_{1}\right|=k-b-j, \quad\left|\alpha_{4}\right|=j+b-a,
$$

and hence

$$
\begin{gathered}
\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\operatorname{span}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}:\left|\alpha_{1}\right|=k-b-j,\left|\alpha_{2}\right|=j,\left|\alpha_{3}\right|=a-j,\right. \\
\left.\left|\alpha_{4}\right|=j+b-a, 0 \leq j \leq m\right\} .
\end{gathered}
$$

The corresponding condition for the case $a \geq b$ is

$$
0 \leq j=\left|\alpha_{4}\right| \leq m \in\{b, k-a\}, \quad\left|\alpha_{1}\right|=k-a-j, \quad\left|\alpha_{2}\right|=a-b+j, \quad\left|\alpha_{3}\right|=b-j
$$

and so we obtain (7.3).
It follows from symmetries of the space $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, or by direct calculation, that its dimension, the cardinality of A, depends only on m, M (and k). Therefore, by the case $m=a=c, M=b$, and the fact $\alpha_{1}, \ldots, \alpha_{4} \in \mathbb{Z}_{+}^{d}$, we obtain (7.4).

Example 7.2 For $d=1$, we have

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}(\mathbb{H})\right)=m+1, \quad m:=\min \{a, k-a, b, k-b\} . \tag{7.5}
\end{equation*}
$$

Example 7.3 For $k=1$, we have

$$
\begin{array}{lc}
\operatorname{Hom}_{1}^{(0,0)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{z_{1}, \ldots, z_{d}\right\}, & \operatorname{Hom}_{1}^{(0,1)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{\overline{w_{1}}, \ldots, \overline{w_{d}}\right\}, \\
\operatorname{Hom}_{1}^{(1,0)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{w_{1}, \ldots, w_{d}\right\}, & \operatorname{Hom}_{1}^{(1,1)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{\overline{z_{1}}, \ldots, \overline{z_{d}}\right\} .
\end{array}
$$

The corresponding result for harmonic polynomials is the following.
Lemma 7.4 We have the orthogonal direct sum decomposition into $(k+1)^{2}$ subspaces

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq a, b \leq k} H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) \tag{7.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)=\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(\operatorname{Hom}_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right) \tag{7.7}
\end{equation*}
$$

In particular, for $d=1$, we have

$$
\begin{equation*}
\operatorname{dim}\left(H_{k}^{(a, b)}(\mathbb{H})\right)=1, \quad 0 \leq a, b \leq k \tag{7.8}
\end{equation*}
$$

and for $d>1$, with m and M given by (7.2), we have

$$
\begin{equation*}
\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right)=F(k, m, M, d), \quad 0 \leq a, b \leq k \tag{7.9}
\end{equation*}
$$

where

$$
\begin{align*}
F(k, m, M, d):= & \sum_{j=0}^{m}\binom{j+d-1}{d-1}\binom{M-m+j+d-1}{d-1} \tag{7.10}\\
& \times \frac{(m-j+1)_{d-2}(k-M-j+1)_{d-2}}{(d-1)!(d-2)!}(k-M+m-2 j+d-1) .
\end{align*}
$$

Proof: The dimension formula 7.7 follows since $H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ is the kernel of Δ restricted to $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$, and $\Delta \operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)=\operatorname{Hom}_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)$.

To develop an explicit formula from (7.4), we need to take account of the case when $a \in\{0, k\}$ or $b \in\{0, k\}$, i.e., $m=0$, in which case $\operatorname{dim}\left(H_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right)=0$.

For $d=1,7.8$ holds for $m=0$, and otherwise (7.5) gives

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Hom}_{k-2}^{(a-1, b-1)}(\mathbb{H})\right) & =\min \{a-1, k-2-(b-1), b-1, k-2-(a-1)\}+1 \\
& =\min \{a, k-b, b, k-a\}=\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}(\mathbb{H})\right)-1
\end{aligned}
$$

A similar (elementary) calculation gives

$$
m_{a-1, b-1}^{(k-2)}=m_{a, b}^{(k)}-1, \quad M_{a-1, b-1}^{(k-2)}=M_{a, b}^{(k)}-1
$$

Hence, with $m:=m_{a, b}^{(k)}$ and $M:=M_{a, b}^{(k)}, 7.4$ gives

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Hom}_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right)= & \sum_{j=0}^{m-1}\binom{(k-2)-(M-1)-j+d-1}{d-1}\binom{j+d-1}{d-1} \\
& \binom{(m-1)-j+d-1}{d-1}\binom{(M-1)-(m-1)+j+d-1}{d-1}
\end{aligned}
$$

where for $d>1$ the " $j=m$ " term above is zero by virtue of $\binom{(m-1)-m+d-1}{d-1}=0$. Thus (7.4) gives

$$
\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right)=\sum_{j=0}^{m}\binom{j+d-1}{d-1}\binom{M-m+j+d-1}{d-1}\{ \}
$$

where

$$
\begin{aligned}
\}= & \binom{k-M-j+d-1}{d-1}\binom{m-j+d-1}{d-1} \\
& -\binom{k-1-M-j+d-1}{d-1}\binom{m-1-j+d-1}{d-1}
\end{aligned}
$$

which simplifies to give (7.10).
Example 7.5 For $k=2$, we have three cases $(m, M)=(0,0),(0,1),(1,1)$, giving

$$
\begin{aligned}
\operatorname{dim}\left(H_{2}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)=F(2,0,0, d)=\frac{1}{2} d(d+1), & & (a, b) \in\{(0,0),(2,0),(0,2),(2,2)\}, \\
\operatorname{dim}\left(H_{2}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)=F(2,0,1, d)=d^{2}, & & (a, b) \in\{(1,0),(0,1),(1,2),(2,1)\}, \\
\operatorname{dim}\left(H_{2}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)=F(2,1,1, d)=2 d^{2}-1, & & (a, b) \in\{(1,1)\} .
\end{aligned}
$$

These formulas also hold for $d=1$. We also have
$\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)=\binom{k+d-1}{d-1}=\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right), \quad(a, b) \in\{(0,0),(k, 0),(0, k),(k, k)\}$,
with the corresponding spaces given by $A=A_{a, b, k}$ of Lemma 7.1, e.g.,

$$
H_{k}^{(0,0)}\left(\mathbb{H}^{d}\right)=\bigoplus_{|\alpha|=k} \operatorname{span}\left\{z^{\alpha}\right\}, \quad \text { (orthogonal direct sum). }
$$

The results of this section for $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ can be summarised as follows.
Schematic 7.6 The orthogonal decomposition (7.6) of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ can be displayed as a square matrix/array/table

$$
\begin{aligned}
& H(k, 0) \quad H(k-1,1) \cdots \quad H(0, k)
\end{aligned}
$$

where the rows are indexed by $K(k-a, a)$ and the columns by $H(k-b, b)$. Here

- $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is the orthogonal direct sum of the $(k+1)^{2}$ entries of the matrix.
- The subspace in the $K(k-a, a)$ row and $H(k-b, b)$ column is

$$
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)=K(k-a, a) \cap H(k-b, b) .
$$

- $H(k-a, b)$ is the orthogonal direct sum of the entries of its column.
- $K(k-a, a)$ is the orthogonal direct sum of the entries of its row.
- Multiplication by L moves down the columns, and L^{*} up them.
- Multiplication by R moves right along the rows, and R^{*} to the left of them. Further, multiplication by R is 1-1 on the left hand side (half) of the table, and is onto on the right hand side.
- Left multiplication by \mathbb{H}^{*} (and more generally by $U\left(\mathbb{H}^{d}\right)$) moves within the columns.
- Right multiplication by \mathbb{H}^{*} moves within the rows.
- Multiplication by $L_{\alpha}, L_{\bar{\alpha}}, R_{\alpha}$ and $R_{\bar{\alpha}}$ does not move the entries of the matrix.

There is a similar "square" for the decomposition 7.1) of $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$.
There are also "symmetries" which permute the entries of the square, such as

$$
\overline{H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)}=H_{k}^{(k-a, k-b)}\left(\mathbb{H}^{d}\right)
$$

It is convenient to imagine zero subspaces outside of the square matrix, which then encodes properties such as

$$
R^{k+1} \operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=0, \quad R^{*} H(k, 0)=0, \quad L^{2} K(1, k-1)=0 .
$$

8 The one variable case

We now consider the $d=1$ case in great detail. Though this is somewhat degenerate, and usually not considered, it provides motivation and illustrates the main features of the general case.

By Lemma 7.4, $\operatorname{dim}\left(\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})\right)=(k+1)^{2}$, and the square matrix/table 7.11) for $\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})$ consists of the one-dimensional subspaces $\left\{H_{k}^{(a, b)}(\mathbb{H})\right\}_{0 \leq a, b \leq k}$. Since the polynomial z^{k} is holomorphic, it is harmonic, and so

$$
H_{k}^{(0,0)}(\mathbb{H})=\operatorname{span}_{\mathbb{C}}\left\{z^{k}\right\} .
$$

We consider what are the other harmonic monomials in $\operatorname{Hom}_{k}(\mathbb{H}, \mathbb{C})$.
Example 8.1 The monomial $z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}},|\alpha|=k$, is harmonic if and only if

$$
\left(\frac{\partial^{2}}{\partial \bar{z} \partial z}+\frac{\partial^{2}}{\partial \bar{w} \partial w}\right) z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}=\alpha_{1} \alpha_{3} z^{\alpha_{1}-1} w^{\alpha_{2}} \bar{z}^{\alpha_{3}-1} \bar{w}^{\alpha_{4}}+\alpha_{2} \alpha_{4} z^{\alpha_{1}} w^{\alpha_{2}-1} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}-1}=0
$$

i.e., $\alpha_{1} \alpha_{3}=\alpha_{2} \alpha_{4}=0$. This gives $4 k$ harmonic monomials of degree k.

The harmonic monomials of degree k lie on the four "edges" (of length $k+1$) of the square table, which are given by $\alpha_{2}=\alpha_{3}=0$ (top edge), $\alpha_{3}=\alpha_{4}=0$ (left edge), $\alpha_{1}=\alpha_{2}=0$ (right edge), $\alpha_{1}=\alpha_{4}=0$ (bottom edge), with

$$
H_{k}^{\left(\alpha_{2}+\alpha_{3}, \alpha_{3}+\alpha_{4}\right)}(\mathbb{H})=\operatorname{span}_{\mathbb{C}}\left\{z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}\right\}, \quad|\alpha|=k, \quad \alpha_{1} \alpha_{3}=\alpha_{2} \alpha_{4}=0 .
$$

An elementary calculation shows that

$$
\begin{equation*}
L^{k} R^{k}\left(z^{k}\right)=(-1)^{k} k!^{2} \bar{z}^{k} \tag{8.1}
\end{equation*}
$$

and so it follows from the Schematic 7.6, that by applying L and R to the upper left corner $z^{k} \in H_{k}^{(0,0)}(\mathbb{H})$, that we can "fill out the table" with nonzero polynomials in the subspaces, which (in this case) gives a basis for them, e.g., for $k=2$, we have

$$
\left.\begin{array}{ccccc}
& & H(2,0) & H(1,1) & H(0,2) \tag{8.2}\\
z^{2} \xrightarrow{R} & K(2,0) \\
L \downarrow & K(1,1) \\
& K(0,2)
\end{array} \begin{array}{ccc}
z^{2} & 2 \bar{w} & 2 \bar{w}^{2} \\
2 z w & 2 w \bar{w}-2 z \bar{z} & -4 \overline{z w} \\
2 w^{2} & -4 \bar{z} w & 4 \bar{z}^{2}
\end{array}\right] .
$$

Since L and R commute, it makes no difference how one fills out the table by applying L and R, e.g., the middle entry can be obtained as either of

$$
R L\left(z^{2}\right)=R(2 z w)=2 w \bar{w}-2 z \bar{z}, \quad L R\left(z^{2}\right)=L(2 z \bar{w})=2 w \bar{w}-2 z \bar{z}
$$

Even in this simple example, one can observe the following features of the general case:

- The harmonic functions on the edges of the square have the simplest description, with the formulas becoming more complicated as one moves towards the centre.
- There are symmetries of the polynomials given by certain permutations of z, w, \bar{z}, \bar{w}.
- One can move around the square table by applying L and L^{*} (down and up) and R and R^{*} (across and back).

We now show that $L^{a} R^{b}\left(z^{k}\right)$ has an increasingly complicated formula as one moves towards the centre of the table.

Lemma 8.2 The unique harmonic polynomial $p_{k}^{(a, b)}$ in $H_{k}^{(a, b)}(\mathbb{H})$ is given by

$$
\begin{align*}
p_{k}^{(a, b)} & =\sum_{j=0}^{m} \frac{(-1)^{j}}{j!} \frac{(-c)_{j}(a+b-c-k)_{j}}{(|b-a|+1)_{j}} z^{k-(a+b-c)-j} w^{a-c+j} \bar{z}^{c-j} \bar{w}^{b-c+j} \\
& =\frac{(k-a-b+c)!}{k!(c-a-b)_{c}} L^{a} R^{b}\left(z^{k}\right), \tag{8.3}
\end{align*}
$$

where

$$
m=\min \{a, b, k-a, k-b\}, \quad c=\min \{a, b\}=\frac{1}{2}(a+b-|b-a|)
$$

Proof: We consider the case $a \leq b$, i.e., $m=\min \{a, k-b\}$, the other being similar. By Lemma 7.4, there is a unique (up to a scalar multiple) harmonic polynomial in $\operatorname{Hom}_{k}^{(a, b)}(\mathbb{H}, \mathbb{C})$, which by 7.3 has the form

$$
f=\sum_{j=0}^{m} c_{j} z^{k-b-j} w^{j} \bar{z}^{a-j} \bar{w}^{b-a+j}
$$

The condition that f be harmonic, i.e., $\nabla f=0$, gives

$$
\begin{aligned}
& \sum_{j=0}^{m-1} c_{j}(k-b-j)(a-j) z^{k-b-j-1} w^{j} \bar{z}^{a-j-1} \bar{w}^{b-a+j} \\
& \quad+\sum_{j=0}^{m-1} c_{j+1}(j+1)(b-a+j+1) z^{k-b-j-1} w^{j} \bar{z}^{a-j-1} \bar{w}^{b-a+j}=0
\end{aligned}
$$

and equating coefficients of the monomials gives

$$
c_{j}(k-b-j)(a-j)+c_{j+1}(j+1)(b-a+j+1)=0, \quad 0 \leq j \leq m-1,
$$

so that

$$
c_{j+1}=-c_{j} \frac{(k-b-j)(a-j)}{(j+1)(b-a+j+1)} \quad \Longrightarrow \quad c_{j}=\frac{(-1)^{j}}{j!} \frac{(k-b+1-j)_{j}(a+1-j)_{j}}{(b-a+1)_{j}} c_{0},
$$

which gives the desired formula.

The indices $\{(a, b)\}_{0 \leq a, b \leq k}$ for the polynomials $p_{k}^{(a, b)} \in H_{k}^{(a, b)}(\mathbb{H})$ in the square table can be partitioned into nested squares

$$
\begin{equation*}
S_{m}:=\{(a, b): \min \{a, b, k-a, k-b\}=m\}, \quad 0 \leq m \leq \frac{k}{2} \tag{8.4}
\end{equation*}
$$

with S_{0} giving the "edges of the table". These have size

$$
\left|S_{m}\right|= \begin{cases}4(k-2 m), & 0 \leq m<\frac{k}{2} \tag{8.5}\\ 1, & m=\frac{k}{2}\end{cases}
$$

Here is an illustration for the case $k=4$

$$
\begin{array}{|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 \\
\hline \hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 2 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \quad S_{0}=\left\{\begin{array}{l}
0 \\
\hline
\end{array}, \quad S_{1}=\{\mid 1\}, \quad S_{2}=\{2\}\right\} .
$$

From the formula (8.3), we have the first instance of a general phenomenon:

- The polynomials $p_{k}^{(a, b)},(a, b) \in S_{m}$, have $m+1$ terms, i.e., the complexity of the formula for $p_{k}^{(a, b)}$ increases as one gets closer to the center of the square array.

We now consider the decomposition of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ into irreducibles.
The irreducible representations of the simply connected compact nonabelian Lie group $\mathbb{H}^{*}=U(\mathbb{H})=\operatorname{Sp}(1)=S U(2)$ are well known [Hal15]. For now, we need only that there is precisely one irreducible representation W_{k} of dimension $k+1$, for each $k \geq 0$.

Theorem 8.3 For left multiplication by $U(\mathbb{H})=\mathbb{H}^{*}$, we have the following orthogonal direct sum of irreducibles

$$
\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})=\bigoplus_{0 \leq a \leq k} H(k-a, a) \cong(k+1) W_{k},
$$

and for right multiplication by \mathbb{H}^{*}, we have the direct sum of irreducibles

$$
\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})=\bigoplus_{0 \leq b \leq k} K(k-b, b) \cong(k+1) W_{k},
$$

Proof: From the Schematic 7.6 for $\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})$, it follows that by taking columns (respectively rows) of the table gives an orthogonal direct sum of invariant subspaces for action given by left (respectively right) multiplication by \mathbb{H}^{*} (Ansatz 3.5), and so it remains only to show that these $(k+1)$-dimensional subspaces are irreducible.

We now show $K(k-a, a)$ is irreducible for the action given by right multiplication. The other case is similar, and can be found in [Fol95] Theorem 5.37. We have

$$
K(k-a, a)=\operatorname{span}_{\mathbb{C}}\left\{p_{k}^{(a, b)}\right\}_{0 \leq b \leq k}=\operatorname{span}\left\{R^{b} p_{k}^{(a, 0)}\right\}_{0 \leq b \leq k} .
$$

Consider a nonzero polynomial

$$
f=\sum_{0 \leq b \leq b^{*}} c_{b} p_{k}^{(a, b)} \in K(k-a, a), \quad c_{b^{*}} \neq 0
$$

Let V be an invariant subspace of $K(k-a, a)$ containing f. Since R^{*} maps nonzero polynomials left across the table, we have that $\left(R^{*}\right)^{b^{*}} f$ is a nonzero multiple of $p_{k}^{(a, 0)}$. Thus, V contains $p_{k}^{(a, 0)}$, and hence $R p_{k}^{(a, 0)}, \ldots, R^{k} p_{k}^{(a, 0)}$, giving $V=K(k-a, a)$, i.e., V is irreducible.

In both cases, there is a single homogeneous component corresponding to W_{k}.
Example 8.4 For left multiplication by \mathbb{H}^{*}, i.e., the action given by

$$
(\alpha+j \beta)(z+j w)=(\alpha z-\bar{\beta} w)+j(\bar{\alpha} w+\beta z)
$$

we have the irreducible representation

$$
H(k, 0)=\operatorname{span}_{\mathbb{C}}\left\{z^{k}, z^{k-1} w, z^{k-2} w^{2}, \ldots, w^{k}\right\}
$$

which is given by Folland [Fol95] for the action of $\operatorname{SU}(2) \cong \mathbb{H}^{*}$ given by

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)\binom{z}{w}=\binom{\alpha z-\bar{\beta} w}{\bar{\alpha} w+\beta z}
$$

Here L and L^{*} reduce to $L=w \frac{\partial}{\partial z}$ and $L^{*}=z \frac{\partial}{\partial w}$.
We now consider the combined action given by both left and right multiplication by \mathbb{H}^{*}, i.e., the action of $\operatorname{Sp}(1) \times \operatorname{Sp}(1)=U(\mathbb{H}) \times \mathbb{H}^{*}$ given by

$$
\left(\left(q_{1}, q_{2}\right) \cdot f\right)(q):=f\left(q_{1} q \overline{q_{2}}\right)
$$

The invariant subspaces for this action are invariant under both L and R (and their adjoints). This leads to the following.

Theorem 8.5 The action of $\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ given by left and right multiplication by \mathbb{H}^{*} is irreducible on $\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})$, i.e., for all nonzero $f \in \operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})$, we have

$$
\begin{equation*}
\operatorname{span}_{\mathbb{C}}\left\{q \mapsto f\left(q_{1} q \overline{q_{2}}\right): q_{1}, q_{2} \in \mathbb{H}^{*}\right\}=\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C}) . \tag{8.6}
\end{equation*}
$$

We consider the special case of the linear polynomials $(k=1)$.
Example 8.6 The linear polynomial

$$
f(q):=q=x_{1}+i x_{2}+j x_{3}+k x_{4}, \quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}
$$

is in $\operatorname{Harm}_{1}(\mathbb{H}, \mathbb{H})=\operatorname{Hom}_{1}(\mathbb{H}, \mathbb{H})$, as are the coordinate maps $q \mapsto x_{\ell}$, which are also in $\operatorname{Harm}_{1}(\mathbb{H}, \mathbb{R})=\operatorname{Hom}_{1}(\mathbb{H}, \mathbb{R})$. These can be written explicitly in the form (8.6) as follows

$$
\begin{array}{ll}
x_{1}=\frac{1}{4}(q-i q i-j q j-k q k), & x_{2}=\frac{1}{4 i}(q-i q i+j q j+k q k), \\
x_{3}=\frac{1}{4 j}(q+i q i-j q j+k q k), & x_{4}=\frac{1}{4 k}(q+i q i+j q j-k q k) . \tag{8.7}
\end{array}
$$

The formula (8.7) is used by Sud79 to show that the "polynomials of degree k in q ", i.e., sums of the "monomials"

$$
q \mapsto a_{0} q a_{1} q a_{2} \cdots q a_{k-1} q a_{k}, \quad a_{0}, a_{1}, \ldots, a_{k} \in \mathbb{H},
$$

is precisely $\operatorname{Hom}_{k}(\mathbb{H}, \mathbb{H})$ as we have defined it, or, equivalently, the \mathbb{H}-linear combinations of the monomials in real variables $x_{1}, x_{2}, x_{3}, x_{4}$.

9 The irreducible representations of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$

We now consider the irreducible representations of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ for $d \geq 2$ (the case usually considered in the literature). Here, there is more than just the one irreducible W_{k} involved. Our method is to construct rectangular arrays, like that in Schematic 7.6 , corresponding to a given irreducible $W_{k}, W_{k-2}, W_{k-4}, \ldots$. We will say that these are commuting arrays if we can move over them using L, R, L^{*}, R^{*}, as in the $d=1$ case. They can be visualised as the "layers on (square) wedding cake".

We follow the development of Bachoc and Nebe BN02. For the action given by right multiplication by \mathbb{H}^{*}, let $I\left(W_{p}\right)^{(k)}$ be the homogeneous component of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ corresponding to the irreducible W_{p} (of dimension $p+1$), which gives the orthogonal decomposition

$$
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{p \geq 0} I\left(W_{p}\right)^{(k)}
$$

The values of p involved in this sum are $p=k-2 j, 0 \leq j \leq \frac{k}{2}$, which is observed in [BN02], and follows from our explicit decomposition (Theorem 9.1).

There is also the well known decomposition [IS68], Rud80] (Chapter 12, §12.2) into irreducibles for the action of left multiplication by $U\left(\mathbb{C}^{2 d}\right)$

$$
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{a+b=k} H(a, b)
$$

Since $U\left(\mathbb{H}^{d}\right)$ is the subgroup of $U\left(\mathbb{C}^{2 d}\right) \subset O\left(\mathbb{R}^{4 d}\right)$ characterised as those elements of $U\left(\mathbb{C}^{2 d}\right)$ which commute with right multiplication by \mathbb{H}^{*} (in the group $O\left(\mathbb{R}^{4 d}\right)$), we have the orthogonal direct sum of invariant $U\left(\mathbb{H}^{d}\right)$-modules

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} H(k-b, b) \cap I\left(W_{k-2 j}\right)^{(k)} \tag{9.1}
\end{equation*}
$$

This is in fact an orthogonal direct sum of $U\left(\mathbb{H}^{d}\right)$-irreducibles

$$
\begin{equation*}
R_{k-2 j}^{(k)} \cong H(k-b, b) \cap I\left(W_{k-2 j}\right)^{(k)}, \tag{9.2}
\end{equation*}
$$

(see II87] §1.2, BN02] Theorem 4.1, for k even).
We now give the irreducibles for right multiplication by \mathbb{H}^{*}. For $d=1$, these were obtained by taking a row of the square array (7.11), i.e., by choosing a (particular)
nonzero element $f \in H(k, 0)=H(k, 0) \cap \operatorname{ker} R^{*}$, and applying R to it k times. Since R^{*} moves back in the opposite direction to R, it followed that

$$
\begin{equation*}
\operatorname{span}_{\mathbb{C}}\left\{f, R f, R^{2} f, \ldots, R^{k} f\right\} \cong W_{k} \tag{9.3}
\end{equation*}
$$

was an irreducible. Exactly the same argument holds for $d \geq 2$, i.e., for a nonzero $f \in H(k, 0)=H(k, 0) \cap \operatorname{ker} R^{*}$ the subspace (9.3) is irreducible. These are all the irreducibles for W_{k}, and for $d=1$ this is the end of the story (Theorem 8.3). For $d \geq 2$, there are other irreducibles, constructed in a similar way: starting with a nonzero f in the second column, which does not give the irreducible W_{k}, i.e., $f \in H(k-1,1) \cap \operatorname{ker} R^{*}$, one obtains the irreducible subspaces

$$
\operatorname{span}_{\mathbb{C}}\left\{f, R f, R^{2} f, \ldots, R^{k-2} f\right\} \cong W_{k-2}
$$

and so forth.
Theorem 9.1 For the action on $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by right multiplication by \mathbb{H}^{*}, the homogeneous component corresponding to the irreducible $W_{k-2 j}, 0 \leq j \leq \frac{k}{2}$, is

$$
\begin{aligned}
I\left(W_{k-2 j}\right)^{(k)} & =\sum_{f \in H(k-j, j) \cap \operatorname{ker} R^{*}} \operatorname{span}_{\mathbb{C}}\left\{f, R f, \ldots, R^{k-2 j} f\right\} \quad \text { (sum of irreducibles), } \\
& =\bigoplus_{j \leq b \leq k-j} R^{b-j}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right) \quad \text { (orthogonal direct sum). }
\end{aligned}
$$

Moreover, these are the only irreducibles that appear, i.e., we have

$$
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} I\left(W_{k-2 j}\right)^{(k)} \quad \text { (orthogonal direct sum), }
$$

where the summands above are all nonzero for $d \geq 2$, and $\operatorname{Harm}_{k}(\mathbb{H}, \mathbb{C})=I\left(W_{k}\right)^{(k)}$.
Proof: From Lemma 6.4, we have the orthogonal direct sum decomposition

$$
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} R^{b-j}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right)
$$

and so it suffices to show that every nontrivial irreducible subspace

$$
V \subset \bigoplus_{0 \leq a \leq k-2 j} R^{a}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right)=\bigoplus_{j \leq b \leq k-j} R^{b-j}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right)
$$

has the form

$$
V=\operatorname{span}_{\mathbb{C}}\left\{f, R f, \ldots, R^{k-2 j} f\right\}, \quad f \in H(k-j, j) \cap \operatorname{ker} R^{*}
$$

so that $V \cong W_{k-2 j}$.

Choose a nonzero $g \in V$, and write

$$
g=\sum_{0 \leq a \leq k-2 j} R^{a} f_{a}, \quad f_{a} \in H(k-j, j) \cap \operatorname{ker} R^{*} .
$$

Let a^{*} be the largest value of a for which $f_{a} \neq 0$. Then, by (5.17) of Lemma 5.5,

$$
f:=\left(R^{*}\right)^{a^{*}} g=\left(R^{*}\right)^{a^{*}} R^{a^{*}} f_{a^{*}}=\left(-a^{*}\right)_{a^{*}}(2 j-k)_{a^{*}} f_{a^{*}},
$$

which is a nonzero scalar multiple of $f_{a^{*}}\left(\right.$ for $\left.2 j-k=0, a^{*}=0\right)$, and

$$
W=\operatorname{span}_{\mathbb{C}}\left\{f, R f, \ldots, R^{k-2 j} f\right\} \subset V, \quad R^{k-2 j} f \neq 0
$$

Hence $\operatorname{dim}(V) \geq \operatorname{dim}(W)=k-2 j+1$. By construction, W is invariant under the action of R and R^{*}. Supposing each such W were invariant under right multiplication, i.e., $V=W$, then our decomposition would have the same multiplicity of each irreducible $W_{k-2 j}$ in $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ as as the abstract decomposition of [II87] and [BN02]. This must indeed be the case, since otherwise a union of some of the W 's would be an irreducible, giving a contradiction.

The last part of the proof above gives the following.
Corollary 9.2 The irreducibles for right multiplication by \mathbb{H}^{*} and for multiplication by R and R^{*} are the same.

This is effectively the Ansatz 3.5, which we had hoped to prove by elementary means. We will call a sequence

$$
f, R f, \ldots, R^{k-2 j} f, \quad 0 \leq j \leq \frac{k}{2}
$$

or any nonzero scalar multiples of it, an R-orbit (for $W_{k-2 j}$) if

$$
f \in \operatorname{Hom}_{H}(k-j, j), \quad R^{*} f=0
$$

It follows from Theorem 9.1 that $R^{k-2 j} f \neq 0$, and

$$
\begin{equation*}
R\{f\}:=\operatorname{span}_{\mathbb{C}}\left\{f, R f, \ldots, R^{k-2 j} f\right\}, \tag{9.4}
\end{equation*}
$$

is an irreducible subspace (of dimension $k+1-2 j$) for right multiplication by \mathbb{H}^{*}.
We can now give an explicit form for the $U\left(\mathbb{H}^{d}\right)$-irreducibles.
Theorem 9.3 Let $d \geq 2$. For the action on $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by $U\left(\mathbb{H}^{d}\right)=\operatorname{Sp}(d)$, we have the following orthogonal direct sum of irreducibles

$$
\begin{align*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) & =\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} H(k-b, b)_{k-2 j} \\
& \cong \bigoplus_{0 \leq j \leq \frac{k}{2}}(k-2 j+1) R_{k-2 j}^{(k)} \tag{9.5}
\end{align*}
$$

where

$$
\begin{align*}
H(k-b, b)_{k-2 j} & :=R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right) \\
& =\left(R^{*}\right)^{k-b-j}(\operatorname{ker} R \cap H(j, k-j)) \\
& =H(k-b, b) \cap I\left(W_{k-2 j}\right)^{(k)} \\
& \cong R_{k-2 j}^{(k)}:=\operatorname{ker} R^{*} \cap H(k-j, j) \tag{9.6}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(R_{k-2 j}^{(k)}\right)=(k-2 j+1)(k+2 d-1) \frac{(k-j+2 d-2)!(j+2 d-3)!}{(k-j+1)!j!(2 d-1)!(2 d-3)!} \tag{9.7}
\end{equation*}
$$

Proof: By Lemma 6.4, we already have that (9.5) is an orthogonal direct sum of $U\left(\mathbb{H}^{d}\right)$-invariant subspaces, with $H(k-b, b)_{k-2 j} \subset H(k-b, b)$, given by the first two formulas in 9.6). We therefore need only show that they are $U\left(\mathbb{H}^{d}\right)$-irreducible, i.e., given by the formula (9.1), i.e., the third formula, with (9.2) holding (the fourth formula). By Theorem 9.1, we have

$$
I\left(W_{k-2 j}\right)^{(k)}=\bigoplus_{j \leq a \leq k-j} R^{a}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right) .
$$

Since $R^{a}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right) \subset H(k-j-a, j+a)$, the only contribution to the intersection with $H(k-b, b)$ is when $b=j+a$, which gives the third formula, i.e.,

$$
H(k-b, b) \cap I\left(W_{k-2 j}\right)^{(k)}=R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)
$$

We now show, that for j fixed, the $H(k-b, b)_{k-2 j}$ are isomorphic $U\left(\mathbb{H}^{d}\right)$-irreducibles. Taking $\alpha=\beta=b-j$ in Lemma 6.1 gives

$$
\left(R^{*}\right)^{b-j} H(k-b, b)_{k-2 j}=\left(R^{*}\right)^{b-j} R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=\operatorname{ker} R^{*} \cap H(k-j, j)
$$

This implies the subspaces have the same dimension as $\operatorname{ker} R^{*} \cap H(k-j, j)$, which is given by equation (6.18) of Lemma 6.5. Finally, since the action of $U\left(\mathbb{H}^{d}\right)$ commutes with the action of R (and its powers), these subspaces are all $U\left(\mathbb{H}^{d}\right)$-isomorphic to $R_{k-2 j}^{(k)}:=\operatorname{ker} R^{*} \cap H(k-j, j)$.

This decomposition is given in [BN02] Theorem 4.1 (for k even, the summands not given explicitly), and in [$\left.\mathrm{BDE}^{+} 14\right]$ (Theorems 1 and 2). The presentation of [$\left.\mathrm{BDE}^{+} 14\right]$ involves two separate cases for the decomposition of $H(a, b)$, namely

$$
H(k-b, b)_{k-2 j}= \begin{cases}R^{b-j}\left(H(k-j, j) \cap \operatorname{ker} R^{*}\right), & k-b \geq b \\ \left(R^{*}\right)^{k-b-j}(H(j, k-j) \cap \operatorname{ker} R), & k-b \leq b\end{cases}
$$

We now consider the irreducibles for the action on $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by both left multiplication by $U \in U\left(\mathbb{H}^{d}\right)$ and right multiplication by $q^{*} \in \mathbb{H}^{*}$, i.e.,

$$
\left(\left(U, q^{*}\right) \cdot f\right)(q):=f\left(U q \overline{q^{*}}\right)
$$

Theorem 9.4 For the action on $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by $U\left(\mathbb{H}^{d}\right) \times \mathbb{H}^{*}=\operatorname{Sp}(d) \times \operatorname{Sp}(1)$, $d \geq 2$, we have the following orthogonal direct sum of irreducibles

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} Q_{k-2 j}^{(k)} \tag{9.8}
\end{equation*}
$$

where

$$
\begin{align*}
Q_{k-2 j}^{(k)} & :=\bigoplus_{j \leq b \leq k-j} H(k-b, b)_{k-2 j} \\
& =\bigoplus_{j \leq b \leq k-j} R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j, j)\right)=I\left(W_{k-2 j}\right)^{(k)}, \tag{9.9}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(Q_{k-2 j}^{(k)}\right)=(k-2 j+1)^{2}(k+2 d-1) \frac{(k-j+2 d-2)!(j+2 d-3)!}{(k-j+1)!j!(2 d-1)!(2 d-3)!} \tag{9.10}
\end{equation*}
$$

Proof: The subspace $Q_{k-2 j}^{(k)}$ is invariant under the actions of $U\left(\mathbb{H}^{d}\right)$ and \mathbb{H}^{*}, as it is a sum of irreducibles for each of these actions. We now show that it is irreducible.

Suppose $V \subset Q_{k-2 j}^{(k)}$ is irreducible under the action of $U\left(\mathbb{H}^{d}\right) \times \mathbb{H}^{*}$. By Theorem 9.1. $V \subset I\left(W_{k-2 j}\right)^{(k)}$, and V contains an irreducible for the action of \mathbb{H}^{*} of the form

$$
\operatorname{span}_{\mathbb{C}}\left\{f, R f, \ldots, R^{k-2 j} f\right\}, \quad 0 \neq R^{b-j} f \in H(k-b, b)_{k-2 j}, \quad j \leq b \leq k-j
$$

Since each $H(k-b, b)_{k-2 j}$ is $U\left(\mathbb{H}^{d}\right)$-irreducible, we have that $H(k-b, b)_{k-2 j} \subset V$, and hence $V=Q_{k-2 j}^{(k)}$ is irreducible.

In other words, the $\operatorname{Sp}(d) \times \operatorname{Sp}(1)$-irreducibles $Q_{k-2 j}^{(k)}$ are precisely the homogeneous components $I\left(W_{k-2 j}\right)$ for right multiplication by \mathbb{H}^{*}.

The decomposition (9.8) of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ into $\operatorname{Sp}(d) \times \operatorname{Sp}(1)$-irreducibles is given in Smi75 Theorem 2.4, and ACMM20 Proposition 2.1 (as the joint eigenfunctions of operators $\Delta_{\mathbb{S}}$ and Γ), where the following notations are used (respectively)

$$
Q_{k-2 j}^{(k)}=\left\{\begin{array}{ll}
H_{j, \frac{k}{2}-j}, & (k \text { even }) ; \\
\tilde{H}_{j, \frac{k-1}{2}-j}, & (k \text { odd }),
\end{array} \quad Q_{k-2 j}^{(k)}=\mathcal{H}_{k, j}\right.
$$

Both observe that $Q_{k-2 j}^{(k)}$ is invariant under conjugation, and so has a basis of real-valued polynomials, and a real-valued zonal function (a function invariant under the subgroup of $\operatorname{Sp}(d) \times \operatorname{Sp}(1)$ that fixes a point). The structural form of this zonal is given in [Smi75] Proposition 2.8, and it is given explicitly in ACMM20 Proposition 3.1.

The invariance of $Q_{k-2 j}^{(k)}$ under conjugation follows directly from 4.7), i.e.,

$$
\begin{align*}
\overline{H(k-b, b)_{k-2 j}} & =\overline{R^{b-j}\left(\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j)\right)} \\
& =\left(R^{*}\right)^{b-j}\left(\overline{\operatorname{ker} R^{*}} \cap \overline{\operatorname{Hom}_{H}(k-j, j)}\right) \\
& =\left(R^{*}\right)^{b-j}\left(\operatorname{ker} R \cap \operatorname{Hom}_{H}(j, k-j)\right) \\
& =H(b, k-b)_{k-2 j} . \tag{9.11}
\end{align*}
$$

Schematic 9.5 (Wedding cake) The orthogonal decomposition 9.5) of $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ into $U\left(\mathbb{H}^{d}\right)$-irreducibles can be displayed as layers of a "wedding cake"

	$H(k, 0)$	$H(k-1,1)$	$H(k-2,2)$	\cdots	$H(2, k-2)$	$H(1, k-1)$	$H(0, k)$
		$R^{R^{*}}$			\vdots		\xrightarrow{R}
$R_{k-4}^{(k)}:$			$H(k-2,2)_{k-4}$	\cdots	$H(2, k-2)_{k-4}$		
$R_{k-2}^{(k)}:$		$H(k-1,1)_{k-2}$	$H(k-2,2)_{k-2}$	\cdots	$H(2, k-2)_{k-2}$	$H(1, k-1)_{k-2}$	
$R_{k}^{(k)}:$	$H(k, 0)_{k}$	$H(k-1,1)_{k}$	$H(k-2,2)_{k}$	\cdots	$H(2, k-2)_{k}$	$H(1, k-1)_{k}$	$H(0, k)_{k}$

where the layers (rows) correspond to the irreducible $R_{k-2 j}^{(k)}$ (the bottom layer is $R_{k}^{(k)}$), and the slices (columns) correspond to the decomposition of a given $H(k-b, b)$ into $\min \{b, k-b\}+1$ different irreducibles. One can move along the layers using R and R^{*}, as indicated. Therefore, the left most irreducibles (shaded in grey), i.e.,

$$
H(k-j, j)_{k}=H(k-j, j) \cap \operatorname{ker} R^{*}, \quad 0 \leq j \leq \frac{k}{2}
$$

are a distinguished copy of each irreducible, from which the other summands in the layer can be obtained by applying R. Further, in view of the symmetries 9.11), i.e., that conjugation reflects the cake around its centre, only half of these summands need be calculated, in practice. Similarly, the right most entries are distinguished, and give the other summands by applying R^{*}.
Example 9.6 We consider $\operatorname{Harm}_{2}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, for which (2.5) gives

$$
\operatorname{dim}\left(\operatorname{Harm}_{2}\left(\mathbb{H}^{d}, \mathbb{C}\right)\right)=2 d(4 d+1)-1=(2 d+1)(4 d-1)
$$

For $d=2$, we have the following table, where each line is an R-orbit, as in 9.4.

	$H(2,0)$	$H(1,1)$	$H(0,2)$
$K(2,0)\{$	$\begin{gathered} z_{1}^{2} \\ z_{2}^{2} \\ z_{1} z_{2} \end{gathered}$	$\begin{gathered} z_{1} \overline{w_{1}} \\ z_{2} \overline{w_{2}} \\ z_{1} \overline{w_{2}}+z_{2} \overline{w_{1}} \\ z_{1} \overline{w_{2}}-z_{2} \overline{w_{1}} \end{gathered}$	$\begin{gathered} {\overline{w_{1}}}^{2} \\ {\overline{w_{2}}}^{2} \\ \overline{w_{1} w_{2}} \end{gathered}$
$K(1,1)\{$	$\begin{aligned} & z_{1} w_{1} \\ & z_{1} w_{2} \\ & z_{2} w_{1} \\ & z_{2} w_{2} \end{aligned}$	$\begin{aligned} & z_{1} \overline{z_{1}}-w_{1} \overline{w_{1}} \\ & \overline{w_{1}} w_{2}-z_{1} \overline{z_{2}} \\ & \overline{w_{2}} w_{1}-z_{2} \overline{z_{1}} \\ & z_{2} \overline{z_{2}}-w_{2} \overline{w_{2}} \\ & \overline{z_{1}} z_{2}+w_{1} \overline{w_{2}} \\ & z_{1} \overline{z_{2}}+\overline{w_{1}} w_{2} \\ & w_{2} \overline{w_{2}}-z_{1} \overline{z_{1}}-w_{1} \overline{w_{1}} \end{aligned}$	$\begin{aligned} & \frac{\overline{z_{1} w_{1}}}{\overline{w_{1} z_{2}}} \\ & \overline{w_{2} z_{1}} \\ & z_{2} w_{2} \end{aligned}$
$K(0,2)\{$	$\begin{gathered} w_{1}^{2} \\ w_{2}^{2} \\ w_{1} w_{2} \end{gathered}$	$\begin{gathered} \overline{z_{1}} w_{1} \\ \overline{z_{2}} w_{2} \\ \overline{z_{1}} w_{2}+\overline{z_{2}} w_{1} \\ \overline{z_{1}} w_{2}-\overline{z_{2}} w_{1} \end{gathered}$	$\begin{gathered} {\overline{z_{1}}}^{2} \\ {\overline{z_{2}}}^{2} \\ \overline{z_{1} z_{2}} \end{gathered}$

For example, we have the decomposition into irreducibles for right multiplication by \mathbb{H}^{*}

$$
K(2,0)=\left(R\left\{z_{1}^{2}\right\} \oplus R\left\{z_{2}^{2}\right\} \oplus R\left\{z_{1} z_{2}\right\}\right) \oplus R\left\{z_{1} \overline{w_{2}}-z_{2} \overline{w_{1}}\right\} \cong 3 W_{2} \oplus W_{0}
$$

where

$$
R\left\{z_{1}^{2}\right\}=\operatorname{span}\left\{z_{1}^{2}, z_{1} \overline{w_{1}}, \bar{w}_{1}^{2}\right\} \cong W_{2}, \quad R\left\{z_{1} \overline{w_{2}}-z_{2} \overline{w_{1}}\right\}=\operatorname{span}\left\{z_{1} \overline{w_{2}}-z_{2} \overline{w_{1}}\right\} \cong W_{0}
$$

etc. This calculation was done for $\operatorname{Hom}_{2}\left(\mathbb{H}^{2}\right)$, which has a dimension 1 higher. Apart from applying R to fill out the rows, the only other calculation done was solving $R f=0$ or $R^{*} f$ for $f \in H_{2}^{(1,1)}\left(\mathbb{H}^{2}\right)=K(1,1) \cap H(1,1)$ gives a 4 -dimensional space spanned by

$$
z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}, \quad z_{2} \overline{z_{2}}+w_{2} \overline{w_{2}}, \quad \overline{z_{1}} z_{2}+w_{1} \overline{w_{2}}, \quad z_{1} \overline{z_{2}}+\overline{w_{1}} w_{2}
$$

The first two have nonzero constant Laplacian, so their difference is harmonic, and the second two are harmonic. Similar calculations give the general decomposition

$$
\begin{aligned}
K(2,0) & =\left(\bigoplus_{|\alpha|=2} R\left\{z^{\alpha}\right\}\right) \oplus\left(\bigoplus_{1 \leq j<k \leq d} R\left\{z_{j} \overline{w_{k}}-z_{k} \overline{w_{j}}\right\}\right) \cong \frac{1}{2} d(d+1) W_{2} \oplus \frac{1}{2} d(d-1) W_{0}, \\
K(1,1) & =\left(\bigoplus_{1 \leq j, k \leq d} R\left\{z_{j} w_{k}\right\}\right) \oplus\left(\bigoplus_{j \neq k} R\left\{z_{j} \overline{z_{k}}+\overline{w_{j}} w_{k}\right\} \oplus \bigoplus_{2 \leq j \leq d} R\left\{z_{j} \overline{z_{j}}+w_{j} \overline{w_{j}}-z_{1} \overline{z_{1}}-w_{1} \overline{w_{1}}\right\}\right) \\
& \cong d^{2} W_{2} \oplus\left(d^{2}-1\right) W_{0}, \\
K(0,2) & =\left(\bigoplus_{|\alpha|=2} R\left\{w^{\alpha}\right\}\right) \oplus\left(\bigoplus_{1 \leq j<k \leq d} R\left\{\overline{z_{j}} w_{k}-\overline{z_{k}} w_{j}\right\}\right) \cong \frac{1}{2} d(d+1) W_{2} \oplus \frac{1}{2} d(d-1) W_{0},
\end{aligned}
$$

into irreducibles (sums of R-orbits). In particular, the homogeneous components, i.e., the $\operatorname{Sp}(d) \times \operatorname{Sp}(1)$-irreducibles, are

$$
\operatorname{Harm}_{2}\left(\mathbb{H}^{d}\right)=Q_{2}^{(k)} \oplus Q_{0}^{(k)}=I\left(W_{2}\right)^{(2)} \oplus I\left(W_{0}\right)^{(2)} \cong d(2 d+1) W_{3} \oplus(d-1)(2 d+1) W_{0}
$$

Example 9.7 Since $H(k, 0) \cap \operatorname{ker} R^{*}=H(k, 0)$, we have

$$
I\left(W_{k}\right)^{(k)}=\bigoplus_{|\alpha+\beta|=k} R\left\{z^{\alpha} w^{\beta}\right\} \cong\binom{k+2 d-1}{k} W_{k} \quad \text { (orthogonal direct sum). }
$$

10 Zonal polynomials

Here we consider the "zonal polynomials" for our irreducible representations of the groups $G=U\left(\mathbb{H}^{d}\right), U\left(\mathbb{H}^{d}\right) \times \mathbb{H}^{*}$ on $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$. There are two common notions of zonal functions:

- The functions fixed by the action of the subgroup $G_{q^{\prime}}$ which fixes a point q^{\prime}.
- The Riesz representer of point evaluation at a point q^{\prime} (the reproducing kernel).

When $G_{q^{\prime}}$ is a maximal compact subgroup of G these are equivalent. We will consider the first notion. For a group G acting on \mathbb{H}^{d}, we define the stabliser (or isotrophy) subgroup of $q^{\prime} \in \mathbb{H}^{d}$ to be those elements which fix q^{\prime}, i.e.,

$$
G_{q^{\prime}}:=\left\{g \in G: g \cdot q^{\prime}=q^{\prime}\right\} .
$$

A function $\mathbb{H}^{d} \rightarrow \mathbb{C}$ which is fixed by the action of $G_{q^{\prime}}$ is said to zonal (with pole q^{\prime}). We denote the subspace of zonal functions in a space V of polynomials by

$$
V^{G_{q^{\prime}}}:=\{f \in V: g \cdot f=f\} .
$$

We now condsider the zonal polynomials for the group $G=U\left(\mathbb{H}^{d}\right)$.
Recall $\langle v, w\rangle=v^{*} w$ is the Euclidean inner product (2.2). For vectors $q=z+j w$, $q^{\prime}=z^{\prime}+j w^{\prime}$ in \mathbb{H}^{d}, we define two inner products

$$
\begin{equation*}
\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}:=\left\langle q^{\prime}, q\right\rangle \in \mathbb{H}, \quad\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}:=\left\langle\binom{ z^{\prime}}{w^{\prime}},\binom{z}{w}\right\rangle \in \mathbb{C} . \tag{10.1}
\end{equation*}
$$

Lemma 10.1 For $q, q^{\prime} \in \mathbb{H}^{d}$, we have

$$
\begin{equation*}
\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}=\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}+j\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}} . \tag{10.2}
\end{equation*}
$$

For the action of $U\left(\mathbb{H}^{d}\right)$ the following are zonal polynomials $\mathbb{H}^{d} \rightarrow \mathbb{C}$ with pole q^{\prime}

$$
\begin{aligned}
& q \mapsto\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}=\overline{z_{1}^{\prime}} z_{1}+\cdots+\overline{z_{d}^{\prime}} z_{d}+\overline{w_{1}^{\prime}} w_{1}+\cdots+\overline{w_{d}^{\prime}} w_{d}, \\
& q \mapsto\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}}=z_{1}^{\prime} w_{1}+\cdots+z_{d}^{\prime} w_{d}-w_{1}^{\prime} z_{1}-\cdots-w_{d}^{\prime} z_{d} .
\end{aligned}
$$

When $q^{\prime}=e_{1}$, the zonal polynomials above are

$$
z+j w \mapsto z_{1}, \quad z+j w \mapsto w_{1}
$$

Proof: Using (2.1), we calculate

$$
q^{\prime} j=\left(z^{\prime}+j w^{\prime}\right) j=z^{\prime} j+j w^{\prime} j=-\overline{w^{\prime}}+j \overline{z^{\prime}}
$$

and so

$$
\begin{aligned}
\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}} & =\left(z^{\prime}+j w^{\prime}\right)^{*}(z+j w)=\left(\left(z^{\prime}\right)^{*}-\left(w^{\prime}\right)^{*} j\right)(z+j w) \\
& =\left(z^{\prime}\right)^{*} z+\left(w^{\prime}\right)^{*} w+j\left(\overline{z^{\prime}}\right)^{*} w-j\left(\overline{w^{\prime}}\right)^{*} z \\
& =\left\langle\binom{ z^{\prime}}{w^{\prime}},\binom{z}{w}\right\rangle+j\left\langle\binom{-\overline{w^{\prime}}}{\overline{z^{\prime}}},\binom{z}{w}\right\rangle=\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}+j\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}},
\end{aligned}
$$

which is 10.2 . Let $U \in U\left(\mathbb{H}^{d}\right)$ with $U q^{\prime}=q^{\prime}$, then we have

$$
\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}=\left\langle U q^{\prime}, U q\right\rangle_{\mathbb{H}^{d}}=\left\langle q^{\prime}, U q\right\rangle_{\mathbb{H}^{d}}=\left\langle q^{\prime}, U q\right\rangle_{\mathbb{C}^{2 d}}+j\left\langle q^{\prime} j, U q\right\rangle_{\mathbb{C}^{2 d}}
$$

so that

$$
\left\langle q^{\prime}, U q\right\rangle_{\mathbb{C}^{2 d}}=\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}, \quad\left\langle q^{\prime} j, U q\right\rangle_{\mathbb{C}^{2 d}}=\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}}
$$

which shows that the linear polynomials given are zonal.

We note that z_{1} and w_{1} are zonal polynomials in the $U\left(\mathbb{H}^{d}\right)$-irreducible subspace

$$
H(1,0)_{1}=\operatorname{span}\left\{z_{1}, \ldots, z_{d}, w_{1}, \ldots w_{d}\right\},
$$

and so the space of zonal polynomials in a given $U\left(\mathbb{H}^{d}\right)$-irreducible is not 1-dimensional, as it is in the real and complex cases.

Example 10.2 The quadratic polynomial $q \mapsto\|q\|^{2}=\langle q, q\rangle_{\mathbb{H}^{d}}$ is zonal (for any q^{\prime}). By folk law (the real and complex cases), the zonal polynomials should be a function of this and the quaternionic inner product $q \mapsto\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}=\left(q^{\prime}\right)^{*} q$. Using 8.7), we have the explicit formulas:

$$
\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}=\frac{1}{2}\left(\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}-i\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}} i\right), \quad\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}}=\frac{1}{2 j}\left(\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}+i\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}} i\right) .
$$

Using the zonal polynomials above, which commute, since they are complex-valued, BN02] define zonal polynomials in $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ by

$$
\begin{equation*}
\left.\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]_{q^{\prime}}(q):=\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2} d}^{\alpha_{1}}\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2} d}^{\alpha_{2}} \overline{\left\langle q^{\prime}, q\right\rangle}\right\rangle_{\mathbb{C}^{2} d}^{\alpha_{3}} \overline{\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}}}\|q\|^{2 r} \tag{10.3}
\end{equation*}
$$

where $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+2 r=k$. These span and hence are a basis for the zonal polynomials in $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ (Proposition 4.2, [BN02]).

Example 10.3 For a general q^{\prime}, we have

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]_{q^{\prime}} \in \operatorname{Hom}_{H}\left(\alpha_{1}+\alpha_{2}+r, \alpha_{3}+\alpha_{4}+r\right),
$$

and for $q^{\prime}=e_{1}$, we have

$$
\begin{equation*}
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]_{e_{1}}=z_{1}^{\alpha_{1}} w_{1}^{\alpha_{2}}{\overline{z_{1}}}^{\alpha_{3}}{\overline{w_{1}}}^{\alpha_{4}}\|z+j w\|^{2 r}, \quad \alpha_{1}+\alpha_{2}+\alpha_{4}+2 r=k, \tag{10.4}
\end{equation*}
$$

so that

$$
\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]_{e_{1}} \in \operatorname{Hom}_{k}^{\left(\alpha_{2}+\alpha_{3}+r, \alpha_{3}+\alpha_{4}+r\right)}\left(\mathbb{H}^{d}\right) .
$$

We can take advantage of (10.4) to simplify the proof and presentation of results, since if U is unitary with $U q^{\prime}=e_{1}$, then we have the following correspondence between zonal polynomials with poles q^{\prime} and e_{1}

$$
\left[a_{1}, a_{2}, a_{3}, a_{4}, r\right]_{q^{\prime}}=\left[a_{1}, a_{2}, a_{3}, a_{4}, r\right]_{e_{1}}(V \cdot)
$$

This follows from the calculation

$$
\left\langle q^{\prime}, q\right\rangle_{\mathbb{H}^{d}}=\left\langle U q^{\prime}, U q\right\rangle_{\mathbb{H}^{d}}=\left\langle e_{1}, U q\right\rangle_{\mathbb{H}^{d}},
$$

and the fact that such a U can always be constructed, since $U\left(\mathbb{H}^{d}\right)$ is transitive on the quaternionic sphere. In effect, a zonal polynomial for q^{\prime} can be obtained from one with pole e_{1} by making the substitution

$$
\begin{equation*}
z_{1} \mapsto\left\langle q^{\prime}, q\right\rangle_{\mathbb{C}^{2 d}}, \quad w_{1} \mapsto\left\langle q^{\prime} j, q\right\rangle_{\mathbb{C}^{2 d}} . \tag{10.5}
\end{equation*}
$$

The number of zonal functions given by (10.3) is independent of the dimension d. For $d=1$, these zonal polynomials have linear dependencies, e.g.,

$$
[1,0,1,0,0]+[0,1,0,1,0]=z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}=[0,0,0,0,1]
$$

and for $d>1$ they are linearly dependent. Thus we obtain the following dimensions.

Lemma 10.4 For $Z:=U\left(\mathbb{H}^{d}\right)_{q^{\prime}}, d \geq 2$, the zonal polynomials have dimensions

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right) & =\sum_{0 \leq j \leq \frac{k}{2}}\binom{k-2 j+3}{3} \tag{10.6}\\
\operatorname{dim}\left(\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right) & =\binom{k+3}{3}=\sum_{0 \leq j \leq \frac{k}{2}}(k-2 j+1)^{2} \tag{10.7}
\end{align*}
$$

Further, if $q^{\prime}=z^{\prime} \in \mathbb{C}^{d}$, e.g., $q^{\prime}=e_{1}$, then

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right) & =\frac{1}{2}(m+1)(m+2), \tag{10.8}\\
\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right) & =m+1, \tag{10.9}
\end{align*}
$$

where

$$
m:=\min \{a, k-a, b, k-b\} .
$$

Proof: Since the zonal polynomials in (10.4) are clearly linearly independent and span $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}$ (see BN02] Proposition 4.2), it suffices to count them, which gives

$$
\operatorname{dim}\left(\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right)=\sum_{0 \leq r \leq \frac{k}{2}} \operatorname{dim}\left(\operatorname{Hom}_{k-2 r}(\mathbb{H}, \mathbb{C})\right)=\sum_{0 \leq r \leq \frac{k}{2}}\binom{k-2 r+3}{3}
$$

When $q^{\prime}=z^{\prime}\left(w^{\prime}=0\right)$, each of these zonal polynomials is in some $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$, so that

$$
\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}=\bigoplus_{m \leq r \leq \frac{k}{2}} \operatorname{span}_{\mathbb{C}}\left\{\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]: \begin{array}{l}
\alpha_{1}+\alpha_{4}=k-a-r, \alpha_{2}+\alpha_{3}=a-r \tag{10.10}\\
\alpha_{1}+\alpha_{2}=k-b-r, \alpha_{3}+\alpha_{4}=b-r
\end{array}\right\},
$$

and counting again, using 7.4 and $m_{a-r, b-r}^{(k-2 r)}=m+1-r$, gives

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right) & =\sum_{m \leq r \leq \frac{k}{2}} \operatorname{dim}\left(\operatorname{Hom}_{k-2 r}^{(a-r, b-r)}(\mathbb{H})\right) \\
& =1+2+\cdots+m+(m+1)=\frac{1}{2}(m+1)(m+2)
\end{aligned}
$$

Since the Laplacian maps $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ onto $\operatorname{Hom}_{k-1}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)$ and zonal polynomials to zonal polynomials (Lemma 14.2), we have

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right) & =\operatorname{dim}\left(\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right)-\operatorname{dim}\left(\operatorname{Hom}_{k-2}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}\right)=\binom{k+3}{3}, \\
\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right) & =\operatorname{dim}\left(\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right)-\operatorname{dim}\left(\operatorname{Hom}_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)^{Z}\right) \\
& =\frac{1}{2}(m+1)(m+2)-\frac{1}{2}(m-1+1)(m-1+2)=m+1
\end{aligned}
$$

which completes the proof.

We will give a simple example first, which motivates the general and constructive result to follow.

Example 10.5 For $q^{\prime}=e_{1}$, the unique zonal polynomial in $H_{k}^{(0,0)}\left(\mathbb{H}^{d}\right)$ is

$$
[k, 0,0,0,0]=z_{1}^{k} .
$$

We may apply L (down) and R (right) to this, as in the univariate case (Schematic 7.6 and Lemma 8.2), to obtain $(k+1)^{2}$ zonal polynomials in $I\left(W_{k}\right)^{(k)}$.

$$
\begin{array}{cccc}
z_{1}^{k} & k z_{1}^{k-1} \overline{w_{1}} & \cdots & k!{\overline{w_{1}}}^{k} \\
k z_{1}^{k-1} w_{1} & k(k-1) z_{1}^{k-2} w_{1} \overline{w_{1}}-k z_{1}^{k-1} \overline{z_{1}} & \cdots & -k!k \overline{z_{1} w_{1}}
\end{array}
$$

Theorem 10.6 Let $q^{\prime}=e_{1}$. For $d \geq 2$, there is a unique harmonic zonal polynomial

$$
P_{k-2 j}^{(k)}=P_{k-2 j, d}^{(k)} \in \operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{(j, j)}\left(\mathbb{H}^{d}\right), \quad 0 \leq j \leq \frac{k}{2},
$$

given by

$$
\begin{equation*}
P_{k-2 j}^{(k)}:=\sum_{b+c+r=j} \frac{(-1)^{r}}{b!c!r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}[k-j-b-r, b, c, b, r], \tag{10.11}
\end{equation*}
$$

which has $\frac{1}{2}(j+1)(j+2)$ terms. Let

$$
\begin{equation*}
P_{k-2 j, a, b}^{(k)}:=L^{a-j} R^{b-j} P_{k-2 j}^{(k)}, \quad j \leq a, b \leq k-j . \tag{10.12}
\end{equation*}
$$

Then the zonal polynomials (with pole e_{1}) in $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ have the following orthogonal direct sum decomposition into one-dimensional subspaces

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq a, b \leq k-j} \operatorname{span}\left\{P_{k-2 j, a, b}^{(k)}\right\} \tag{10.13}
\end{equation*}
$$

Proof: By 10.10 , a general zonal polynomial in $\operatorname{Hom}_{k}^{(j, j)}\left(\mathbb{H}^{d}\right)$ has the form

$$
f:=\sum_{b+c+r=j} C_{b c r}[k-j-b-r, b, c, b, r], \quad C_{b c r} \in \mathbb{C},
$$

which involves $\frac{1}{2}(j+1)(j+2)$ terms. By Lemma 14.2 , the condition for f to be harmonic is

$$
\begin{aligned}
\frac{1}{4} \Delta f=\sum_{b+c+r=j} C_{b c r}\{(k & -j-b-r) c[k-j-b-r-1, b, c-1, b, r] \\
& +b^{2}[k-j-b-r, b-1, c, b-1, r] \\
& +r(k+2 d-1-r)[k-j-b-r, b, c, b, r-1]\}=0
\end{aligned}
$$

which gives $\frac{1}{2} j(j+1)$ equations, and hence $j+1=\operatorname{dim}\left(\left(H_{k}^{(j, j)}\right)^{Z}\right)$ free parameters. Hand calculations indicated that $\Delta f=0$ together with the conditions $R^{*} f=0$ and $L^{*} f=0$ leads to a unique (one parameter) solution f. From these special cases, we "guessed" the formula 10.11). We will now verify directly that f defined by (10.11) has the desired properties, and then conclude that it is unique (by a cardinality argument).

By Lemma 14.2 and Lemma 14.1, we have

$$
\begin{aligned}
& \Delta([k-j-b-r, b, c, b, r])=(k-j-b-r) c[k-j-b-r-1, b, c-1, b, r] \\
&+b^{2}[k-j-b-r, b-1, c, b-1, r] \\
&+r(k+2 d-1-r)[k-j-b-r, b, c, b, r-1], \\
& R^{*}([k-j-b-r, b, c, b, r])=- c[k-j-b-r, b+1, c-1, b, r] \\
&+b[k-j-b-r+1, b, c, b-1, r], \\
& L^{*}([k-j-b-r, b, c, b, r])=b[k-j-b-r+1, b-1, c, b, r] \\
&-c[k-j-b-r, b, c-1, b+1, r] .
\end{aligned}
$$

Hence, the $\left[k-j-b^{\prime}-r^{\prime}-1, b^{\prime}, c^{\prime}, b^{\prime}, r^{\prime}\right]$ coefficient of Δf is

$$
\begin{aligned}
& \frac{(-1)^{r^{\prime}}}{\left(b^{\prime}\right)!\left(c^{\prime}\right)!} \frac{\left(k+2-j-r^{\prime}\right)_{r^{\prime}}}{\left(k+2 d-1-r^{\prime}\right)_{r^{\prime}}}\left\{\frac{1}{c^{\prime}+1}\left(k-j-b^{\prime}-r^{\prime}\right)\left(c^{\prime}+1\right)\right. \\
& \left.+\frac{1}{b^{\prime}+1}\left(b^{\prime}+1\right)^{2}-\frac{1}{r^{\prime}+1} \frac{\left(k+2-j-r^{\prime}-1\right)}{\left(k+2 d-1-r^{\prime}-1\right)}\left(r^{\prime}+1\right)\left(k+2 d-1-r^{\prime}-1\right)\right\}=0
\end{aligned}
$$

the $\left[k-j-b^{\prime}-r+1, b^{\prime}, c^{\prime}, b^{\prime}-1, r\right], b^{\prime} \neq 0$, coefficient of $R^{*} f$ is

$$
\frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}\left(\frac{1}{\left(b^{\prime}-1\right)!\left(c^{\prime}+1\right)!}\left(-\left(c^{\prime}+1\right)\right)+\frac{1}{\left(b^{\prime}\right)!\left(c^{\prime}\right)!} b^{\prime}\right)=0,
$$

and the $\left[k-j-b^{\prime}-r+1, b^{\prime}-1, c^{\prime}, b^{\prime}, r\right], b^{\prime} \neq 0$, coefficient of $L^{*} f$ is

$$
\frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}\left\{\frac{1}{\left(b^{\prime}\right)!\left(c^{\prime}\right)!}\left(b^{\prime}\right)-\frac{1}{\left(b^{\prime}-1\right)!\left(c^{\prime}+1\right)!}\left(c^{\prime}+1\right)\right\}=0
$$

so that $f=P_{k-2 j}^{(k)} \in \operatorname{ker}\left(L^{*}\right) \cap \operatorname{ker}\left(R^{*}\right) \cap H_{k}^{(j, j)}\left(\mathbb{H}^{d}\right)^{Z}$. Since $P_{k-2 j}^{(k)} \in H_{k}^{(j, j)}\left(\mathbb{H}^{d}\right)$, by Lemma 14.3 and Lemma 14.1, we have the orthogonal direct sum decomposition

$$
\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq a, b \leq k-j} \operatorname{span}\left\{L^{a-j} R^{b-j} P_{k-2 j}^{(k)}\right\} \subset \operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}
$$

and by a dimension count using (10.7), we obtain (10.13), and hence the uniqueness of $P_{k-2 j}^{(k)}$ up to a scalar multiple.

It follows from Theorem 10.6 (also see [BN02]) the zonal functions satisfy

$$
\begin{gathered}
\operatorname{dim}\left(\left(I\left(W_{k-2 j}\right)^{(k)}\right)^{Z}\right)=(k-2 j+1)^{2} \\
\operatorname{dim}\left(H(k-b, b)_{k-2 j}^{Z}\right)=k-2 j+1, \quad j \leq b \leq k-j
\end{gathered}
$$

and for $q^{\prime}=e_{1}$, we have

$$
\operatorname{dim}\left(H(k-b, b)_{k-2 j} \cap H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}\right)= \begin{cases}1, & j \leq a, b \leq k-j \tag{10.14}\\ 0, & \text { otherwise }\end{cases}
$$

Let $Z_{k-2 j, a, b}^{(k)}$ be the zonal polynomial with pole q^{\prime} obtained from $P_{k-2 j, a, b}^{(k)}$ by making the substitution (10.5).

Corollary 10.7 The zonal polynomials in $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ have the following orthogonal direct sum decomposition into one-dimensional subspaces

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq a, b \leq k-j} \operatorname{span}\left\{Z_{k-2 j, a, b}^{(k)}\right\} \tag{10.15}
\end{equation*}
$$

Proof: Apply the substitution 10.5 to the orthogonal direct sum (10.13).
The existence of the zonal polynomials $Z_{k-2 j, a, b}^{(k)}$ in 10.13 is proved inductively in [BN02], where they are denoted by $\mathcal{Z}_{p, w, w^{\prime}}^{(k)}$. We now outline how the two are related. Here $p=k-2 j$, and the "weight" parameters w, w^{\prime} are related to (a, b), as follows

$$
\begin{equation*}
a=\frac{k-w^{\prime}}{2}, \quad b=\frac{k-w}{2}, \quad w^{\prime}=k-2 a, \quad w=k-2 b, \tag{10.16}
\end{equation*}
$$

which gives the correspondence between indices

$$
(a, b) \in\{0,1, \ldots, k\}^{2} \quad \Longleftrightarrow \quad\left(w, w^{\prime}\right) \in\{-k,-k+2, \ldots, k-2, k\}^{2}
$$

We note that for k even (the case considered in [BN02]) the weights w and w^{\prime} are even, and for k odd, they are odd. They define the space of zonal polynomials

$$
\begin{align*}
& E_{w, w^{\prime}}^{(k)}:=\operatorname{span}\left\{\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, r\right]_{q^{\prime}}: \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+2 r=k\right. \\
&\left.\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}=w, \alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}=w^{\prime}\right\} \tag{10.17}
\end{align*}
$$

which satisfies

$$
E_{w, w^{\prime}}^{(k)}=\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{Z}, \quad \text { for } q^{\prime}=z^{\prime} \in \mathbb{C}^{d}
$$

and the space

$$
V_{w}^{(k)}=H\left(\frac{k+w}{2}, \frac{k-w}{2}\right)=H(k-b, b) .
$$

In BN02] (Proposition 4.5), the zonal polynomials $\mathcal{Z}_{p, w, w^{\prime}}^{(k)}$ are characterised by the following properties:

- $\mathcal{Z}_{p, w, w^{\prime}} \in E_{w, w^{\prime}}^{(k)}$, i.e., $Z_{k-2 j, a, b}^{(k)}$ has the structural form given by 10.11 and 10.12 .
- $\left\{\mathcal{Z}_{p, w, w^{\prime}}\right\}_{w^{\prime} \in\{-p, \ldots, p-2, p\}}$ is a basis of (the zonal polynomials in) $I\left(W_{p}\right)^{(k)} \cap V_{w}^{(k)}$, i.e., $\left\{Z_{k-2 j, a, b}^{(k)}\right\}_{j \leq a \leq k-j}$ is a basis of the zonal polynomials in $I\left(W_{k-2 j}\right)^{(k)} \cap H(k-b, b)$.
- $\left\{\mathcal{Z}_{p, w, w^{\prime}}\right\}_{w \in\{-p, \ldots, p-2, p\}}$ is a basis of zonal polynomials for an irreducible subspace for right multiplication by \mathbb{H}^{*}, (which is isomorphic to W_{p}), i.e., $\left\{Z_{k-2 j, a, b}^{(k)}\right\}_{j \leq b \leq k-j}$ is an R-orbit for a $W_{k-2 j}$.

These follow from our construction, and the observation (by Lemma 14.1) that

$$
Z_{k-2 j, a, b}^{(k)}=R^{b-j} Z_{k-2 j, a, 0}^{(k)}, \quad j \leq b \leq k-j .
$$

Example 10.8 The first three polynomials $Z_{k-2 j}^{(k)}=Z_{k-2 j, 0,0}^{(k)}$ given by 10.11) are

$$
\begin{aligned}
Z_{k}^{(k)}= & {[k, 0,0,0,0] } \\
Z_{k-2}^{(k)}= & {[k-2,1,0,1,0]+[k-1,0,1,0,0]-\frac{k}{k+2 d-2}[k-2,0,0,0,1] } \\
Z_{k-4}^{(k)}= & {[k-4,2,0,2,0]+[k-2,0,2,0,0]+2[k-3,1,1,1,0]-\frac{2(k-1)}{k+2 d-2}[k-4,1,0,1,1] } \\
& \quad-\frac{2(k-1)}{k+2 d-2}[k-3,0,1,0,1]+\frac{(k-1)(k-2)}{(k+2 d-2)(k+2 d-3)}[k-4,0,0,0,2] .
\end{aligned}
$$

We observe that, except for the first, these depend on the dimension d.
Example 10.9 For $k=1$, the zonal polynomials in 10.15) are

$$
\begin{array}{cl}
Z_{1}^{(1)}:=[1,0,0,0,0]=z_{1}, \quad R Z_{1}^{(1)}=[0,0,0,1,0]=\overline{w_{1}}, \\
L Z_{1}^{(1)}=[0,1,0,0,0]=w_{1}, \quad & -L R Z_{1}^{(1)}=[0,0,1,0,0]=\overline{z_{1}} .
\end{array}
$$

and for $k=2$, they are given by the schematic

\[

\]

with the indexing of rows and columns as before.
Similarly to the Schematic 9.5 , the summands $\left\{Z_{k-2 j, a, b}\right\}_{j \leq a, b \leq k-j}, 0 \leq j \leq \frac{k}{2}$, in (10.15) can be arranged as the layers of a "wedding cake" (see Figure 1).

We now seek an explicit formula for the zonal polynomial $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}$ of Theorem 10.6. We first determine its structural form. The Lemma 10.10, below, says that the complexity of the formula depends on how far the index (α, β) is from the edges of the array of indices $A=\{0,1, \ldots, k-2 j\}^{2}$. Partition A into "nested squares", as in (8.4),

$$
\begin{equation*}
S_{k, j, m}:=\{(\alpha, \beta): \min \{j+\alpha, j+\beta, k-j-\alpha, k-j-\beta\}=m\}, \quad j \leq m \leq \frac{k}{2} \tag{10.18}
\end{equation*}
$$

$K(2,2)$		$H(3,1)_{2}$	$\begin{gathered} H(2,2)_{0} \\ \hline P_{0}=P_{000}^{(4)} \end{gathered}$	$H(1,3){ }_{2}$	$H(0,4)_{4}$
			$H(2,2){ }_{2}$		
$K(3,1)$		$P_{2}=P_{200}^{(4)}$	$R P_{2}$	$R^{2} P_{2}$	
$K(2,2)$		$L P_{2}$	$L R P_{2}$	$L R^{2} P_{2}$	
$K(1,3)$		$L^{2} P_{2}$	$L^{2} R P_{2}$	$L^{2} R^{2} P_{2}$	
	$H(4,0){ }_{4}$	$H(3,1){ }_{4}$	$H(2,2){ }_{4}$	$H(1,3) 4$	
$K(4,0)$	$P_{4}=P_{400}^{(4)}$	$R P_{4}$	$R^{2} P_{4}$	$R^{3} P_{4}$	$R^{4} P_{4}$
$K(3,1)$	$L P_{4}$	$L R P_{4}$	$L R^{2} P_{4}$	$L R^{3} P_{4}$	$L R^{4} P_{4}$
$K(2,2)$	$L^{2} P_{4}$	$L^{2} R P_{4}$	$L^{2} R^{2} P_{4}$	$L^{2} R^{3} P_{4}$	$L^{2} R^{4} P_{4}$
$K(1,3)$	$L^{3} P_{4}$	$L^{3} R P_{4}$	$L^{3} R^{2} P_{4}$	$L^{3} R^{3} P_{4}$	$L^{3} R^{4} P_{4}$
$K(0,4)$	$L^{4} P_{4}$	$L^{4} R P_{4}$	$L^{4} R^{2} P_{4}$	$L^{4} R^{3} P_{4}$	$L^{4} R^{4} P_{4}$

Figure 1: Schematic of the $1^{2}+3^{2}+5^{2}$ zonal functions for $\operatorname{Harm}_{4}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ given by 10.12 .

Lemma 10.10 Let $0 \leq \alpha, \beta \leq k-2 j, 0 \leq j \leq \frac{k}{2}$, and

$$
m:=\min \{j+\alpha, k-j-\beta, j+\beta, k-j-\alpha\} \quad \text { i.e., }(\alpha, \beta) \in S_{k, j, m}
$$

Then $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} \in K(k-j-\alpha, j+\alpha) \cap H(k-j-\beta, j+\beta)$ has the form

$$
\begin{aligned}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} & =\sum_{\substack{0 \leq r \leq j \\
0 \leq b \leq m-r}} C_{b r}^{(\alpha, \beta)}[k-j-\beta-b-r, b, \alpha+j-r-b, \beta-\alpha+b, r], \quad \alpha \leq \beta \\
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} & =\sum_{\substack{0 \leq r \leq j \\
0 \leq b \leq m-r}} C_{b r}^{(\alpha, \beta)} \iota[k-j-\alpha-b-r, \alpha-\beta+b, j+\beta-b-r, b, r], \quad \alpha \geq \beta
\end{aligned}
$$

which involves $\frac{1}{2}(j+1)(2 m+2-j)$ terms.
Proof: A general zonal polynomial of degree k has the form

$$
f=\sum_{a+b+c+d+2 r=k} C_{a b c d r}[a, b, c, d, r] .
$$

By Lemma 14.1, L and R applied to $[a, b, c, d, r]$ preserves the value of r, so that

$$
f=L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}
$$

has the same restriction on r as $P_{k-2 j}^{(k)}$ does, i.e., $0 \leq r \leq j$.
The condition that $f=L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} \in K(k-j-\alpha, j+\alpha) \cap H(k-j-\beta, j+\beta)$ gives

$$
\begin{array}{ll}
a+b+r=k-j-\beta, & c+d+r=j+\beta \tag{10.19}\\
a+d+r=k-j-\alpha, & b+c+r=j+\alpha
\end{array}
$$

First consider the case $\alpha \leq \beta$, i.e., $m=j+\alpha$ or $m=k-j-\beta$. If $m=j+\alpha$, then (10.19) gives

$$
b+c=m-r, \quad a=k-j-\beta-b-r, \quad d=j+\beta-c-r,
$$

so that

$$
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}=\sum_{\substack{0 \leq r \leq j \\ b+c=m-r}} C_{b c r}[k-j-\beta-b-r, b, c, j+\beta-c-r, r], \quad m=j+\alpha .
$$

Using $b+c+r=j+\alpha$ to eliminate c above, gives

$$
\begin{equation*}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}=\sum_{\substack{0 \leq \leq \leq j \\ 0 \leq b \leq m-r}} C_{b r}[k-j-\beta-b-r, b, j+\alpha-r-b, \beta-\alpha+b, r] . \tag{10.20}
\end{equation*}
$$

Now consider $m=k-j-\beta$. Then (10.19) gives

$$
a+b=m-r, \quad a=k-j-\beta-b-r, \quad c=j+\alpha-r-b, \quad d=\beta-\alpha+b,
$$

so that 10.20 holds for $m=j+\alpha$ and $m=k-j-\beta$, i.e., $\alpha \leq \beta$.
For the case $\alpha \geq \beta$, i.e., $m=j+\beta$ or $m=k-j-\alpha$, we have, respectively

$$
\begin{array}{llll}
c+d=m-r, & a=k-j-\alpha-d-r, & b=\alpha-\beta+d, & c=j+\beta-d-r, \\
a+d=m-r, & a=k-j-\alpha-d-r, & b=\alpha-\beta+d, & c=j+\beta-d-r
\end{array}
$$

which (replacing d by b) gives the second formula.
In the sum, we can have $r=0,1, \ldots, j(j+1$ choices $)$, with $m+1-r$ choices for b, and so the number of terms is

$$
(m+1)+m+(m-1)+\cdots+(m+1-j)=\frac{1}{2}(j+1)(2 m+2-j)
$$

An explicit formula for $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}$ can by found by applying 14.4 and 14.8. This gives very complicated coefficients. Instead, we used Lemma 8.2 and numerous symbolic calculations for low values of α and β, such as Lemma 10.11 below, to conjecture the formulas of Theorems 10.12 and 10.14 , which were then proved for a general (α, β).

Lemma 10.11 For $0 \leq \beta \leq k-2 j, 0 \leq j \leq \frac{k}{2}$, we have
$R^{\beta} Z_{k-2 j}^{(k)}=\sum_{b+c+r=j} \frac{(-1)^{r}}{b!c!r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}(k-2 j-\beta+1)_{\beta}[k-2 j-\beta+c, b, c, b+\beta, r]$.
Proof: Use induction on $0 \leq \beta \leq k-2 j$, with $\beta=0$ being trivial. Suppose that it holds for $\beta-1 \geq 0$, then

$$
\begin{equation*}
R^{\beta} Z_{k-2 j}^{(k)}=\sum_{b+c+r=j} \frac{(-1)^{r}}{b!c!r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}(k-2 j-(\beta-1)+1)_{\beta-1} R([\quad]), \tag{10.21}
\end{equation*}
$$

where, by (14.4) of Lemma 14.1 ,

$$
\begin{aligned}
R([\quad])= & R([k-2 j-\beta+1+c, b, c, b+\beta-1, r]) \\
= & (k-2 j-\beta+1+c)[k-2 j-\beta+c, b, c, b+\beta, r] \\
& -b[k-2 j-\beta+1+c, b-1, c+1, b+\beta-1, r] .
\end{aligned}
$$

The $\left[k-2 j-\beta+c^{\prime}, b^{\prime}, c^{\prime}, b^{\prime}+\beta, r\right], b^{\prime}+c^{\prime}+r=j$, coefficient in 10.21) is

$$
\frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}(k-2 j-\beta+2)_{\beta-1}\{ \},
$$

where

$$
\begin{aligned}
\} & =\frac{1}{\left(b^{\prime}\right)!\left(c^{\prime}!\right)}\left(k-2 j-\beta+1+c^{\prime}\right)-\frac{1}{\left(b^{\prime}+1\right)!\left(c^{\prime}!-1\right)}\left(\left(b^{\prime}+1\right)\right. \\
& =\frac{1}{\left(b^{\prime}\right)!\left(c^{\prime}!\right)}\left(k-2 j-\beta+1+c^{\prime}-c^{\prime}\right)=\frac{1}{\left(b^{\prime}\right)!\left(c^{\prime}!\right)}(k-2 j-\beta+1)
\end{aligned}
$$

which completes the induction.

Theorem 10.12 For $0 \leq \alpha \leq \beta \leq k-2 j, 0 \leq j \leq \frac{k}{2}$, we have

$$
L^{\alpha} R^{\beta} Z_{k-2 j}^{(k)}=\sum_{\substack{0 \leq \leq \leq j \\ 0 \leq b \leq m-r}} C_{b r}^{(\alpha, \beta)}[k-j-\beta-b-r, b, j+\alpha-r-b, \beta-\alpha+b, r],
$$

where $m=\min \{j+\alpha, k-j-\beta\}$ and $C_{b r}^{(\alpha, \beta)}=A_{b r}^{(\alpha, \beta)} B_{b r}^{(\alpha, \beta)}$, with

$$
\begin{align*}
& A_{b r}^{(\alpha, \beta)}:=\frac{(-1)^{r}}{b!(j+\alpha-b-r)!r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}(k-2 j-\beta+1)_{\beta}, \tag{10.22}\\
& B_{b r}^{(\alpha, \beta)}: \\
&=\sum_{u+v=\alpha} \frac{\alpha!}{u!v!}(k-2 j-\alpha+1)_{u}(b-u+1)_{u}(j-r+1)_{v}(-\beta)_{v} \tag{10.23}\\
&=(1+j-r)_{\alpha}(-\beta)_{\alpha 3} F_{2}\left(\begin{array}{c}
-\alpha,-b, k-2 j-\alpha+1 \\
r-j-\alpha, \beta+1-\alpha
\end{array} ; 1\right) .
\end{align*}
$$

The constant $B_{b r}^{(\alpha, \beta)}$ can also be calculated from $B_{b r}^{(0, \beta)}:=1$ and the recurrence

$$
\begin{equation*}
B_{b r}^{(\alpha, \beta)}=(k-j-\beta-b+1-r) b B_{b-1, r}^{(\alpha-1, \beta)}-(\beta-\alpha+1+b)(j+\alpha-b-r) B_{b r}^{(\alpha-1, \beta)} \tag{10.24}
\end{equation*}
$$

Proof: We first prove the result for $B_{b r}^{(\alpha, \beta)}$ given by the recurrence relation 10.24 , by using induction on α. This is true for $\alpha=0$ and all β by Lemma 10.11 (where $m=j$). Let $A_{-1, r}^{(\alpha, \beta)}$ and $B_{-1, r}^{(\alpha, \beta)}$ take some value (it matters not which). Then we have

$$
\begin{equation*}
A_{b-1, r}^{(\alpha-1, \beta)}=b A_{b r}^{(\alpha, \beta)}, \quad A_{b r}^{(\alpha-1, \beta)}=(j+\alpha-b-r) A_{b r}^{(\alpha, \beta)}, \quad \alpha>0 \tag{10.25}
\end{equation*}
$$

Suppose that $\alpha>0$, then by the inductive hypothesis, we have

$$
L^{\alpha-1} R^{\beta} Z_{k-2 j}^{(k)}=\sum_{\substack{0 \leq \leq j \\ 0 \leq b^{\prime} \leq m-r}} C_{b^{\prime} r}^{(\alpha-1, \beta)}\left[k-j-\beta-b^{\prime}-r, b^{\prime}, j+\alpha-1-r-b^{\prime}, \beta-\alpha+1+b^{\prime}, r\right] .
$$

We apply L to this, using (14.8), i.e.,

$$
\begin{aligned}
& L\left(\left[k-j-\beta-b^{\prime}-r, b^{\prime}, j+\alpha-1-r-b^{\prime}, \beta-\alpha+1+b^{\prime}, r\right]\right) \\
& \quad=\left(k-j-\beta-b^{\prime}-r\right)\left[k-j-\beta-b^{\prime}-r-1, b^{\prime}+1, j+\alpha-1-r-b^{\prime}, \beta-\alpha+1+b^{\prime}, r\right] \\
& \quad-\left(\beta-\alpha+1+b^{\prime}\right)\left[k-j-\beta-b^{\prime}-r, b^{\prime}, j+\alpha-r-b^{\prime}, \beta-\alpha+b^{\prime}, r\right]
\end{aligned}
$$

and (10.25), to obtain

$$
\begin{aligned}
C_{b r}^{(\alpha, \beta)} & =(k-j-\beta-(b-1)-r) C_{b-1, r}^{(\alpha-1, \beta)}-(\beta-\alpha+1+b) C_{b r}^{(\alpha-1, \beta)} \\
& =(k-j-\beta-b+1-r) b A_{b r}^{(\alpha, \beta)} B_{b-1, r}^{(\alpha, \beta)}-(\beta-\alpha+1+b)(j+\alpha-b-r) A_{b r}^{(\alpha, \beta)} B_{b r}^{(\alpha-1, \beta)}
\end{aligned}
$$

Since $A_{b r}^{(\alpha, \beta)} \neq 0$, we may divide the above by it, to obtain

$$
B_{b r}^{(\alpha, \beta)}=(k-j-\beta-b+1-r) b B_{b-1, r}^{(\alpha-1, \beta)}-(\beta-\alpha+1+b)(j+\alpha-b-r) B_{b r}^{(\alpha-1, \beta)},
$$

i.e., 10.24 , which completes the induction.

Finally, we show that the formula 10.23 for $B_{b r}^{(\alpha, \beta)}$ involving a ${ }_{3} F_{2}$ hypergeometric series holds, i.e., it satisfies the recurrence. This we do by induction on α. The case $\alpha=0$ is immediate, and the inductive step follows from the contiguous relation

$$
\begin{gathered}
(d e)_{3} F_{2}\left(\begin{array}{c}
-n, a, c \\
d, e
\end{array} ; 1\right)=(a+c-d-e+1-n)(-a)_{3} F_{2}\left(\begin{array}{c}
1-n, a+1, c+1 \\
d+1, e+1
\end{array} ; 1\right) \\
-(e-a)(a-d){ }_{3} F_{2}\left(\begin{array}{c}
1-n, a, c+1 \\
d+1, e+1
\end{array} ; 1\right) .
\end{gathered}
$$

for hypergeometric functions, for the choice

$$
n=\alpha, \quad a=-b, \quad c=k-2 j-\alpha+1, \quad d=r-j-\alpha, \quad e=\beta+1-\alpha .
$$

The recurrence relation 10.24 was determined first. It suggests that $(b, \beta) \mapsto B_{b r}^{\alpha, \beta}$ is a polynomial of degree 2α, where in fact it has degree α, as is indicated by 10.23). We could not prove formula 10.23 directly, without recourse to the contiguous relation. To indicate the complexity of such a calculation, we give the inductive step for $\alpha=1,2$

$$
\begin{aligned}
B_{b r}^{(1, \beta)}= & (k-j-\beta-b+1-r) b-(\beta+b)(j+1-b-r)=(k-2 j) b-(j-r+1) \beta, \\
B_{b r}^{(2, \beta)}= & (k-j-\beta-b+1-r) b\{(k-2 j)(b-1)-(j-r+1) \beta\} \\
& -(\beta-1+b)(j+2-b-r)\{(k-2 j) b-(j-r+1) \beta\} \\
= & (j-r+1)_{2}(-\beta)_{2}+2(k-2 j-1) b(j-r+1)(-\beta)+(k-2 j-2)_{2}(b-1)_{2} .
\end{aligned}
$$

Example 10.13 For $r=j$, the hypergeometric series in (10.23) can be summed using the generalised binomial theorem, or Gauss's summation for the resulting ${ }_{2} F_{1}$, to obtain

$$
\begin{aligned}
& B_{b j}^{(\alpha, \beta)}=\sum_{u=0}^{b} \frac{\alpha!}{u!v!}(k-2 j-\alpha+1)_{u} \frac{b!}{(b-u)!}!!(-\beta)_{\alpha-b}(-\beta+\alpha-b)_{b-u} \\
&=\alpha!(-\beta)_{\alpha} \frac{(\beta-k+2 j)_{b}}{(\beta+1-\alpha)_{b}} \\
& C_{b j}^{(\alpha, \beta)}=\frac{(-1)^{j}}{j!} \frac{(k+2-2 j)_{j}}{(k+2 d-1-j)_{j}}(k-2 j-\beta+1)_{\beta}(-\beta)_{\alpha} \frac{(-1)^{b}}{b!} \frac{(-\alpha)_{b}(\beta-k+2 j)_{b}}{(\beta+1-\alpha)_{b}} .
\end{aligned}
$$

For the case $j=0$, this further reduces to

$$
C_{b 0}^{(\alpha, \beta)}=(k-\beta+1)_{\beta}(-\beta)_{\alpha} \frac{(-1)^{b}}{b!} \frac{(-\alpha)_{b}(\beta-k)_{b}}{(\beta+1-\alpha)_{b}}
$$

and we recover the Lemma 8.2 as the particular case $j=0$ and $d=1$.
The case $\alpha \geq \beta$ can easily be obtained in a similar way to Theorem 10.12 .
Theorem 10.14 For $0 \leq \alpha, \beta \leq k-2 j, 0 \leq j \leq \frac{k}{2}$, let

$$
m:=\min \{j+\alpha, k-j-\beta, j+\beta, k-j-\alpha\}, \quad c:=\min \{\alpha, \beta\} .
$$

Then we have

$$
\begin{equation*}
L^{\alpha} R^{\beta} Z_{k-2 j}^{(k)}=\sum_{\substack{0 \leq r \leq j \\ 0 \leq b \leq m-r}} C_{b r}^{(\alpha, \beta)}[k-j+c-\alpha-\beta-b-r, \alpha-c+b, j+c-b-r, \beta-c+b, r], \tag{10.26}
\end{equation*}
$$

where and $C_{b r}^{(\alpha, \beta)}:=A_{b r}^{(\alpha, \beta)} B_{b r}^{(\alpha, \beta)}$ is given by 10.22) and 10.23) for $\alpha \leq \beta$, and by

$$
A_{b r}^{(\alpha, \beta)}:=A_{b r}^{(\beta, \alpha)}, \quad B_{b r}^{(\alpha, \beta)}:=B_{b r}^{(\beta, \alpha)}, \quad \alpha \geq \beta .
$$

For $\beta \geq \alpha$, the constant $B_{b r}^{(\alpha, \beta)}$ can be calculated from $B_{b r}^{(\alpha, 0)}:=1$ and the recurrence

$$
\begin{equation*}
B_{b r}^{(\alpha, \beta)}=(k-j-\alpha-b+1-r) b B_{b-1, r}^{(\alpha, \beta-1)}-(\alpha-\beta+1+b)(j+\beta-b-r) B_{b r}^{(\alpha, \beta-1)} . \tag{10.27}
\end{equation*}
$$

Proof: In light of Theorem 10.12, we need only consider the case $\alpha \geq \beta$. It follows from (10.24) that $B_{b r}^{(\alpha, \beta)}:=B_{b r}^{(\beta, \alpha)}, \alpha \geq \beta$, satisfies 10.27. The formula 10.26 can be proved as in Theorem 10.12, using induction on β and by applying R to $B_{b r}^{(\alpha, \beta-1)}$.

We now consider an alternative formula for the zonal polynomial of 10.11, i.e.,

$$
P_{k-2 j}^{(k)}:=\sum_{b+c+r=j} \frac{(-1)^{r}}{b!c!r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}[k-j-b-r, b, c, b, r],
$$

where

$$
[k-j-b-r, b, c, b, r]=z_{1}^{k-j-b-r} w_{1}^{b}{\overline{z_{1}}}^{c}{\overline{w_{1}}}^{b}\|z+j w\|^{2 r}=z_{1}^{k-2 j}\left|z_{1}\right|^{2 c}\left|w_{1}\right|^{2 b}\|z+j w\|^{2 r} .
$$

By the binomial identity, we have

$$
\begin{aligned}
P_{k-2 j}^{(k)} & =\sum_{r=0}^{j} \frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}} z_{1}^{k-2 j}\|z+j w\|^{2 r} \frac{1}{(j-r)!} \sum_{b+c=j-r} \frac{(b+c)!}{b!c!}\left|z_{1}\right|^{2 c}\left|w_{1}\right|^{2 b} \\
& =z_{1}^{k-2 j} \sum_{r=0}^{j} \frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}\|z+j w\|^{2 r} \frac{1}{(j-r)!}\left(\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right)^{j-r} .
\end{aligned}
$$

This has the structural form

$$
\begin{equation*}
P_{k-2 j}^{(k)}=z_{1}^{k-2 j} F\left(\|z+j w\|^{2},\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right), \tag{10.28}
\end{equation*}
$$

where F is a homogeneous polynomial of degree j with real coefficients. An elementary calculation shows that the polynomial

$$
\left|\left\langle z+j w, e_{1}\right\rangle\right|^{2}=\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}=z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}
$$

is in the kernel of R, R^{*}, L and L^{*}, e.g.,

$$
R\left(z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}\right)=\overline{w_{1} z_{1}}-\overline{z_{1} w_{1}}=0 .
$$

Hence, by (3.5), all polynomials of the form

$$
\begin{equation*}
g=G\left(z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}, \cdots, z_{d} \overline{z_{d}}+w_{d} \overline{w_{d}}\right), \tag{10.29}
\end{equation*}
$$

which include $\|z+j w\|^{2}$ and $\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}$, are in the kernel of R, R^{*}, L and L^{*}, and hence

$$
\begin{equation*}
T(f g)=T(f) g+f T(g)=T(f) g, \quad T=R, R^{*}, L, L^{*} \tag{10.30}
\end{equation*}
$$

Applying this to 10.28 gives the following.
Theorem 10.15 Let $q^{\prime}=e_{1}$. For $d \geq 2,0 \leq j \leq \frac{k}{2}$, the zonal polynomials of Theorem 10.6 are given by

$$
\begin{equation*}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}=L^{\alpha} R^{\beta}\left(z_{1}^{k-2 j}\right) F, \quad 0 \leq \alpha, \beta \leq k-2 j, \tag{10.31}
\end{equation*}
$$

where $F=F\left(\|z+j w\|^{2},\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right)$ does not depend on α and β, and is given by

$$
\begin{align*}
F & =\frac{(-1)^{j}(k-2 j+2)_{j}}{(k+2 d-1-j)_{j} j!} \sum_{s=0}^{j}(-j)_{s} \frac{(k-2 j+2 d-1+j)_{s}}{(k-2 j+2)_{s}} \frac{1}{s!}\|z+j w\|^{2(j-s)}\left(\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right)^{s} \\
& =\frac{(-1)^{j}}{(k+2 d-1-j)_{j}}\|z+j w\|^{2 j} P_{j}^{(k-2 j+1,2 d-3)}\left(1-2 \frac{\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}}{\|z+j w\|^{2}}\right), \tag{10.32}
\end{align*}
$$

with $P_{j}^{(k-2 j+1,2 d-3)}$ a Jacobi polynomial.

Proof: Since the function F of 10.28 is of the form 10.29 , we may apply 10.30 repeatedly, to obtain

$$
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}=L^{\alpha} R^{\beta}\left(z_{1}^{k-2 j}\right) F\left(\|z+j w\|^{2},\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right),
$$

where F does not depend on α and β, and is given by

$$
F=\frac{P_{k-2 j}^{(k)}}{z_{1}^{k-2 j}}=\sum_{r=0}^{j} \frac{(-1)^{r}}{r!} \frac{(k+2-j-r)_{r}}{(k+2 d-1-r)_{r}}\|z+j w\|^{2 r} \frac{1}{(j-r)!}\left(\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right)^{j-r}
$$

By making the change of variables $s=j-r$, we obtain

$$
\begin{aligned}
F & =\frac{(-1)^{j}(k-2 j+2)_{j}}{(k+2 d-1-j)_{j} j!} \sum_{s=0}^{j}(-j)_{s} \frac{(k-2 j+2 d-1+j)_{s}}{(k-2 j+2)_{s}} \frac{1}{s!}\|z+j w\|^{2(j-s)}\left(\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}\right)^{s} \\
& =\frac{(-1)^{j}(k-2 j+2)_{j}}{(k+2 d-1-j)_{j} j!}\|z+j w\|^{2 j} \sum_{s=0}^{j}(-j)_{s} \frac{(k-2 j+2 d-1+j)_{s}}{(k-2 j+2)_{s}} \frac{1}{s!}\left(\frac{\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}}{\|z+j w\|^{2}}\right)^{s}
\end{aligned}
$$

so that F can be expressed in terms of a Jacobi polynomial, i.e..

$$
F=\frac{(-1)^{j}}{(k+2 d-1-j)_{j}} z_{1}^{k-2 j}\|z+j w\|^{2 j} P_{j}^{(k-2 j+1,2 d-3)}\left(1-2 \frac{\left|z_{1}\right|^{2}+\left|w_{1}\right|^{2}}{\|z+j w\|^{2}}\right) .
$$

The formula 10.32 for the zonal polynomial (reproducing kernel) $P_{k-2 j}^{(k)}=z_{1}^{k-2 j} F$, involving the Jacobi polynomial, appears in DBSW17] (Theorem 8). An explicit formula for the factor $L^{\alpha} R^{\beta}\left(z_{1}^{k-2 j}\right)$ is given by the formula $\sqrt{8.3}$) for the univariate case (replace z by z_{1}, etc).

By writing the zonal polynomials in the form (10.31), the squares in the table/schematic for the zonal polynomials (see Figure 1) become essentially those for the univariate cases $\operatorname{Harm}_{k-2 j}(\mathbb{H}, \mathbb{C})$, as depicted in (8.2).

11 Symmetries

The polynomials $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}$ and the spaces $H_{k}^{(\alpha, \beta)}\left(\mathbb{H}^{d}\right)$ have certain natural symmetries that correspond to the symmetries of the square (see the array in Example 10.5).

Let the permutation group $\operatorname{Sym}(4)$ act on functions of four variables in the natural way, i.e.,

$$
\sigma \cdot f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f\left(x_{\sigma 1}, x_{\sigma 2}, x_{\sigma 3}, x_{\sigma 4}\right),
$$

and hence on functions $f(z, w, \bar{z}, \bar{w}) \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$. There is a subgroup G of $\operatorname{Sym}(4)$ which maps $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ to itself, which is generated by the permutations

$$
\begin{equation*}
\sigma:=(24), \quad \tau:=(14)(23) . \tag{11.1}
\end{equation*}
$$

This group is the dihedral group of symmetries of the square

$$
D_{4}=\left\langle a, b \mid a^{4}=b^{2}=(b a)^{2}=1\right\rangle, \quad a=\sigma \tau, \quad b=\sigma,
$$

and hence has order eight. By considering the action on monomials, one obtains

$$
\begin{equation*}
\sigma \cdot H_{k}^{(\alpha, \beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right)=H_{k}^{(\beta, \alpha)}\left(\mathbb{H}^{d}, \mathbb{C}\right), \quad \tau \cdot H_{k}^{(\alpha, \beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right)=H_{k}^{(\alpha, k-\beta)}\left(\mathbb{H}^{d}, \mathbb{C}\right) \tag{11.2}
\end{equation*}
$$

and so G permutes the subspaces $H_{k}^{(a, b)}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, where
$(a, b) \in\{(\alpha, \beta),(\alpha, k-\beta),(k-\alpha, \beta),(k-\alpha, k-\beta),(\beta, \alpha),(\beta, k-\alpha-k),(k-\beta, \alpha),(k-\beta, k-\alpha)\}$,
via the action on the indices given by

$$
\sigma \cdot(\alpha, \beta):=(\beta, \alpha), \quad \tau \cdot(\alpha, \beta):=(\alpha, k-\beta) .
$$

It clear from Lemma 7.4 that these subspaces do indeed have the same dimension. The number of subspaces above can be $1,2,4,8$, depending on the position of the index (α, β) in the square array $\{0,1, \ldots, k\}^{2}$. The corresponding symmetries of the zonal polynomials

$$
\begin{equation*}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} \in H_{k}^{(\alpha+j, \beta+j)}\left(\mathbb{H}^{d}, \mathbb{C}\right), \quad 0 \leq \alpha, \beta, \leq k-2 j, \tag{11.3}
\end{equation*}
$$

are as follows.
Lemma 11.1 (Eight symmetries) The zonal polynomials $\left(L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}\right)_{0 \leq \alpha, \beta, \leq k-2 j}$ have the following basic symmetries corresponding to the σ and τ of (11.1)

$$
\begin{align*}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}(z, w, \bar{z}, \bar{w}) & =L^{\beta} R^{\alpha} P_{k-2 j}^{(k)}(z, \bar{w}, \bar{z}, w) \\
& =c_{\alpha, \beta} L^{\alpha} R^{k-2 j-\beta} P_{k-2 j}^{(k)}(\bar{w}, \bar{z}, w, z) \tag{11.4}
\end{align*}
$$

where $c_{\alpha, \beta}$ is a constant. The identities for the remaining nontrivial elements of G are

$$
\left.\begin{array}{rl}
L^{\alpha} R^{\beta} P_{k-2 j}^{(k)} & (z, w, \bar{z}, \bar{w}) \\
& =c_{\alpha, \beta} L^{k-2 j-\beta} R^{\alpha} P_{k-2 j}^{(k)}(\bar{w}, z, w, \bar{z}) \quad(\sigma \tau) \\
& =c_{\beta, \alpha} L^{\beta} R^{k-2 j-\alpha} P_{k-2 j}^{(k)}(w, \bar{z}, \bar{w}, z) \quad(\tau \sigma) \\
& =c_{\beta, \alpha} L^{k-2 j-\alpha} R^{\beta} P_{k-2 j}^{(k)}(w, z, \bar{w}, \bar{z}) \quad(\sigma \tau \sigma) \\
& =c_{\alpha, \beta} c_{k-2 j-\beta, \alpha} L^{k-2 j-\beta} R^{k-2 j-\alpha} P_{k-2 j}^{(k)}(\bar{z}, w, z, \bar{w}) \\
& =c_{\alpha, \beta} c_{k-2 j-\beta, \alpha} L^{k-2 j-\alpha} R^{k-2 j-\beta} Z_{k-2 j}^{(k)}(\bar{z}, \bar{w}, z, w) \tag{11.5}
\end{array} \quad(\tau \sigma \tau)\right)
$$

Proof: The permutations σ and τ map zonal polynomials to zonal polynomials, and so, in light of 11.2) and 11.3 , we obtain 11.4 . This could also be established, with values of the constants, from the formulas for $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}$ given in Theorem 10.12, or by using identities such as

$$
\sigma \cdot(R f)=L f, \quad \sigma \cdot(L f)=R f, \quad \tau \cdot(R f)=R^{*} f, \quad \tau \cdot(L f)=-L f
$$

together with Lemma 5.5.

The formulas in Lemma 11.1 for $P_{k-2 j, a, b}^{(k)}=L^{a-j} R^{b-j} P_{k-2 j}^{(k)}, \alpha=a-j, \beta=b-j$, do not have a simple formula for the constants, as the normalisation of $L^{\alpha} R^{\beta} P_{k-2 j}^{(k)}$ is biased towards the (starting) polynomial $P_{k-2 j}^{(k)} \in H_{k}^{(j, j)}\left(\mathbb{H}^{d}, \mathbb{C}\right)$, which corresponds to a corner of the array of indices. For k even, one could start with the "centre" polynomial

$$
C_{k-2 j}^{(k)}=P_{k-2 j, \frac{k}{2}, \frac{k}{2}}^{(k)}=L^{\frac{k}{2}-j} R^{\frac{k}{2}-j} P_{k-2 j}^{(k)} \in H_{k}^{\left(\frac{k}{2}, \frac{k}{2}\right)}\left(\mathbb{H}^{d}, \mathbb{C}\right)
$$

to obtain zonal polynomials

$$
L^{\max \left\{\alpha, \frac{k}{2}-j\right\}}\left(L^{*}\right)^{\max \left\{\frac{k}{2}-j-\alpha, 0\right\}} R^{\max \left\{\beta, \frac{k}{2}-j\right\}}\left(R^{*}\right)^{\max \left\{\frac{k}{2}-j-\beta, 0\right\}} C_{k-2 j}^{(k)}
$$

By using Lemma 5.5, these can be written as

$$
P_{k, k-2 j}^{(\alpha, \beta)}:=\frac{M_{\alpha}!}{\alpha!} \frac{M_{\beta}!}{\beta!} R^{\alpha} L^{\beta} P_{k-2 j}^{(k)},
$$

where

$$
M_{\alpha}:=\max \{\alpha, k-2 j-\alpha\}, \quad M_{\beta}:=\max \{\beta, k-2 j-\alpha\} .
$$

The σ and τ symmetries of Lemma 11.1 then become

$$
\begin{align*}
P_{k, k-2 j}^{(\alpha, \beta)}(z, w, \bar{z}, \bar{w}) & =P_{k, k-2 j}^{(\beta, \alpha)}(z, \bar{w}, \bar{z}, w) \\
& =(-1)^{\alpha} P_{k, k-2 j}^{(\alpha, k-2 j-\beta)}(\bar{w}, \bar{z}, w, z) \tag{11.6}
\end{align*}
$$

12 The fine scale decomposition for left and right multiplication by \mathbb{H}^{*}

By taking the intersection of the decomposition into irreducibles for right multiplication by \mathbb{H}^{*} (Theorem 9.1) with the corresponding one for left multiplication, we obtain the following decomposition into low dimensional subspaces. All of our decompositions, and others, can be built up from this.

Theorem 12.1 (Fine scale decomposition) Let

$$
V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right):=\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right), \quad 0 \leq j_{1}, j_{2} \leq \frac{k}{2}
$$

Then for $d \geq 2$, we have the orthogonal direct sum

$$
\begin{equation*}
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j_{1}, j_{2} \leq \frac{k}{2}} \bigoplus_{\substack{j_{1} \leq a \leq k-j_{1} \\ j_{2} \leq b \leq k-j_{2}}} \bigoplus_{i=0}^{\min \left\{j_{1}, j_{2}\right\}}\|\cdot\|^{2 i} L^{a-j_{1}} R^{b-j_{2}} V_{k-2 i}^{\left(j_{1}-i, j_{2}-i\right)}\left(\mathbb{H}^{d}\right) \tag{12.1}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{\substack{0 \leq j_{1}, j_{2} \leq \frac{k}{2}}} \bigoplus_{\substack{j_{1} \leq a \leq k-j_{1} \\ j_{2} \leq b \leq k-j_{2}}} L^{a-j_{1}} R^{b-j_{2}} V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right) \tag{12.2}
\end{equation*}
$$

where

$$
\operatorname{dim}\left(L^{a-j_{1}} R^{b-j_{2}} V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right)\right)=\operatorname{dim}\left(V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right)\right) .
$$

Proof: We note that for $j \leq \frac{k}{2}, j \leq k-j$, so that $\min \{j, k-j\}=j$, and

$$
\begin{equation*}
\operatorname{Hom}_{H}(k-j, j)=\bigoplus_{i=0}^{j}\|\cdot\|^{2 i} H(k-j-i, j-i) \tag{12.3}
\end{equation*}
$$

We observe that Lemma 14.1 implies multiplication of polynomials by $\|\cdot\|^{2}$ commutes with the action of R, L, R^{*}, L^{*}. Thus from (12.3), we obtain

$$
\begin{aligned}
\operatorname{Hom}_{H}(k-j, j)_{k-2 j} & :=\operatorname{ker} R^{*} \cap \operatorname{Hom}_{H}(k-j, j) \\
& =\bigoplus_{i=0}^{j}\|\cdot\|^{2 i}\left(\operatorname{ker} R^{*} \cap H(k-j-i, j-i)\right),
\end{aligned}
$$

so that Lemma 6.4 gives the orthogonal direct sum decomposition

$$
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq b \leq k-j} \bigoplus_{i=0}^{j}\|\cdot\|^{2 i} R^{b-j}\left(\operatorname{ker} R^{*} \cap H(k-j-i, j-i)\right)
$$

Similarly, we obtain the orthogonal direct sum decomposition

$$
\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq a \leq k-j} \bigoplus_{i=0}^{j}\|\cdot\|^{2 i} L^{a-j}\left(\operatorname{ker} L^{*} \cap K(k-j-i, j-i)\right)
$$

Thus $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is an orthogonal direct sum of subspaces $\|\cdot\|^{2 i_{1}} L^{a-j_{1}}\left(\operatorname{ker} L^{*} \cap K\left(k-j_{1}-i_{1}, j_{1}-i_{1}\right)\right) \cap\|\cdot\|^{2 i_{2}} R^{b-j_{2}}\left(\operatorname{ker} R^{*} \cap H\left(k-j_{2}-i_{2}, j_{2}-i_{2}\right)\right)$.

In view of the uniqueness of the Fischer decomposition, these can be nonzero only if $i_{1}=i_{2}=i \leq \min \left\{j_{1}, j_{2}\right\}$. Since L, R and $\|\cdot\|^{2}$ commute, the intersection above can be written

$$
\left.\|\cdot\|^{i} L^{a-j_{1}} R^{b-j_{2}}\left(\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap K\left(k-j_{1}-i_{1}, j_{1}-i_{1}\right)\right) \cap H\left(k-j_{2}-i_{2}, j_{2}-i_{2}\right)\right)
$$

which gives (12.1), with the $i=0$ terms giving (12.2). The dimension formula follows from Lemma 14.3

Theorem 12.1 also holds for $d=1$, in a degenerate way, with

$$
V_{k}^{\left(j_{1}, j_{2}\right)}(\mathbb{H})=0, \quad\left(j_{1}, j_{2}\right) \neq(0,0) .
$$

Corollary 12.2 The decomposition of zonal polynomials for $Z=U\left(\mathbb{H}^{d}\right)_{q^{\prime}}, q^{\prime}=z^{\prime} \in \mathbb{C}^{d}$, corresponding to (12.2) is

$$
\begin{equation*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)^{Z}=\bigoplus_{0 \leq j \leq \frac{k}{2}} \bigoplus_{j \leq a, b \leq k-j}\left(L^{a-j} R^{b-j} V_{k}^{(j, j)}\left(\mathbb{H}^{d}\right)\right)^{Z} \tag{12.4}
\end{equation*}
$$

where

$$
\operatorname{dim}\left(L^{a-j} R^{b-j} V_{k}^{(j, j)}\left(\mathbb{H}^{d}\right)^{Z}\right)=1 .
$$

Moreover, we have

$$
\begin{equation*}
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)=\bigoplus_{\substack{0 \leq j_{1} \leq m_{a}^{(k)} \\ 0 \leq j_{2} \leq m_{b}^{(k)}}} L^{a-j_{1}} R^{b-j_{2}} V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right) \tag{12.5}
\end{equation*}
$$

Proof: The decomposition (12.4) is given in Theorem 10.6, and the decomposition 12.5) follows from 12.2 by grouping the terms $L^{a-j_{1}} R^{b-j_{2}} V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right) \in H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$.

The dimension of $V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ is as follows (see $\S 14$ for the proof).
Lemma 12.3 For $0 \leq a, b \leq \frac{k}{2}$, we have that

$$
\begin{align*}
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)= & F(k, m, M, d)+F(k, m-1, M-1, d) \\
& -F(k, m-1, M, d)-F(k, m, M-1, d), \tag{12.6}
\end{align*}
$$

where F is given by (7.10), and $m=\min \{a, b\}, M=\max \{a, b\}$. In particular,

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{2}\right)\right)=(m+1)(k-2 M+1) .
$$

The zonal polynomials in $V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}$ is given by

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}\right)= \begin{cases}1, & a=b ; \\ 0, & a \neq b\end{cases}
$$

For $d \geq 2$, it follows from Lemma 12.3 that all the summands in (12.1) and 12.2 are nontrivial.

Example 12.4 We have

$$
V_{k}^{(0,0)}\left(\mathbb{H}^{d}\right)=H_{k}^{(0,0)}\left(\mathbb{H}^{d}\right)=\operatorname{span}\left\{z^{\alpha}:|\alpha|=k\right\}, \quad \operatorname{dim}\left(V_{k}^{(0,0)}\left(\mathbb{H}^{d}\right)\right)=\binom{k+d-1}{d-1}
$$

For $k=2, d=2, V_{2}^{(0,0)}\left(\mathbb{H}^{2}\right)=\operatorname{span}\left\{z_{1}^{2}, z_{1} z_{2}, z_{2}^{2}\right\}$, and

$$
\begin{gathered}
V_{2}^{(0,1)}\left(\mathbb{H}^{2}\right)=\operatorname{span}\left\{z_{1} \overline{w_{2}}-z_{2} \overline{w_{1}}\right\}, \quad V_{2}^{(1,0)}\left(\mathbb{H}^{2}\right)=\operatorname{span}\left\{z_{1} w_{2}-z_{2} w_{1}\right\}, \\
V_{2}^{(1,1)}\left(\mathbb{H}^{2}\right)=\operatorname{span}\left\{z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}-z_{2} \overline{z_{2}}-w_{2} \overline{w_{2}}, z_{1} \overline{z_{2}}+\overline{z_{1}} z_{2}+w_{1} \overline{w_{2}}+\overline{w_{1}} w_{2}\right\} .
\end{gathered}
$$

Here we can see explicitly, that the zonal polynomials for $Z=U\left(\mathbb{H}^{2}\right)_{e_{1}}$ are given by

$$
\begin{gathered}
V_{2}^{(0,0)}\left(\mathbb{H}^{2}\right)^{Z}=\operatorname{span}\left\{z_{1}^{2}\right\}, \quad V_{2}^{(0,1)}\left(\mathbb{H}^{2}\right)^{Z}=0, \quad V_{2}^{(1,0)}\left(\mathbb{H}^{2}\right)^{Z}=0, \\
V_{2}^{(1,1)}\left(\mathbb{H}^{2}\right)^{Z}=\operatorname{span}\left\{2\left(z_{1} \overline{z_{1}}+w_{1} \overline{w_{1}}\right)-\|(z, w)\|^{2}\right\} .
\end{gathered}
$$

The decomposition of (12.4) involves subspaces of dimensions 3 (nine), 2 (one) and 1 (six), with

$$
\operatorname{dim}\left(\operatorname{Harm}_{2}\left(\mathbb{H}^{2}\right)\right)=9 \cdot 3+1 \cdot 2+6 \cdot 1=35 .
$$

13 Conclusion

The fine scale decomposition of Theorem 12.1 refines all the decompositions of the harmonic polynomials $\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ under the action of a group $G \subset U\left(\mathbb{R}^{4 d}\right)$ that we have given or described. These can be summarised as follows:

Here the action of $U\left(\mathbb{H}^{d}\right) \times U(\mathbb{H})=\operatorname{Sp}(d) \times \operatorname{Sp}(1)$, and similar products, is not faithful, since the real unitary scalar matrix $-I$ belongs to $U\left(\mathbb{H}^{d}\right)$ and $U(\mathbb{H})$, where it has the same action. One can naturally obtain irreducible decompositions by applying the given group to components of the fine scale decomposition. For example, we have the following.

Corollary 13.1 Let $d \geq 2$. For the action given by left and right multiplication by $\mathbb{H}^{*}=\operatorname{Sp}(1)$, i.e., the group $G=\operatorname{Sp}(1) \times \operatorname{Sp}(1)$, we have the following orthogonal direct sum of homogeneous components

$$
\begin{align*}
\operatorname{Harm}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right) & =\bigoplus_{\substack{0 \leq j_{1}, j_{2} \leq \frac{k}{2}}}\left\{\bigoplus_{\substack{j_{1} \leq a \leq k-j_{1} \\
j_{2} \leq \leq \leq k-j_{2}}} L^{a-j_{1}} R^{b-j_{2}} V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right)\right\}=\bigoplus_{0 \leq j_{1}, j_{2} \leq \frac{k}{2}} I\left(W_{k-2 j_{1}, k-2 j_{2}}\right)^{(k)} \\
& \cong \bigoplus_{0 \leq j_{1}, j_{2} \leq \frac{k}{2}} \operatorname{dim}\left(V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right)\right) \cdot W_{k-2 j_{1}, k-2 j_{2}}, \tag{13.1}
\end{align*}
$$

for the irreducibles

$$
\begin{equation*}
W_{k-2 j_{1}, k-2 j_{2}} \cong \operatorname{span}_{\mathbb{C}}\left\{L^{a-j_{1}} R^{b-j_{2}} f\right\}_{\substack{j_{1} \leq a \leq k-j_{1} \\ j_{2} \leq b \leq k-j_{2}}}, \quad f \neq 0, \quad f \in V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right) . \tag{13.2}
\end{equation*}
$$

Proof: The orthogonal direct sums in 13.1) are immediate, and the $I\left(W_{k-2 j_{1}, k-2 j_{2}}\right)^{(k)}$ defined is a sum of the subspaces in (13.2). It is easily seen from Theorem 9.1, and its analogue for L, that these subspaces, i.e.,

$$
\operatorname{span}_{\mathbb{C}}\left\{L^{\alpha} R^{\beta} f\right\}_{\substack{0 \leq \alpha \leq k-2 j_{1} \\ 0 \leq \beta \leq k-2 j_{2}}} \quad f \neq 0, \quad f \in V_{k}^{\left(j_{1}, j_{2}\right)}\left(\mathbb{H}^{d}\right),
$$

are invariant under left and right multiplication by \mathbb{H}^{*}, that the action is irreducible, and they are isomorphic $\mathbb{C} G$-modules.

Finally, we observe that the central idea underlying our development is Corollary 9.2 , which can be stated as follows

- A subspace of $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ is invariant under the group action given by right multiplication by \mathbb{H}^{*} if and only if it is invariant under R and R^{*}.

This was taken as an Ansatz, then proved indirectly. A simple constructive proof has eluded us, i.e., finding an explicit formula

$$
f((z+j w)(\alpha+j \beta))=\sum_{|a|=k} \alpha^{a_{1}} \beta^{a_{2}} \bar{\alpha}^{a_{3}} \bar{\beta}^{a_{4}} p_{a}\left(R, R^{*}\right), \quad \forall f \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)
$$

where $p_{a}(x, y)$ is a polynomial of degree k in the noncommuting variables x and y. Such a formula would give additional insight and simplify the theory.

14 Appendix: technical details

Here we give proofs of some technical results used, which are routine, but not insightful.
Lemma 4.1. The operators R^{*} and L^{*} are the adjoints of R and L with respect to both the inner products (4.1) and (4.3) defined on $\operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$.

Proof: This is by direct computation. We will just consider R^{*} (the case for L^{*} is similar). Without loss of generality, let $f, g \in \operatorname{Hom}_{k}\left(\mathbb{H}^{d}, \mathbb{C}\right)$ be the monomials

$$
f=z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}, \quad g=z^{\beta_{1}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}}
$$

With $\left(\alpha_{i}\right)_{j}$ denoting the j-th entry of the multi-index α_{i}, etc, we have

$$
\begin{aligned}
R g & =\sum_{j=1}^{d}\left\{\left(\beta_{1}\right)_{j} z^{\beta_{1}-e_{j}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}+e_{j}}-\left(\beta_{2}\right)_{j} z^{\beta_{1}} w^{\beta_{2}-e_{j}} \bar{z}^{\beta_{3}+e_{j}} \bar{w}^{\beta_{4}}\right\} \\
R^{*} f & =\sum_{j=1}^{d}\left\{-\left(\alpha_{3}\right)_{j} z^{\alpha_{1}} w^{\alpha_{2}+e_{j}} \bar{z}^{\alpha_{3}-e_{j}} \bar{w}^{\alpha_{4}}+\left(\alpha_{4}\right)_{j} z^{\alpha_{1}+e_{j}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}-e_{j}}\right\} .
\end{aligned}
$$

For the first inner product, it follows from (4.2) that all terms of the inner products

$$
\begin{aligned}
&\langle f, R g\rangle=\sum_{j} \int_{\mathbb{S}\left(\mathbb{C}^{2 d}\right)}\{ \left\{\left(\beta_{1}\right)_{j} z^{\alpha_{3}+\beta_{1}-e_{j}} w^{\alpha_{4}+\beta_{2}} \bar{z}^{\alpha_{1}+\beta_{3}} \bar{w}^{\alpha_{2}+\beta_{4}+e_{j}}\right. \\
&\left.-\left(\beta_{2}\right)_{j} z^{\alpha_{3}+\beta_{1}} w^{\alpha_{4}+\beta_{2}-e_{j}} \bar{z}^{\alpha_{1}+\beta_{3}+e_{j}} \bar{w}^{\alpha_{2}+\beta_{4}}\right\}, \\
&\left\langle R^{*} f, g\right\rangle=\sum_{j} \int_{\mathbb{S}\left(\mathbb{C}^{2 d}\right)}\left\{-\left(\alpha_{3}\right)_{j} z^{\alpha_{3}+\beta_{1}-e_{j}} w^{\alpha_{4}+\beta_{2}} \bar{z}^{\alpha_{1}+\beta_{3}} \bar{w}^{\alpha_{2}+\beta_{4}+e_{j}}\right. \\
&\left.+\left(\alpha_{4}\right)_{j} z^{\alpha_{3}+\beta_{1}} w^{\alpha_{4}+\beta_{2}-e_{j}} \bar{z}^{\alpha_{1}+\beta_{3}+e_{j}} \bar{w}^{\alpha_{2}+\beta_{4}}\right\},
\end{aligned}
$$

are zero, except for when $\alpha_{3}+\beta_{1}-e_{j}=\alpha_{1}+\beta_{3}, \alpha_{4}+\beta_{2}=\alpha_{2}+\beta_{4}+e_{j}$, in which case

$$
\begin{aligned}
\langle f, R g\rangle & =\frac{1}{(2 d)_{k}} \sum_{j}\left\{\left(\beta_{1}\right)_{j}\left(\beta_{1}-e_{j}+\alpha_{3}\right)!\left(\beta_{2}+\alpha_{4}\right)!-\left(\beta_{2}\right)_{j}\left(\beta_{1}+\alpha_{3}\right)!\left(\beta_{2}+\alpha_{4}-e_{j}\right)!\right\} \\
& =\frac{1}{(2 d)_{k}}\left(\beta_{1}+\alpha_{3}-e_{j}\right)!\left(\beta_{2}+\alpha_{4}-e_{j}\right)!\left\{\left(\beta_{1}\right)_{j}\left(\left(\beta_{2}\right)_{j}+\left(\alpha_{4}\right)_{j}\right)-\left(\beta_{2}\right)_{j}\left(\left(\beta_{1}\right)_{j}+\left(\alpha_{3}\right)_{j}\right)\right\} \\
& \left.=\frac{1}{(2 d)_{k}}\left(\alpha_{1}+\beta_{3}\right)!\left(\alpha_{2}+\beta_{4}\right)!\left\{\left(\beta_{1}\right)_{j}\left(\alpha_{4}\right)_{j}-\left(\beta_{2}\right)_{j}\left(\alpha_{3}\right)_{j}\right)\right\} \\
\left\langle R^{*} f, g\right\rangle & =\frac{1}{(2 d)_{k}}\left\{-\left(\alpha_{3}\right)_{j}\left(\beta_{1}+\alpha_{3}-e_{j}\right)!\left(\beta_{2}+\alpha_{4}\right)!+\left(\alpha_{4}\right)_{j}\left(\beta_{1}+\alpha_{3}\right)!\left(\beta_{2}+\alpha_{4}-e_{j}\right)!\right\} \\
& =\frac{1}{(2 d)_{k}}\left(\beta_{1}+\alpha_{3}-e_{j}\right)!\left(\beta_{2}+\alpha_{4}-e_{j}\right)!\left\{-\left(\alpha_{3}\right)_{j}\left(\left(\beta_{2}\right)_{j}+\left(\alpha_{4}\right)_{j}\right)+\left(\alpha_{4}\right)_{j}\left(\left(\beta_{1}\right)_{j}+\left(\alpha_{3}\right)_{j}\right)\right\} \\
& =\langle f, R g\rangle
\end{aligned}
$$

which shows that R^{*} is indeed the adjoint of R.
We now consider the inner product $\langle f, g\rangle_{\partial}$, for which the monomials are orthogonal. The inner products $\langle f, R g\rangle_{\partial}$ and $\left\langle R^{*} f, g\right\rangle_{\partial}$ have nonzero terms if and only if either

$$
\begin{array}{lll}
& \alpha_{1}=\beta_{1}-e_{j}, \quad \alpha_{2}=\beta_{2}, \quad \alpha_{3}=\beta_{3}, \quad \alpha_{4}=\beta_{4}+e_{j} \\
\text { or } \quad \alpha_{1}=\beta_{1}, \quad \alpha_{2}=\beta_{2}-e_{j}, \quad \alpha_{3}=\beta_{3}+e_{j}, \quad \alpha_{4}=\beta_{4} .
\end{array}
$$

For the first case above, these inner products are

$$
\begin{aligned}
\langle f, R g\rangle_{\partial} & =\left(\beta_{1}\right)_{j}\left\langle z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}, z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}\right\rangle_{\partial}=\left(\beta_{1}\right)_{j}\left(\beta_{1}\right)!\beta_{2}!\beta_{3}!\left(\beta_{4}+e_{j}\right)!, \\
\left\langle R^{*} f, g\right\rangle_{\partial} & =\left(\alpha_{4}\right)_{j}\left\langle z^{\beta_{1}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}}, z^{\beta_{1}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}}\right\rangle_{\partial}=\left(\left(\beta_{4}\right)_{j}+1\right) \beta_{1}!\beta_{2}!\beta_{3}!\beta_{4}!=\langle f, R g\rangle_{\partial}
\end{aligned}
$$

and, similarly, for the second case

$$
\begin{aligned}
\langle f, R g\rangle_{\partial} & =-\left(\beta_{2}\right)_{j}\left\langle z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}, z^{\alpha_{1}} w^{\alpha_{2}} \bar{z}^{\alpha_{3}} \bar{w}^{\alpha_{4}}\right\rangle_{\partial}=-\left(\beta_{2}\right)_{j} \beta_{1}!\left(\beta_{2}-e_{j}\right)!\left(\beta_{3}+e_{j}\right)!\beta_{4} \\
\left\langle R^{*} f, g\right\rangle_{\partial} & =-\left(\alpha_{3}\right)_{j}\left\langle z^{\beta_{1}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}}, z^{\beta_{1}} w^{\beta_{2}} \bar{z}^{\beta_{3}} \bar{w}^{\beta_{4}}\right\rangle_{\partial}=-\left(\left(\beta_{3}\right)_{j}+1\right) \beta_{1}!\beta_{2}!\beta_{3} \beta_{4}!=\langle f, R g\rangle_{\partial}
\end{aligned}
$$

Hence R^{*} is the adjoint of R for the second inner product also.
Lemma 4.3. The operators R, R^{*}, L and L^{*} commute with the Laplacian Δ, and so map harmonic functions to harmonic functions.

Proof: We consider R, the others being similar. Since

$$
R=\sum_{j}\left(\overline{w_{j}} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial w_{j}}\right), \quad \frac{1}{4} \Delta=\sum_{k}\left(\frac{\partial^{2}}{\partial \overline{z_{k}} \partial z_{k}}+\frac{\partial^{2}}{\partial \overline{w_{k}} \partial w_{k}}\right),
$$

we calculate

$$
\frac{1}{4} R \Delta=\sum_{j, k}\left\{\overline{w_{j}}\left(\frac{\partial^{3}}{\partial z_{j} \partial \overline{z_{k}} \partial z_{k}}+\frac{\partial^{3}}{\partial z_{j} \partial \overline{w_{k}} \partial w_{k}}\right)-\overline{z_{j}}\left(\frac{\partial^{3}}{\partial w_{j} \partial \overline{z_{k}} \partial z_{k}}+\frac{\partial^{3}}{\partial w_{j} \partial \overline{w_{k}} \partial w_{k}}\right)\right\},
$$

and

$$
\begin{aligned}
\frac{1}{4} \Delta R= & \sum_{j, k}\left\{\frac{\partial^{2}}{\partial \overline{z_{k}} \partial z_{k}}\left(\overline{w_{j}} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial w_{j}}\right)+\frac{\partial^{2}}{\partial \overline{w_{k}} \partial w_{k}}\left(\overline{w_{j}} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial w_{j}}\right)\right\} \\
= & \sum_{j, k}\left\{\left(\overline{w_{j}} \frac{\partial^{3}}{\partial \overline{z_{k}} \partial z_{k} \partial z_{j}}-\overline{z_{j}} \frac{\partial^{3}}{\partial \overline{z_{k}} \partial z_{k} \partial w_{j}}-\delta_{j k} \frac{\partial^{2}}{\partial z_{k} \partial w_{j}}\right)\right. \\
& \left.+\left(\overline{w_{j}} \frac{\partial^{3}}{\partial \overline{w_{k}} \partial w_{k} \partial z_{j}}+\delta_{j k} \frac{\partial^{2}}{\partial w_{k} \partial z_{j}}-\overline{z_{j}} \frac{\partial^{3}}{\partial \overline{w_{k}} \partial w_{k} \partial w_{j}}\right)\right\},
\end{aligned}
$$

which are clearly equal, since the $\delta_{j k}$ terms cancel.
If f is harmonic, i.e., $\Delta f=0$, then $\Delta(R f)=R(\Delta f)=0$, so $R f$ is harmonic.
Lemma 5.3. The operators L and L^{*} commute with R and R^{*}, and we have

$$
\begin{align*}
R^{*} R-R R^{*} & =\sum_{j}\left(z_{j} \frac{\partial}{\partial z_{j}}+w_{j} \frac{\partial}{\partial w_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}-\overline{w_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right), \tag{14.1}\\
L^{*} L-L L^{*} & =\sum_{j}\left(z_{j} \frac{\partial}{\partial z_{j}}-w_{j} \frac{\partial}{\partial w_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}+\overline{w_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right) . \tag{14.2}
\end{align*}
$$

Proof: This is by direct computation. We give indicative cases. First consider

$$
L=\sum_{j}\left(w_{j} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial}{\partial \bar{w}_{j}}\right), \quad R^{*}=\sum_{k}\left(-w_{k} \frac{\partial}{\partial \overline{z_{k}}}+z_{k} \frac{\partial}{\partial \overline{w_{k}}}\right) .
$$

We have

$$
\begin{aligned}
L R^{*} & =\sum_{j, k}\left\{w_{j}\left(-w_{k} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z_{k}}}+z_{k} \frac{\partial^{2}}{\partial z_{j} \partial \overline{w_{k}}}+\delta_{j k} \frac{\partial}{\partial \overline{w_{k}}}\right)-\overline{z_{j}}\left(-w_{k} \frac{\partial^{2}}{\partial \overline{w_{j}} \partial \overline{z_{k}}}+z_{k} \frac{\partial^{2}}{\partial \overline{w_{j}} \partial \overline{w_{k}}}\right)\right\}, \\
R^{*} L & =\sum_{k, j}\left\{-w_{k}\left(w_{j} \frac{\partial^{2}}{\partial \overline{z_{k}} \partial z_{j}}-\overline{z_{j}} \frac{\partial^{2}}{\partial \overline{z_{k}} \partial \overline{w_{j}}}-\delta_{j k} \frac{\partial}{\partial \overline{w_{j}}}\right)+z_{k}\left(w_{j} \frac{\partial^{2}}{\partial \overline{w_{k}} \partial z_{j}}-\overline{z_{j}} \frac{\partial^{2}}{\partial \overline{w_{k}} \partial \overline{w_{j}}}\right)\right\},
\end{aligned}
$$

which are clearly equal (when applied to polynomials).
Now consider $R^{*} R-R R^{*}$. We have

$$
\begin{aligned}
& R^{*} R=\sum_{k, j}\left\{-w_{k}\left(\overline{w_{j}} \frac{\partial^{2}}{\partial \overline{z_{k}} \partial z_{j}}-\overline{z_{j}} \frac{\partial^{2}}{\partial \overline{z_{k}} \partial w_{j}}-\delta_{j k} \frac{\partial}{\partial w_{j}}\right)+z_{k}\left(\overline{w_{j}} \frac{\partial^{2}}{\partial \overline{w_{k}} \partial z_{j}}+\delta_{j k} \frac{\partial}{\partial z_{j}}-\overline{z_{j}} \frac{\partial^{2}}{\partial \overline{w_{k}} \partial w_{j}}\right)\right\}, \\
& R R^{*}=\sum_{j, k}\left\{\overline{w_{j}}\left(-w_{k} \frac{\partial^{2}}{\partial z_{j} \partial \overline{z_{k}}}+z_{k} \frac{\partial^{2}}{\partial z_{j} \partial \overline{w_{k}}}+\delta_{j k} \frac{\partial}{\partial \overline{w_{k}}}\right)-\overline{z_{j}}\left(-w_{k} \frac{\partial}{\partial w_{j} \partial \overline{z_{k}}}-\delta_{j k} \frac{\partial}{\partial \overline{z_{k}}}+z_{k} \frac{\partial^{2}}{\partial w_{j} \partial \overline{w_{k}}}\right)\right\} .
\end{aligned}
$$

Taking the difference of these gives

$$
\begin{aligned}
R^{*} R-R R^{*} & =\sum_{j, k} \delta_{j k}\left(w_{k} \frac{\partial}{\partial w_{j}}+z_{k} \frac{\partial}{\partial z_{j}}-\overline{w_{j}} \frac{\partial}{\partial \overline{w_{k}}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{k}}}\right) \\
& =\sum_{j}\left(z_{j} \frac{\partial}{\partial z_{j}}+w_{j} \frac{\partial}{\partial w_{j}}-\overline{z_{j}} \frac{\partial}{\partial \overline{z_{j}}}-\overline{w_{j}} \frac{\partial}{\partial \overline{w_{j}}}\right),
\end{aligned}
$$

as supposed.

Lemma 12.3. For $0 \leq a, b \leq \frac{k}{2}$, we have that

$$
\begin{align*}
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)= & F(k, m, M, d)+F(k, m-1, M-1, d) \\
& -F(k, m-1, M, d)-F(k, m, M-1, d) \tag{14.3}
\end{align*}
$$

where F is given by (7.10), and $m=\min \{a, b\}, M=\max \{a, b\}$. In particular,

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{2}\right)\right)=(m+1)(k-2 M+1) .
$$

The zonal polynomials in $V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}$ is given by

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}\right)= \begin{cases}1, & a=b \\ 0, & a \neq b\end{cases}
$$

Proof: From Lemma 5.2, we have

$$
\begin{aligned}
K(k-a, a) & =\left(K(k-a, a) \cap \operatorname{ker} L^{*}\right) \oplus L K(k-a+1, a-1), \\
H(k-b, b) & =\left(H(k-b, b) \cap \operatorname{ker} R^{*}\right) \oplus R H(k-b+1, b-1),
\end{aligned}
$$

which gives the orthogonal direct sum decompositions

$$
\begin{aligned}
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)= & \left(\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right) \oplus L\left(\operatorname{ker} R^{*} \cap H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)\right) \\
& \oplus R\left(\operatorname{ker} L^{*} \cap H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)\right) \oplus L R H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right), \\
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)= & \left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) \cap \operatorname{ker} L^{*}\right) \oplus L H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right) \\
& \Longrightarrow \quad H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)=\left(H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right) \cap \operatorname{ker} L^{*}\right) \oplus L H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right), \\
H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)= & \left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right) \cap \operatorname{ker} R^{*}\right) \oplus R H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right) \\
& \Longrightarrow \quad H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)=\left(H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right) \cap \operatorname{ker} R^{*}\right) \oplus R H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right) .
\end{aligned}
$$

Since the action of R, L and $R L$ in the above summands is $1-1$, we obtain

$$
\begin{aligned}
& \operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)= \operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right) \\
& \quad-\operatorname{dim}\left(\operatorname{ker} R^{*} \cap H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(\operatorname{ker} L^{*} \cap H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)\right) \\
&=\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right) \\
& \quad-\left\{\operatorname{dim}\left(H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right)\right\} \\
& \quad-\left\{\operatorname{dim}\left(H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right\}\right. \\
&=\operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)+\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)\right) \\
& \quad-\operatorname{dim}\left(H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)\right)-\operatorname{dim}\left(H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)\right) .
\end{aligned}
$$

The formula for $\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)$ above is symmetric in a and b, and so depends only on $m=\min \{a, b\}$ and $M=\max \{a, b\}$. Since $0 \leq a, b \leq \frac{k}{2}$, this m and M are the same as those given by (7.2). Suppose, without loss of generality, that $a \leq b \leq \frac{k}{2}$. Then we have

$$
m:=m_{a, b}^{(k)}=a, \quad M:=M_{a, b}^{(k)}=b, \quad m_{a-1, b-1}^{(k)}=m-1, \quad M_{a-1, b-1}^{(k)}=M-1,
$$

$$
m_{a-1, b}^{(k)}=m-1, \quad M_{a-1, b}^{(k)}=M, \quad m_{a, b-1}^{(k)}=m-\delta_{a b}, M_{a, b-1}^{(k)}=M-1+\delta_{a b},
$$

and hence, for $a \neq b$, by Lemma 7.4 we have

$$
\begin{aligned}
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)\right)= & F(k, m, M, d)+F(k, m-1, M-1, d) \\
& -F(k, m-1, M, d)-F(k, m, M-1, d) .
\end{aligned}
$$

This is formula (14.3), which also holds for $a=b$, i.e., $m=M=a=b$, in which case

$$
\begin{aligned}
\operatorname{dim}\left(V_{k}^{(a, a)}\left(\mathbb{H}^{d}\right)\right)= & F(k, m, m, d)+F(k, m-1, m-1, d) \\
& -F(k, m-1, m, d)-F(k, m-1, m, d) .
\end{aligned}
$$

For $d=2$, the sum $F(k, m, M, d)$ simplifies to

$$
F(k, m, M, 2)=\sum_{j=0}^{m}(j+1)(M-m+j+1)(k-M+m-2 j+1)
$$

Thus, from (14.3), we calculate

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{2}\right)\right)=(m+1)^{2}(k-2 m+1)-(m+1) M(k-M-m+2)+\sum_{j=0}^{m-1}\{\quad\}
$$

where

$$
\begin{aligned}
\}= & 2(j+1)(M-m+j+1)(k-M+m-2 j+1) \\
& -(j+1)(M-m+1+j+1)(k-M+m-1-2 j+1) \\
& \quad-(j+1)(M-1-m+j+1)(k-M+1+m-2 j+1) \\
=2 & +2 j,
\end{aligned}
$$

and so we obtain

$$
\begin{aligned}
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{2}\right)\right) & =(m+1)^{2}(k-2 m+1)-(m+1) M(k-M-m+2)+2\left\{m+\frac{m(m-1)}{2}\right\} \\
& =(m+1)(k-2 M+1)
\end{aligned}
$$

For any subgroup G of $U\left(\mathbb{H}^{d}\right)$, following the above argument (for $G=1$), we obtain

$$
\begin{aligned}
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{G}\right)= & \operatorname{dim}\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{G}\right)+\operatorname{dim}\left(H_{k}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)^{G}\right) \\
& \quad-\operatorname{dim}\left(H_{k}^{(a-1, b)}\left(\mathbb{H}^{d}\right)^{G}\right)-\operatorname{dim}\left(H_{k}^{(a, b-1)}\left(\mathbb{H}^{d}\right)^{G}\right) .
\end{aligned}
$$

In particular, for $G=U_{q}$, we have

$$
\operatorname{dim}\left(\left(H_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}\right)=m_{a, b}+1, \quad m_{a, b}=\min \{a, k-a, b, k-b\}\right.
$$

and so

$$
\operatorname{dim}\left(V_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)^{U_{q}}\right)=m_{a, b}+m_{a-1, b-1}-m_{a-1, b}-m_{a, b-1} .
$$

Calculating this gives

$$
\begin{aligned}
& m_{a, b}+m_{a-1, b-1}-m_{a-1, b}-m_{a, b-1}=a+(a-1)-(a-1)-(a-1)=1, \quad a=b, \\
& m_{a, b}+m_{a-1, b-1}-m_{a-1, b}-m_{a, b-1}=a+(a-1)-(a-1)-a=0, \quad a<b,
\end{aligned}
$$

as supposed.

We now show that R and L map the space of zonal polynomials for $q^{\prime}=e_{1}$ to itself. This was assumed to be true for a general q^{\prime}, but calculations show otherwise (for L).

Lemma $14.1 R$ and R^{*} map zonal polynomials to zonal polynomials, i.e.,

$$
\begin{align*}
R([a, b, c, d, r]) & =a[a-1, b, c, d+1, r]-b[a, b-1, c+1, d, r], \tag{14.4}\\
R^{*}([a, b, c, d, r]) & =-c[a, b+1, c-1, d, r]+d[a+1, b, c, d-1, r], \tag{14.5}
\end{align*}
$$

and L and L^{*} map zonal polynomials for $q^{\prime}=z^{\prime}+j w^{\prime}$ as follows

$$
\begin{gather*}
L([a, b, c, d, r])=a[a-1, b, c, d, r][0,1,0,0,0]_{\overline{z^{\prime}}}-d[a, b, c, d-1, r][0,0,1,0,0]_{\overline{z^{\prime}}} \\
\quad-b[a, b-1, c, d, r][1,0,0,0,0]_{j \overline{w^{\prime}}}+c[a, b, c-1, d, r][0,0,0,1,0]_{j \overline{w^{\prime}}} \tag{14.6}\\
\begin{array}{c}
L^{*}([a, b, c, d, r])=b[a, b-1, c, d, r][1,0,0,0,0]_{\overline{z^{\prime}}}-c[a, b, c-1, d, r][0,0,0,1,0]_{\overline{z^{\prime}}} \\
\quad-a[a-1, b, c, d, r][0,1,0,0,0]_{j \overline{w^{\prime}}}+d[a, b, c, d-1, r][0,0,1,0,0]_{j \overline{w^{\prime}}}
\end{array}
\end{gather*}
$$

For $q^{\prime}=z^{\prime} \in \mathbb{R}^{n}, L$ and L^{*} map zonal polynomials to zonal polynomials, i.e.,

$$
\begin{align*}
L([a, b, c, d, r]) & =a[a-1, b+1, c, d, r]-d[a, b, c+1, d-1, r], \tag{14.8}\\
L^{*}([a, b, c, d, r]) & =b[a+1, b-1, c, d, r]-c[a, b, c-1, d+1, r] . \tag{14.9}
\end{align*}
$$

Proof: Let T be any of R, R^{*}, L or L^{*}. Since $T([0,0,0,0,1])=0$, by applying the product rule (3.5) to

$$
[a, b, c, d, r]=[1,0,0,0,0]^{a}[0,1,0,0,0]^{b}[0,0,1,0,0]^{c}[0,0,0,1,0]^{d}[0,0,0,0,1]^{r}
$$

we obtain

$$
\begin{align*}
& T([a, b, c, d, r]) \\
& \quad=a[a-1, b, c, d, r] T([1,0,0,0,0])+b[a, b-1, c, d, r] T([0,1,0,0,0]) \\
& \quad+c[a, b, c-1, d, r] T([0,0,1,0,0])+d[a, b, c, d-1, r] T([0,0,0,1,0]) \tag{14.10}
\end{align*}
$$

Thus it suffices to calculate T applied to $[1,0,0,0,0], \ldots,[0,0,0,1,0]$ directly. We give representative calculations. By Lemma 10.1, for $q^{\prime}=z^{\prime}+j w^{\prime}, q=z+j w \in \mathbb{H}^{n}$, we have

$$
\begin{aligned}
{[1,0,0,0,0] } & =\overline{z_{1}^{\prime}} z_{1}+\cdots+\overline{z_{n}^{\prime}} z_{n}+\overline{w_{1}^{\prime}} w_{1}+\cdots+\overline{w_{n}^{\prime}} w_{n}, \\
{[0,1,0,0,0] } & =z_{1}^{\prime} w_{1}+\cdots+z_{n}^{\prime} w_{n}-w_{1}^{\prime} z_{1}-\cdots-w_{n}^{\prime} z_{n}, \\
{[0,0,1,0,0] } & =z_{1}^{\prime} \overline{z_{1}}+\cdots+z_{n}^{\prime} \overline{z_{n}}+w_{1}^{\prime} \overline{w_{1}}+\cdots+w_{n}^{\prime} \overline{w_{n}}, \\
{[0,0,0,1,0] } & =\overline{z_{1}^{\prime}} \overline{w_{1}}+\cdots+\overline{z_{n}^{\prime}} \overline{w_{n}}-\overline{w_{1}^{\prime}} \overline{z_{1}}-\cdots-\overline{w_{n}^{\prime}} \overline{z_{n}} .
\end{aligned}
$$

Applying the formulas of (3.13) and (3.14), gives

$$
\begin{aligned}
& R([1,0,0,0,0])=\overline{w_{1}} \overline{z_{1}^{\prime}}+\cdots+\overline{w_{n}} \overline{z_{n}^{\prime}}-\overline{z_{1}} \overline{w_{1}^{\prime}}-\cdots-\overline{z_{n}} \overline{w_{n}^{\prime}}=[0,0,0,1,0], \\
& R([0,1,0,0,0])=-\overline{w_{1}} w_{1}^{\prime}+\cdots-\overline{w_{n}} w_{n}^{\prime}-\overline{z_{1}} z_{1}^{\prime}-\cdots-\overline{z_{n}} z_{n}^{\prime}=-[0,0,1,0,0], \\
& R([0,0,1,0,0])=R([0,0,0,1,0])=0, \\
& L([1,0,0,0,0])=w_{1} \overline{z_{1}^{\prime}}+\cdots+w_{n} \overline{z_{n}^{\prime}}=[0,1,0,0,0]_{\overline{z^{\prime}}}, \\
& L([0,1,0,0,0])=-w_{1} w_{1}^{\prime}-\cdots-w_{n} w_{n}^{\prime}=-[1,0,0,0,0]_{j}, \\
& L([0,0,1,0,0])=-\overline{z_{1}} w_{1}^{\prime}-\cdots-\overline{z_{n}} w_{n}^{\prime}=[0,0,0,1,0]_{j \overline{w^{\prime}}}, \\
& L([0,0,0,1,0])=-\overline{z_{1}} \overline{z_{1}^{\prime}}-\cdots-\overline{z_{n}} \overline{z_{n}^{\prime}}=-[0,0,1,0,0]_{\overline{z^{\prime}}} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& R^{*}([1,0,0,0,0])=R^{*}([0,1,0,0,0])=0 \\
& R^{*}([0,0,1,0,0])=-[0,1,0,0,0]_{\overline{z^{\prime}}}, \quad R^{*}([0,0,0,1,0])=[1,0,0,0,0]_{j \overline{w^{\prime}}}, \\
& L^{*}([1,0,0,0,0])=-[0,1,0,0,0]_{j \overline{w^{\prime}}}, \quad L^{*}([0,1,0,0,0])=[1,0,0,0,0]_{\overline{z^{\prime}}}, \\
& L^{*}([0,0,1,0,0])=-[0,0,0,1,0]_{\overline{z^{\prime}}}, \quad L^{*}([0,0,0,1,0])=[0,0,1,0,0]_{j \overline{w^{\prime}}},
\end{aligned}
$$

Substituting the above into 14.10 then gives the result.
The action of Δ on zonal polynomials is similar to the real and complex cases.
Lemma 14.2 The Laplacian maps zonal polynomials $\mathbb{H}^{n} \rightarrow \mathbb{C}$ to zonal polynomials, i.e.,

$$
\begin{gather*}
\frac{1}{4} \Delta([a, b, c, d, r])=a c[a-1, b, c-1, d, r]+b d[a, b-1, c, d-1, r] \\
+r(k+2 n-1-r)[a, b, c, d, r-1] \tag{14.11}
\end{gather*}
$$

Proof: Given the correspondence (10.5) between zonal polynomials with poles q^{\prime} and e_{1}, and the fact Δ commutes with unitary maps, it suffices to prove (14.11) for $q^{\prime}=e_{1}$, i.e.,

$$
[a, b, c, d, r]=f g^{r}, \quad f:=z_{1}^{a} w_{1}^{b}{\overline{z_{1}}}^{c}{\overline{w_{1}}}^{d}, \quad g:=\sum_{j}\left(z_{j} \overline{z_{j}}+w_{j} \overline{w_{j}}\right) .
$$

Differentiation gives

$$
\frac{\partial^{2}}{\partial \overline{z_{j}} \partial z_{j}}\left(f g^{r}\right)=\frac{\partial^{2} f}{\partial \overline{z_{j}} \partial z_{j}} g^{r}+\frac{\partial f}{\partial z_{j}} r g^{r-1} z_{j}+\frac{\partial f}{\partial \bar{z}_{j}} r g^{r-1} \overline{z_{j}}+f r(r-1) g^{r-2} z_{j} \overline{z_{j}}+f r g^{r-1} .
$$

For $j \neq 1$, all the terms above are zero except for the last two. Summing these over all $j=1, \ldots, n$, together with the analogous terms for w_{j}, we get

$$
r(r-1) f g^{r-2} g+2 n r f g^{r-1}=r(r-1+2 n) f g^{r-1}=r(r-1+2 n)[a, b, c, d, r-1],
$$

and the first three terms (for $j=1$) give

$$
(a c[a-1, b, c-1, d, r]+b d[a, b-1, c, d-1, r])+r((a+b)+(c+d))[a, b, c, d, r-1] .
$$

Since $a+b+c+d=k-2 r$, adding these gives the result.
This result is given in BN02] (Proposition 4.2), without proof. It implies that:

- The Laplacian maps $\operatorname{Hom}_{k}^{(a, b)}\left(\mathbb{H}^{d}\right)$ to $\operatorname{Hom}_{k-2}^{(a-1, b-1)}\left(\mathbb{H}^{d}\right)$.
- The Laplacian maps $E_{w, w^{\prime}}^{(k)}$ of 10.17 to $E_{w, w^{\prime}}^{(k-2)}$.

Combining Lemma 6.3 and its counter part for L gives the following.
Lemma 14.3 (Square array) For $0 \leq j \leq \frac{k}{2}, j \leq a, b \leq k-j$, we have
$L^{a-j} R^{b-j}\left(\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{(j, j)}\right)=\left(L^{*}\right)^{k-a-j}\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} L \cap \operatorname{ker} R \cap H_{k}^{(k-j, k-j)}\right)$
$=L^{a-j}\left(R^{*}\right)^{k-b-j}\left(\operatorname{ker} L^{*} \cap \operatorname{ker} R \cap H_{k}^{(j, k-j)}\right)$ $=\left(L^{*}\right)^{k-a-j} R^{b-j}\left(\operatorname{ker} L \cap \operatorname{ker} R^{*} \cap H_{k}^{(k-j, j)}\right)$,
with $\operatorname{dim}\left(L^{a-j} R^{b-j}\left(\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{(j, j)}\right)\right)=\operatorname{dim}\left(\operatorname{ker} L^{*} \cap \operatorname{ker} R^{*} \cap H_{k}^{(j, j)}\right)$.

References

[ABR01] Sheldon Axler, Paul Bourdon, and Wade Ramey. Harmonic function theory, volume 137 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001.
[ACFW18] Marcus Appleby, Tuan-Yow Chien, Steven Flammia, and Shayne Waldron. Constructing exact symmetric informationally complete measurements from numerical solutions. J. Phys. A, 51(16):165302, 40, 2018.
[ACMM20] Julian Ahrens, Michael G. Cowling, Alessio Martini, and Detlef Müller. Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres. Math. Z., 294(3-4):1659-1686, 2020.
[$\left.\mathrm{BDE}^{+} 14\right]$ Fred Brackx, Hennie De Schepper, David Eelbode, Roman Lavicka, and Vladimir Soucek. Fundaments of Quaternionic Clifford Analysis III: Fischer Decomposition in Symplectic Harmonic Analysis. arXiv e-prints, page arXiv:1404.3625, April 2014.
[$\left.\mathrm{BDE}^{+} 18\right]$ Fred Brackx, Hennie De Schepper, David Eelbode, Roman Lavicka, and Vladimir Soucek. Fischer decomposition for the symplectic group. J. Math. Anal. Appl., 458(1):831-848, 2018.
[BN02] Christine Bachoc and Gabriele Nebe. Zonal functions for the unitary groups and applications to Hermitian lattices. J. Number Theory, 96(1):55-75, 2002.
[Bre51] J. L. Brenner. Matrices of quaternions. Pacific J. Math., 1:329-335, 1951.
[BS13] Agata Bezubik and Aleksander Strasburger. On spherical expansions of smooth $\mathbf{S U}(n)$-zonal functions on the unit sphere in \mathbb{C}^{n}. J. Math. Anal. Appl., 404(2):570-578, 2013.
[DBSW17] H. De Bie, F. Sommen, and M. Wutzig. Plane wave formulas for spherical, complex and symplectic harmonics. J. Approx. Theory, 222:110-131, 2017.
[DX13] Feng Dai and Yuan Xu. Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics. Springer, New York, 2013.
[Fol75] G. B. Folland. Spherical harmonic expansion of the Poisson-Szego kernel for the ball. Proc. Amer. Math. Soc., 47:401-408, 1975.
[Fol95] Gerald B. Folland. A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[Hal15] Brian Hall. Lie groups, Lie algebras, and representations, volume 222 of Graduate Texts in Mathematics. Springer, Cham, second edition, 2015. An elementary introduction.
[Hog84] S. G. Hoggar. Parameters of t-designs in $\mathbf{F} P^{d-1}$. European J. Combin., 5(1):2936, 1984.
[II87] Tomoyoshi Ibukiyama and Yasutaka Ihara. On automorphic forms on the unitary symplectic group $\operatorname{Sp}(n)$ and $\mathrm{SL}_{2}(\mathbf{R})$. Math. Ann., 278(1-4):307-327, 1987.
[IS68] Mineo Ikeda and Noriaki Seto. On expansion theorems in terms of spherical functions for unitary group. I. Math. Japon., 13:149-157, 1968.
[Koo73] Tom Koornwinder. The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math., 25:236-246, 1973.
[Rud80] Walter Rudin. Function theory in the unit ball of \mathbf{C}^{n}, volume 241 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York-Berlin, 1980.
[Smi75] R. T. Smith. The spherical representations of groups transitive on S^{n}. Indiana Univ. Math. J., 24:307-325, 1974/75.
[Sud79] A. Sudbery. Quaternionic analysis. Math. Proc. Cambridge Philos. Soc., 85(2):199-224, 1979.
[Veg00] Gert Vegter. The apolar bilinear form in geometric modeling. Math. Comp., 69(230):691-720, 2000.
[Wal18] Shayne F. D. Waldron. An introduction to finite tight frames. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2018.
[Wal20a] Shayne Waldron. A variational characterisation of projective spherical designs over the quaternions. arXiv e-prints, page arXiv:2011.08439, November 2020.
[Wal20b] Shayne Waldron. Tight frames over the quaternions and equiangular lines. preprint, 12020.
[Zei94] Doron Zeilberger. Chu's 1303 identity implies Bombieri's 1990 norm-inequality (via an identity of Beauzamy and Dégot). Amer. Math. Monthly, 101(9):894896, 1994.

