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Abstract

The decomposition of the polynomials on the quaternionic unit sphere in Hd

into irreducible modules under the action of the quaternionic unitary (symplectic)
group and quaternionic scalar multiplication has been studied by several authors.
Typically, these abstract decompositions into “quaternionic spherical harmonics”
specify the irreducible representations involved and their multiplicities.

The elementary constructive approach taken here gives an orthogonal direct
sum of irreducibles, which can be described by some low-dimensional subspaces,
to which commuting linear operators L and R are applied. These operators map
harmonic polynomials to harmonic polynomials, and zonal polynomials to zonal
polynomials. We give explicit formulas for the relevant “zonal polynomials” and
describe the symmetries, dimensions, and “complexity” of the subspaces involved.

Possible applications include the construction and analysis of desirable sets
of points in quaternionic space, such as equiangular lines, lattices and spherical
designs (cubature rules).

Key Words: irreducible representations of the quaternionic unitary group, symplec-
tic group, quaternionic polynomials, spherical harmonic polynomials, zonal functions,
projective spherical t-designs, finite tight frames, quaternionic equiangular lines,

AMS (MOS) Subject Classifications: primary 15B33, 20G20, 33C55, 42C15, sec-
ondary 17B10, 42-08, 46S05, 51M20,
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1 Introduction

There are several desirable sets of points that have been, and are, studied in real, complex
and quaternionic space, which includes equiangular lines [ACFW18], [Wal18], spherical
designs (cubature rules) [Hog84] and lattices [BN02]. These are usually classified up to
“unitary equivalence”, and are often constructed as a group orbit of a “unitary action”.
These considerations have led to this paper.

We consider the invariant subspaces of harmonic polynomials on quaternionic space
Hd under the natural action of the quaternionic unitary matrices (the symplectic group)
and scalar multiplication by quaternions (acting on the other side), and the associated
zonal polynomials and reproducing kernels. This question has been considered several
times, independently, e.g., [Smi75], [BN02], [BDE+14], [DBSW17], [ACMM20]. The
exact answer given depends on the precise definition of the harmonic polynomials, in
particular, the field in which they may take values, and the precise group and its action.
The devil is in the details.

Here we give an elementary examples driven development of this question, motivated
by the more well known real and complex cases, the only partly trivial case of H1, and
our interest in the construction of spherical designs for the quaternionic sphere [Wal20b],
[Wal20a]. This proceeds from certain unambiguous definitions and well known facts (the
details). We hope that this illuminates the above literature as it applies, and our results
can be used for practical computations. Key aspects of our development include:

� By considering the action of scalar multiplication by quaternions on polynomials
Hd → C, we are naturally led to the operators L and R. The operator R appears in
[BDE+18] as ε†, and implicitly in the development of the irreducible representations
of the multiplicative group H∗ given in [Fol95].

� There is a natural correspondence between results for homogeneous polynomials
and for harmonic polynomials (given by the Fisher decomposition). Ultimately,
we are primarily interested in irreducible representations of harmonic polynomials.
Sometimes we start with the homogeneous polynomials, as these have natural inner
products and explicit bases (of monomials).

� There are many technical calculations that could clutter the presentation. Some
of these are proved later, and we often give explicit examples, e.g., the operator R
in one dimension, or a zonal polynomial with pole e1 = (1, 0, . . . 0), to convey the
basic ideas behind the results.

2 The devil is in the details

We assume basic familiarity with the quaternions H, with the basis elements 1, i, j, k.
The noncommutative multiplication requires subtle modifications to the associated linear
algebra (see [Bre51], [Wal20b]). Of particular use is the “commutativity” formula

jz = zj, z ∈ C. (2.1)
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We will consider polynomials on real, complex and quaternionic space Rd, Cd and Hd.
With the Euclidean inner product

〈v, w〉 := v∗w =
∑
j

vjwj, v, w ∈ Fd, F = R,C,H, (2.2)

where q is the conjugate on H (and hence R and C). In the sum above, j is an index,
rather than the quaternion j, for which we also use the same symbol (this is commonly
done). We will use F and K to stand for either of R,C,H, independently (9 cases in
all for maps Fd → K). Given our choice (2.2), it is natural to then treat Hd as a right
H-module, with the H-linear maps L acting on the left, i.e.,

〈vα, wβ〉 = α〈v, w〉β, (Lv)α = L(vα), (2.3)

and in turn, to make the identification (2.8).
There are natural identifications of Fd with Rmd, where m := dimR(F), given by the

Cayley-Dickson construction of C and H from R, e.g., with (i1, i2, i3, i4) := (1, i, j, k), we
have (the R-linear map) [·]Rmd : Fd → Rmd given by

[x1 + i2x2 + · · ·+ imxm]Rmd = (x1, . . . , xm), x1, . . . , xm ∈ Rd. (2.4)

We say f : Fd → R is a polynomial if f([·]−1Rmd) : Rmd → R is a polynomial (of md real
variables). In this way, we can define homogeneous and (homogeneous) harmonic
polynomials f : Fd → R of degree k. These polynomials are real-valued, and naturally
form R-vector spaces, which we denote by Homk(Fd,R) and Harmk(Fd,R).

There is a purely algebraic way to make a finite-dimensional real-vector space into a
complex-vector space, and into a (left or right) H-vector space (H-module), by formally
multiplying by complex and quaternion scalars. In this way, we define the K-valued
K-vector spaces of homogeneous and harmonic polynomials Fd → K, which we denote
by Homk(Fd,K) and Harmk(Fd,K). Clearly, with r = dimR(K), we have

f = f1 + f2i2 + · · ·+ frir ∈ Harmk(Fd,K) ⇐⇒ f1, . . . , fr ∈ Harmk(Fd,R),

and similarly for Homk(Fd,K). Such a K-vector spaces can also be viewed as a L-vector
spaces, where L ∈ {R,C,H} and L ⊂ K. We thereby have (from the real case) the
following dimension formulas

dimL(Homk(Fd,K)) =

(
k +md− 1

md− 1

)
dimL(K),

dimL(Harmk(Fd,K)) =
{(k +md− 1

md− 1

)
−
(
k +md− 3

md− 1

)}
dimL(K), md 6= 1

= (2k +md− 2)
(k +md− 3)!

(md− 2)!k!
dimL(K), k +md− 3 ≥ 0. (2.5)

For polynomials f : Fd → K, we can define an action of a group G from its action on Fd
via

(g · f)(x) := f(g · x), x ∈ Fd, (2.6)
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provided that [g]Rmd : Rmd → Rmd : [x]Rmd 7→ [g · x]Rmd is R-linear. Such a group action
preserves the harmonic polynomials of degree k provided that [g]Rmd is orthogonal. Since
we are only interested in the invariant polynomial subspaces under such an action, it
makes no essential difference if we take a left or right action. We say that a nonzero
K-subspace V of harmonic polynomials Fd → K is irreducible (under the action of G)
if its only G-invariant subspaces are V and {0}, i.e., for every nonzero f ∈ V we have
spanK{f} = V .

We are primarily concerned with polynomials restricted to the (unit) sphere

S := {x ∈ Fd : ‖[x]Rmd‖ = 1}.

Hence the linear maps [g]Rmd above must be orthogonal, i.e., belong to the orthogonal
group O(md) = U(Rmd). We note that f 7→ f |S gives a K-vector space isomorphism
between Harmk(Fd,K) and Harmk(Fd,K)|S, with terms solid and surface used if it is
necessary to distinguish between them. The basic principles in play are:

� We mostly consider polynomials Hd → C, since H-valued polynomials do not
commute, and there is a well developed theory of representations over C.

� Smaller subgroups G of O(md) give smaller irreducible subspaces, which may lead
to finer decompositions (more irreducibles).

� Enlarging the field K (to C or H) preserves invariance of subspaces, but may not
preserve irreducibility, which may lead to finer decompositions (Example 5.1).

� The irreducibles that are involved in a decomposition are of interest. The sum
of all subspaces isomorphic to a given irreducible is called the homogeneous or
isotypic component (for the irreducible), and it is unique. As an extreme case, all
the irreducibles for the action of the trivial group are the 1-dimensional subspaces,
and there is a single (uninteresting) homogeneous component.

� The reproducing kernel K(x, y) for a unitarily invariant polynomial space should
depend only on the inner product 〈x, y〉.

� We begin with general homogeneous polynomials for which there are natural
(monomial) bases and useful inner products. We then specialise to those which
are harmonic, and then, ultimately, zonal.

To develop explicit formulas, we use the Cayley-Dickson identifications Cd ∼= R2d of
(2.4), and Hd ∼= C2d given by

x+ iy ∈ Cd ←→ [x+ iy]R := [x+ iy]R2d = (x, y) ∈ R2d, (2.7)

z + jw ∈ Hd ←→ [z + jw]C := (z, w) ∈ C2d. (2.8)

In particular, the identification (2.8) ensures that [·]C : Hd → C2d is C-linear, for Hd as
a right vector space, i.e.,

[(z + jw)α]C = [zα + jwα]C =

(
zα
wα

)
=

(
z
w

)
α = [(z + jw)]C α, α ∈ C.
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It is convenient to define an identification Hd ∼= R4d by

[z + jw]R := [[(z + jw)]C]R = [(z, w)]R = (Re(z),Re(w), Im(z), Im(w)). (2.9)

We note that
[z + jw]R4d = (Re(z), Im(z),Re(w),− Im(w)].

We will use standard multi-index notation for monomials of degree k, e.g.,

zα := zα1
1 zα2

2 · · · z
αd
d , |α| := α1 + · · ·+ αd, α ∈ Zd+.

By a dimension count, the
(
k+4d−1
4d−1

)
monomials

ma : Hd → C : z + jw 7→ za1wa2za3wa4 , |a| = k, a = (a1, . . . , a4) ∈ Z4d
+ , (2.10)

are a basis for Homk(Hd,C). We will often write za1wa2za3wa4 for the monomial ma.
For z = x+ iy ∈ C, we define the Wirtinger derivatives in the usual way, i.e.,

∂

∂z
:=

1

2

( ∂
∂x
− i ∂

∂y

)
,

∂

∂z
:=

1

2

( ∂
∂x

+ i
∂

∂y

)
. (2.11)

Let ∆ be the Laplacian operator on functions Hd → C, which is given by

1

4
∆ =

d∑
j=1

( ∂2

∂zj∂zj
+

∂2

∂wj∂wj

)
. (2.12)

By applying this, we see that the monomials

zαwβ, zαwβ, zαwβ, zαwβ,

are harmonic, i.e., in the kernel of ∆.
Let U ∈ C4d×4d be the unitary matrix given by

[z + wj]R =


Re(z)
Re(w)
Im(z)
Im(w)

 = U


z
w
z
w

 , z, w ∈ C, U =
1

2


1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

 .

Example 2.1 Right scalar multiplication of Hd by α+jβ ∈ H under these identifications
is given by

Hd → Hd : z + jw 7→ (z + jw)(α + jβ) = (zα− wβ) + j(zβ + wα),

C2d → C2d :

(
z
w

)
7→
(
zα− wβ
zβ + wα

)
,

R4d → R4d : [z + wj]R 7→Mα+jβ[z + wj]R,

Mα+jβ = U


α 0 0 −β
0 α β 0

0 −β α 0

β 0 0 α

⊗ IU∗ =
1

2


Re(α) −Re(β) − Im(α) − Im(β)
Re(β) Re(α) Im(β) − Im(α)
Im(α) − Im(β) Re(α) Re(β)
Im(β) Im(α) −Re(β) Re(α)

⊗ I,
where I = Id is the d × d identity matrix. Note that this map is only R-linear, and so
there are no matrix representations for it as a map from Hd → Hd or C2d → C2d.
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Example 2.2 Consider left multiplication by a linear map L = A + jB, A,B ∈ Cd×d.
By (2.1), we obtain the following matrix representations under our identifications

Hd → Hd : z + jw 7→ (A+ jB)(z + jw) = Az −Bw + j(Bz + Aw),

C2d → C2d :

(
z
w

)
7→
(
A −B
B A

)(
z
w

)
,

R4d → R4d : [z + wj]R 7→Mα,β[z + wj]R,

MA,B = U


A −B 0 0
B A 0 0
0 0 A −B
0 0 B A

U∗ =
1

2


Re(A) −Re(B) − Im(A) − Im(B)
Re(B) Re(A) − Im(B) Im(A)
Im(A) Im(B) Re(A) −Re(B)
Im(B) − Im(A) Re(B) Re(A)

 .

Matrix multiplication on the left (which includes left scalar multiplication) commutes
with right scalar multiplication, by the associative law

(Lv)α = L(vα), v ∈ Hd, α ∈ H. (2.13)

Conversely, those matrices in R4d×R4d which commute with all Mα+jβ (equivalently M1,
Mi, Mj and Mk) correspond to the matrices L ∈ Hd×d, and are said to be symplectic.

The compact symplectic group Sp(d), quaternionic unitary group U(Hd) or
hyperunitary group (see [Hal15] §1.2.8) is the group of unitary matrices in Hd×d for
the inner product (2.2), or, equivalently, the symplectic matrices in R4d×4d which are
orthogonal. These may also be viewed as the unitary matrices of the form

C2d → C2d :

(
z
w

)
7→
(
A −B
B A

)(
z
w

)
, A∗A+B∗B = I, ATB −BTA = 0.

In particular, Sp(1) = H∗ is the group of unit quaternions or, the special unitary group

SU(2) =
{(α −β

β α

)
: |α|2 + |β|2 = 1, α, β ∈ C

}
,

which therefore have the same irreducible representations (see [Fol95] §5.4).

3 The operators R and L

A subspace V of Harmk(Hd,C) is invariant under the right multiplication by H∗ if
f(z + jw) ∈ V implies f

(
(z + jw)(α + jβ)

)
∈ V , and similarly for left multiplication.

The following elementary example shows how we came to the operators R and L.

Example 3.1 Suppose that V ⊂ Harm3(H1,C) is invariant under right multiplication
by H∗, and f

(
(z + jw)

)
= z2w ∈ V , then

f
(
(z + jw)(α + jβ)

)
= (zα− wβ)2(zβ + wα)

= α3z2w + α2β(z2z − 2zww) + αβ2(ww2 − 2zzw) + β3zw2 ∈ V.
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By taking different choices for α and β, it is not hard to see that the “coefficients” of
the monomials α3, α2β, αβ2, β3 above are in V , i.e.,

z2w, z2z − 2zww,ww2 − 2zzw, zw2 ∈ V.
This example naturally generalises as follows.

Lemma 3.2 Let f ∈ Homk(Hd,C) be given by f = f(z + jw) = F (z, w, z, w), and
Vf be the subspace invariant under right multiplication by H∗ generated by f . Then Vf
contains

f ((z + jw)(α + jβ)) = F (zα− wβ, zβ + wα, zα− wβ, zβ + wα), α, β ∈ C,
and all its partial derivatives in the variables α, α, β, β, including

Raf :=
∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f ((z + jw)(α + jβ))

∣∣∣
α=1,β=0

. (3.1)

Moreover, if f is harmonic, then so are all the polynomials in Vf .

Proof: Clearly, Vf is the subspace of Homk(Hd,C) given by

Vf = spanC{f ((z + jw)q) : q = α + jβ ∈ H∗}.
and hence for q = α + jβ nonzero, we have

f ((z + jw)(α + jβ)) = |q|kf((z + jw)(q/|q|)) ∈ Vf .
Since Vf is a finite-dimensional vector space, it follows that the first order partials in
α, α, β, β, which are limits of Newton quotients in Vf , are in Vf , and therefore so are all
the partial derivatives.

A calculation shows that if f : Rn → R is harmonic, then so is f ◦U for U : Rn → Rn

orthogonal. Since scalar multiplication of Hd by a unit quaternion (left or right) is
an orthogonal map R4d → R4d, it follows that if f(z + jw) is harmonic, then so is
f((z + jw)q), q ∈ H∗, and hence every polynomial in Vf .

In other words, if a subspace V ⊂ Homk(Hd,C) is invariant under right multiplica-
tion by H∗, then it is invariant under the action of the operators Ra of (3.1). Since the
partial derivatives in (3.1) for |a| = a1 + a2 + a3 + a4 = k do not depend on α, β, α, β,
they can be “evaluated” at α = 0, β = 0, to obtain the Taylor formula

f((z + jw)(α + jβ)) =
∑
|a|=k

Ra(f)
αa1βa2αa3β

a4

a1!a2!a3!a4!
, f ∈ Homk(Hd,C). (3.2)

We therefore have the following converse result.

Proposition 3.3 A subspace V ⊂ Homk(Hd,C) is invariant under right multiplication
by H∗ if and only if it is invariant under the operators Ra, |a| = k.

Proof: As already observed, the forward implication follows from Lemma 3.2.
Conversely, suppose that V is invariant under right multiplication by H∗, and f ∈ V .

Since the monomials in α, β, α, β in the Taylor formula (3.2) are linearly independent,
it follows that

Vf = spanC{Raf : |a| = k} ⊂ V,

and so V is invariant under right multiplication by the operators Ra, |a| = k.
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This observation means that

� We can replace invariance under right multiplication by the continuous group H∗
by invariance under the discrete set of operators {Ra}|a|=k.

This is the basic spirit of our development, where

� The operators {Ra}|a|=k are homogeneous differential operators of order k which
are replaced by two first order operators R and R∗, with Rk+1 = (R∗)k+1 = 0.

There is an obvious parallel development for the left multiplication by H∗ where the
role of Ra is played by La, where

f ((α + jβ)(z + jw)) = F (αz − βw, αw + βz, αz − βw, αw + βz),

Laf :=
∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f ((α + jβ)(z + jw))

∣∣∣
α=1,β=0

. (3.3)

Example 3.4 For the Example 3.1, i.e., f = z2w, the nonzero terms in (3.2) are

R3,0,0,0f = 6z2w, R2,1,0,0f = 2z2z−4zww, R1,2,0,0f = 2ww2−4zzw, R0,3,0,0f = 6zw2.

The nonzero polynomials Raf are not a basis for Vf in general, e.g., for f = zw one has

R1,0,1,0f = zw, R0,1,0,1f = −zw, R1,0,0,1f = z2, R0,1,1,0f = −w2.

To illustrate the nature of the definition (3.1) of Ra, we consider the mechanics of
calculating R0,1,0,0f for d = 1. Let C = (zα − wβ, zβ + wα, zα − wβ, zβ + wα). Then
differentiating gives

∂

∂β
f ((z + jw)(α + jβ)) = D1F (C)

∂

∂β
(zα− wβ) +D2F (C)

∂

∂β
(zβ + wα) + · · ·

= −wD1F (C) + zD2F (C) + 0D3F (C) + 0D4F (C),

and evaluating this at α = 1, β = 0 gives C = (z, w, z, w), and hence

R0,1,0,0f =
∂

∂β
f ((z + jw)(α + jβ))

∣∣∣
α=1,β=0

= −w∂f
∂z

+ z
∂f

∂w
. (3.4)

The calculation for d ≥ 1, is the same, leading to

R0,1,0,0f =
d∑
j=1

(
−wj

∂f

∂zj
+ zj

∂f

∂wj

)
.

For readability, we will often give the d = 1 case, with general case following by replacing
z by zj, etc, and summing over j (or applying the Einstein summation convention).

For the first order differential operators Ra, we will use the suggestive notation

Rα := R1,0,0,0 =
∂

∂α

∣∣∣, Rβ := R0,1,0,0 =
∂

∂β

∣∣∣,
8



Rα := R0,0,1,0 =
∂

∂α

∣∣∣, Rβ := R0,0,0,1 =
∂

∂β

∣∣∣,
and similarly for Lα, Lβ, . . .. All of these first order operators T satisfy the product rule

T (fg) = T (f)g + fT (g). (3.5)

For d = 1, they are

Rβ = −w ∂

∂z
+ z

∂

∂w
, Rβ = −w ∂

∂z
+ z

∂

∂w
, (3.6)

Rα = z
∂

∂z
+ w

∂

∂w
, Rα = z

∂

∂z
+ w

∂

∂w
, (3.7)

Lβ = z
∂

∂w
− w ∂

∂z
, Lβ = z

∂

∂w
− w ∂

∂z
, (3.8)

Lα = z
∂

∂z
+ w

∂

∂w
, Lα = w

∂

∂w
+ z

∂

∂z
. (3.9)

Of particular interest, are the operators

R := −Rβ, R∗ := Rβ, L := −Lβ, L∗ := Lβ, (3.10)

which in the 1-dimensional case have the form

R = w
∂

∂z
− z ∂

∂w
, R∗ = −w ∂

∂z
+ z

∂

∂w
, (3.11)

L = w
∂

∂z
− z ∂

∂w
, L∗ = z

∂

∂w
− w ∂

∂z
. (3.12)

and for general d are given by

R =
d∑
j=1

(
wj

∂

∂zj
− zj

∂

∂wj

)
, R∗ =

d∑
j=1

(
−wj

∂

∂zj
+ zj

∂

∂wj

)
, (3.13)

L =
d∑
j=1

(
wj

∂

∂zj
− zj

∂

∂wj

)
, L∗ =

d∑
j=1

(
zj

∂

∂wj
− wj

∂

∂zj

)
. (3.14)

The notation R∗ and L∗ is used, as we will see (Lemma 4.1) that they are the adjoints of
R and L, respectively, for two natural inner products. The operators R and R∗ (but not
L and L∗) appear in the work of [BDE+14], [BDE+18] as ε = R∗ and ε† = R. Operators
of this type (for d = 1) also appear in the construction of irreducible representations of
SU(2) = H∗ on the homogeneous polynomials in z and w of degree k given in [Fol95].

The following “ansatz” indicates our approach.

Ansatz 3.5 On Homk(Hd,C), each operator Ra, |a| = k, can be written as a polynomial
of degree k with real coefficients in the noncommuting variables R and R∗. Therefore, a
subspace of Homk(Hd,C) is invariant under right multiplication by scalars in H∗ if and
only if it is invariant under R and R∗.
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The analogous statement holds for left multiplication and the action of L and L∗.
It was hoped to prove this, by exhibiting the polynomials in R and R∗ explicitly, or by
a simple inductive argument, but this is complicated by the fact that R and R∗ do not
commute. We now discuss some relevant algebraic properties of R, R∗, etc.

Lemma 3.6 We have the commutativity relations

RβRβ −RβRβ = Rα −Rα, RαRα = RαRα, (3.15)

RβRα −RαRβ = Rβ, RαRβ −RβRα = Rβ, (3.16)

RαRβ −RβRα = Rβ, RβRα −RαRβ = Rβ. (3.17)

Furthermore, on Homk(Hd,C) we have

Rα +Rα = kI, (3.18)

and hence

Rα =
1

2
(R∗R−RR∗ + kI), Rα =

1

2
(RR∗ −R∗R + kI). (3.19)

Proof: The relations (3.15), (3.16) and (3.17) directly from the formulas of the type
(3.6) and (3.7), e.g., the first is proved in Lemma 5.3. For (3.18), apply Rα and Rα to
a monomial f = za1wa2za3wa4 , |a| = |a1|+ |a2|+ |a3|+ |a4| = k,

Rαf =
∑
j

(
zj
∂f

zj
+ wj

∂f

wj

)
=
∑
j

(
(a1)jf + (a2)jf

)
= (|a1|+ |a2|)f,

Rαf =
∑
j

(
zj
∂f

zj
+ wj

∂f

wj

)
=
∑
j

(
(a3)jf + (a4)jf

)
= (|a3|+ |a4|)f,

and add to get Rαf + Rαf = kf . The equations (3.19) then follow by using (3.18) to
eliminate Rα and Rα from RβRα −RαRβ = Rβ.

In view of (3.19) all “polynomials” in Rβ, Rβ, Rα, Rα can be written as polynomials
in the noncommuting variables R and R∗.

Example 3.7 The commutativity relations (3.16) and (3.17) can be used to exchange
α and β factors as follows

RβRα = (Rα + I)Rβ, RαRβ = Rβ(Rα − I),

RαRβ = Rβ(Rα + I), RβRα = (Rα − I)Rβ,

RαRβ = Rβ(Rα + I), RβRα = (Rα − I)Rβ,

RβRα = (Rα + I)Rβ, RαRβ = Rβ(Rα − I).
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In this way, one might hope to put the “polynomials” giving Ra in terms of R and R∗

alluded to in Ansatz 3.5 into some canonical form, which could then be proved, e.g., by
verifying it on the monomials. To this end, we have formulas such as

Ra1,a2,a3,0 =
∂a1+a2+a3

∂αa1∂βa2∂αa3

∣∣∣ =
(a1−1∏
j1=0

(Rα − j1I)
)
Ra2
β

(a3−1∏
j3=0

(Rα − j3I)
)
,

Ra1,0,a3,a4 =
∂a1+a3+a4

∂αa1∂αa3∂β
a4

∣∣∣ =
(a3−1∏
j3=0

(Rα − j3I)
)
Ra4
β

(a1−1∏
j1=0

(Rα − j1I)
)
,

∂b1+b2

∂βb1∂β
b2

∣∣∣ = Rb1
β R

b2
β

+ b1b2R
b1−1
β RαR

b2−1
β

+ lower order terms,

where the lower order terms are zero when either of b1 or b2 takes the value 0 or 1, and

l.o.t = b1(b1 − 1)
∂

∂α2∂βb1−2

∣∣∣, b2 = 2,

l.o.t = 3b1(b1 − 1)
∂

∂α2∂βb1−2∂β

∣∣∣− 2b1(b1 − 1)(b1 − 2)
∂

∂α3∂βb1−3

∣∣∣, b2 = 3.

However, a general formula has yet to be obtained.

4 Inner products on the quaternionic sphere

There are two natural (unitarily invariant) inner products defined on polynomials from
Hd → C that we consider. Let

S = S(Fd) := {x ∈ Fd : ‖x‖ = 1} = {x ∈ Rmd : ‖x‖ = 1}

be the unit sphere in Fd, and σ be the surface area measure on S, normalised so that
σ(S) = 1. We note that surface area measure invariant under unitary maps on Fd, i.e.,
for U unitary ∫

S(Fd)
f(Ux) dσ(x) =

∫
S(Fd)

f(x) dσ(x), ∀f.

The first inner product we consider is defined on complex-valued functions restricted to
the quaternionic sphere S = S(Hd) by

〈f, g〉 = 〈f, g〉S :=

∫
S(Hd)

f(x)g(x) dσ(x). (4.1)

This can be calculated from the well known integrals of the monomials in z, w, z, w ∈ Cd

(polynomials in 2d complex variables)∫
S(Hd)

zα1wβ1zα2wβ2 dσ =

∫
S(C2d)

zα1wβ1zα2wβ2 dσ(z, w),

11



which are zero for (α1, β1) 6= (α2, β2), and otherwise∫
S(Hd)

zα1wβ1zα2wβ2 dσ =
(2d− 1)!α1!β1!

(2d− 1 + |α1|+ |β1|)!
=

α1!β1!

(2d)|α1|+|β1|
, (α1, β1) = (α2, β2).

(4.2)
Here (x)n := x(x+ 1) · · · (x+ n− 1) is the Pochhammer symbol.

For a polynomial f =
∑

α fαz
α1wα2zα3wα4 mapping Hd → C, let f̃ be the polynomial

obtained by replacing the coefficient fα ∈ C by its conjugate fα, and f(∂) be the
differential operator obtained replacing z by ∂

∂z
, etc, i.e.,

f̃ =
∑
α

fαz
α1wα2zα3wα4 , f(∂) =

∑
α

fα
∂α1+a2+α3+α4f

∂zα1∂wα2∂zα3∂wα4
.

The second inner product is given by

〈f, g〉∂ := f̃(∂)g(0) =
∑
α

α!fαgα. (4.3)

The inner products (4.1) and (4.3) are both prominent in the theory of spherical
harmonics. The first is natural for Fourier expansions on the sphere, and the second,
which is variously known as the apolar [Veg00], Bombieri [Zei94] or Fischer inner
product [BDE+14], is also widely used. Not withstanding the fact that they are defined
on different spaces, these inner products are different, since the monomials are orthogonal
in the second, but not in the first in general, e.g.,

〈z1z1, w1w1〉 =

∫
S(Hd)

|z1w1|2 dσ =
1

2d(2d+ 1)
6= 0, 〈z1z1, w1w1〉∂ = 0.

Nevertheless, these inner product are scalar multiples of each other in the following sense

〈f, g〉∂ = (2d)k〈f, g〉, f ∈ Harmk(Hd,C), g ∈ Homk(Hd,C),

which follows from [DX13] (Theorem 1.1.8) as presented in [DBSW17] (Lemma 2).
The homogeneous polynomials of different degrees are orthogonal to each other for

both inner products, giving the orthogonal direct sums⊕
k≥0

Homk(Hd,C)
∣∣∣
S(Hd)

,
⊕
k≥0

Homk(Hd,C),

respectively. For simplicity, we will primarily consider the further decomposition of
Harmk(Hd,C), with it being understood that this leads to a corresponding refinement
of the direct sums⊕

k≥0

Homk(Hd,C) =
⊕
k≥0

⊕
0≤j≤ k

2

‖ · ‖2j Harmk−2j(Hd,C), (4.4)

Homk(Hd,C)
∣∣
S =

⊕
0≤j≤ k

2

Harmk−2j(Hd,C), (4.5)

of the polynomials Hd → C into irreducibles for the action of SO(4d). The direct sum
(4.4) is sometimes referred to as the Fischer decomposition [BDE+14].

The adjoints of R and L are the same for both of these inner products.
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Lemma 4.1 The operators R∗ and L∗ are the adjoints of R and L with respect to both
the inner products (4.1) and (4.3) defined on Homk(Hd,C).

Proof: This is by direct computation. See Section 14.

This result for R was given in [BDE+14] Lemma 5 for the inner product (4.3).
The adjoint can also be calculated using the following property.

Example 4.2 An elementary calculation shows the identities

Rf = −R∗(f), Lf = −L∗(f), (4.6)

and so, on subspaces V , we have

RαV = (R∗)αV , kerR∗|V = kerR|V . (4.7)

The next result follows from the fact that scalar multiplication by H∗ is in O(R4d),
and hence maps harmonic polynomials to harmonic polynomials.

Lemma 4.3 The operators R,R∗, L and L∗ commute with the Laplacian ∆, and so map
harmonic functions to harmonic functions.

Proof: A direct proof is given in Section 14.

It follows from (2.13) that the action of R and R∗ commutes with that of U ∈ U(Hd).
In this regard, recall from (2.6) and (3.1) that

(U · f)(z + jw) = f(U(z + jw)).

Lemma 4.4 The operators R and R∗ commute with the action of U(Hd).

Proof: We will show, more generally, that the operators Ra of (3.1) commute with
the action of U(Hd). Let U ∈ U(Hd). Then for f = f(z + jw), we have

(U ·Raf) =
∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f (U(z + jw)(α + jβ))

∣∣∣
α=1,β=0

=
∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 (U · f) ((z + jw)(α + jβ))

∣∣∣
α=1,β=0

= Ra(U · f).

i.e., Ra commutes with the action of U(Hd).

We note that, by the same reasoning, the operators L and L∗ do not commute with
the (left) action of U(Hd).
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5 The action of R and L on polynomials

Using (3.11) to apply R to a univariate monomial f = za1wa2za3wa4 gives

Rf = w
∂

∂z
(za1wa2za3wa4)− z ∂

∂w
(za1wa2za3wa4)

= a1z
a1−1wa2za3wa4+1 − a2za1wa2−1za3+1wa4 ,

which is a sum of monomials in which the degree in z and w has decreased by 1, whilst
the degree in z and w has increased by 1. This type of phenomenon occurs for all of the
operators R,R∗, L, L∗ (in every dimension), and we now make definitions which allow us
to account for these changes in degrees. With standard multi-index notation, we have

HomH(p, q) := span{zα1wα2zα3wα4 : |α1|+ |α2| = p, |α3|+ |α4| = q},
HomK(p, q) := span{zα1wα2zα3wα4 : |α1|+ |α4| = p, |α2|+ |α3| = q},

Hom
(a,b)
k (Hd) := HomK(k − a, a) ∩ HomH(k − b, b)

= span{zα1wα2zα3wα4 : |α1|+ |α4| = k − a, |α2|+ |α3| = a,

|α1|+ |α2| = k − b, |α3|+ |α4| = b}.

We observe that

HomH(p, q) = HomH(q, p), HomK(p, q) = HomK(q, p).

∆ HomH(a, b) = HomH(a− 1, b− 1), ∆ HomK(a, b) = HomK(a− 1, b− 1).

The subspaces of harmonic polynomials contained in these are denoted

H(p, q) := Harmk(Hd,C) ∩ HomH(p, q), p+ q = k,

K(p, q) := Harmk(Hd,C) ∩ HomK(p, q), p+ q = k,

H
(a,b)
k (Hd) := Harmk(Hd,C) ∩ Hom

(a,b)
k (Hd)

= K(k − a, a) ∩H(k − b, b).

When either p or q above is negative, then we have, by definition, the zero subspace.
The subspaces H(p, q) are the irreducible subspaces of Harmk(C2d,C) ∼= Harmk(Hd,C)
under the action of (left) multiplication by U(C2d), e.g., see [Rud80], from where we
borrow the notation H(p, q). Since U(Hd) is a subgroup of U(C2d), the decomposition
of Harmk(Hd,C) into U(Hd)-irreducibles is obtained by decomposing each H(p, q).

The following dimensions are easily calculated

dimC(HomH(p, q)) = dimC(HomK(p, q)) =

(
p+ 2d− 1

2d− 1

)(
q + 2d− 1

2d− 1

)
, (5.1)

dimC(H(p, q)) = dimC(K(p, q)) = (p+ q + 2d− 1)
(p+ 2d− 2)!(q + 2d− 2)!

p!q!(2d− 1)!(2d− 2)!
, (5.2)

whilst those of Hom
(a,b)
k (Hd) and H

(a,b)
k (Hd) are more complicated (Lemmas 7.1 and 7.4).
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Example 5.1 Let H(p, q)R be H(p, q) ⊂ Harmk(C2d,C) viewed as a real vector space,
which is invariant under the action of U(C2d). Complexifying this space gives

CH(p, q)R = H(p, q)⊕H(q, p).

Thus we observe that enlarging the field, which preserves the invariance of subspaces,
does not always preserve irreducibility.

Lemma 5.2 For all integers a and b, we have

RHomH(a, b) ⊂ HomH(a− 1, b+ 1), R∗HomH(a, b) ⊂ HomH(a+ 1, b− 1),

LHomK(a, b) ⊂ HomK(a− 1, b+ 1), L∗HomK(a, b) ⊂ HomK(a+ 1, b− 1),

and HomK(a, b) is invariant under right multiplication by H∗, HomH(a, b) is invariant
under left multiplication by H∗, and more generally by U(Hd), which gives

RHomK(a, b) ⊂ HomK(a, b), R∗HomK(a, b) ⊂ HomK(a, b),

LHomH(a, b) ⊂ HomH(a, b), L∗HomH(a, b) ⊂ HomH(a, b).

In particular, for α, β ≥ 0, we have

LαRβ Hom
(a,b)
k (Hd,C) ⊂ Hom

(a+α,b+β)
k (Hd,C), (5.3)

(L∗)α(R∗)β Hom
(a,b)
k (Hd,C) ⊂ Hom

(a−α,b−β)
k (Hd,C). (5.4)

Moreover, for the inner products (4.1) and (4.3) we have the orthogonal direct sums

HomH(k − a, a) = (HomH(k − a, a) ∩ kerR∗)⊕RHomH(k − a+ 1, a− 1), (5.5)

HomH(k − a, a) = (HomH(k − a, a) ∩ kerR)⊕R∗HomH(k − a− 1, a+ 1), (5.6)

Proof: The inclusions follow by (elementary) direct calculations.
Let f ∈ HomH(k − a, a). Since R∗f ∈ HomH(k − a+ 1, a− 1), we have

f ∈ kerR∗ ⇐⇒ R∗f = 0 ⇐⇒ 〈R∗f, g〉 = 0, ∀g ∈ HomH(k − a+ 1, a− 1)

⇐⇒ 〈f,Rg〉 = 0, ∀g ∈ HomH(k − a+ 1, a− 1)

⇐⇒ f ∈ (RHomH(k − a+ 1, a− 1))⊥,

so that

HomH(k − a, a) = (RHomH(k − a+ 1, a− 1))⊥ ⊕RHomH(k − a+ 1, a− 1)

= (HomH(k − a, a) ∩ kerR∗)⊕RHomH(k − a+ 1, a− 1),

which gives (5.5). The proof of (5.6) is similar.
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By restricting (5.3), (5.4), (5.5), and (5.6) to the harmonic polynomials, we have

LαRβH
(a,b)
k (Hd,C) ⊂ H

(a+α,b+β)
k (Hd,C), (5.7)

(L∗)α(R∗)βH
(a,b)
k (Hd,C) ⊂ H

(a−α,b−β)
k (Hd,C), (5.8)

H(k − a, a) = (H(k − a, a) ∩ kerR∗)⊕RH(k − a+ 1, a− 1), (5.9)

H(k − a, a) = (H(k − a, a) ∩ kerR)⊕R∗H(k − a− 1, a+ 1), (5.10)

Henceforth, all “orthogonal” direct sum decompositions will hold for both the inner
products (4.1) and (4.3), unless stated otherwise.

We now give some technical results, related to the following commutativity relations.

Lemma 5.3 The operators L and L∗ commute with R and R∗, and we have

R∗R−RR∗ =
∑
j

(
zj

∂

∂zj
+ wj

∂

∂wj
− zj

∂

∂zj
− wj

∂

∂wj

)
, (5.11)

L∗L− LL∗ =
∑
j

(
zj

∂

∂zj
− wj

∂

∂wj
− zj

∂

∂zj
+ wj

∂

∂wj

)
. (5.12)

Proof: This is by direct computation. See Section 14.

Clearly, the right hand side of (14.1) and of (14.2) maps the monomial ma of (2.10)
to a scalar multiple of itself, and so we obtain

R∗Rf = RR∗f + (a− b)f, f ∈ HomH(a, b), (5.13)

L∗Lf = LL∗f + (a− b)f, f ∈ HomK(a, b). (5.14)

We can iterate these to obtain formulas which interchange R and R∗, and L and L∗.

Lemma 5.4 We have

R∗Rβf = RβR∗f + β(a− b− β + 1)Rβ−1f, f ∈ HomH(a, b), (5.15)

L∗Lβf = LβL∗f + β(a− b− β + 1)Lβ−1f, f ∈ HomK(a, b), (5.16)

which also holds for β = 0 (in the obvious way).

Proof: We now prove the first equation, using induction on β. The case β = 0 is
trivial, and the case β = 1 is (5.13). Suppose the formula holds for β − 1 ≥ 0, then
Rf ∈ HomH(a− 1, b+ 1), and so, using (5.13), we have

R∗Rβf = R∗Rβ−1(Rf) = Rβ−1R∗Rf + (β − 1)
(
(a− 1)− (b+ 1)− (β − 1) + 1

)
Rβ−2Rf

= Rβ−1(R∗Rf) + (β − 1)(a− b− β)Rβ−1f

= Rβ−1(RR∗f + (a− b)f
)

+ (β − 1)(a− b− β)Rβ−1f

= RβR∗f + β(a− b− β + 1)Rβ−1f,

which completes the induction. The proof of the second equation is very similar.
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Here are the most general formulas, which we will use.

Lemma 5.5 For all choices of α and β, we have

(R∗)αRβf =
α∑
c=0

(
α

c

)
(−β)c(b− a+ β − α)cR

β−c(R∗)α−cf, f ∈ HomH(a, b), (5.17)

Rα(R∗)βf =
α∑
c=0

(
α

c

)
(−β)c(a− b+ β − α)c(R

∗)β−cRα−cf, f ∈ HomH(a, b), (5.18)

(L∗)αLβf =
α∑
c=0

(
α

c

)
(−β)c(b− a+ β − α)cL

β−c(L∗)α−cf, f ∈ HomK(a, b), (5.19)

Lα(L∗)βf =
α∑
c=0

(
α

c

)
(−β)c(a− b+ β − α)c(L

∗)β−cLα−cf, f ∈ HomK(a, b). (5.20)

Here the terms involving a negative power of an operator have a zero coefficient.

Proof: We now prove (5.17), by induction on α, with β fixed. The case α = 0 is
immediate. Suppose that (5.17) holds for α− 1 ≥ 0, then

(R∗)αRβf =
α−1∑
c′=0

(
α− 1

c′

)
(−β)c′(b− a+ β − α + 1)c′R

∗Rβ−c′(R∗)α−1−c
′
f.

Since g = (R∗)α−1−c
′
f ∈ H(a+ α− 1− c′, b− (α− 1− c′)), (5.15) of Lemma 5.4 gives

R∗Rβ−c′g = Rβ−c′R∗g + (β − c′)(a+ α− 1− c′ − (b− (α− 1− c′))− (β − c′) + 1)Rβ−c′−1g

= Rβ−c′(R∗)α−c
′
f + (−β + c′)(b− a− 2α + 1 + c′ + β)Rβ−c′−1(R∗)α−1−c

′
f,

and we have

(R∗)αRβf =
α−1∑
c′=0

(
α− 1

c′

)
(−β)c′(b− a+ β − α)c′

{
Rβ−c′(R∗)α−c

′
f

+ (−β + c′)(b− a− 2α + 1 + c′ + β)Rβ−c′−1(R∗)α−1−c
′
f
}
.

The coefficient of Rβ−c(R∗)α−cf in the above formula for (R∗)αRβf is(
α− 1

c

)
(−β)c(b− a+ β − α + 1)c

+

(
α− 1

c− 1

)
(−β)c−1(b− a+ β − α + 1)c−1(−β + c− 1)(b− a− 2α + 1 + (c− 1) + β)

=
(α− 1)!

c!(α− c)!
(−β)c(b− a+ β − α + 1)c−1

{ }
=

α!

c!(α− c)!
(−β)c(b− a+ β − α)c,

where{ }
= (α− c)(b− a+ β − α + c) + c(b− a− 2α + c+ β) = α(b− a+ β − α).

Thus we obtain the desired formula for (R∗)αRβf , which completes the induction.
The other formulas follow in a similar fashion.
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6 U(Hd)-invariant subspaces

It follows from Lemma 5.5 that R and R∗ inverses of each other in some sense.

Lemma 6.1 For α ≤ β, and β > α + a− b or β ≤ a− b, we have

(R∗)αRβ(kerR∗ ∩ HomH(a, b)) = Rβ−α(kerR∗ ∩ HomH(a, b)), (6.1)

Rα(R∗)β(kerR ∩ HomH(b, a)) = (R∗)β−α(kerR ∩ HomH(b, a)), (6.2)

otherwise

(R∗)αRβ(kerR∗ ∩ HomH(a, b)) = 0, Rα(R∗)β(kerR ∩ HomH(b, a)) = 0. (6.3)

Proof: For f ∈ kerR∗ ∩ HomH(a, b), R∗f = 0, and so (5.17) reduces to

(R∗)αRβf = (−β)α(b− a+ β − α)αR
β−αf,

The condition for the constant above to be nonzero is α ≤ β, and the α factors

b− a+ β − α, b− a+ β − α + 1, . . . b− a+ β − 1

of (b− a+ β − α)α are not zero, i.e., b− a+ β − α > 0 or b− a+ β − 1 < 0. This gives
the first case, with the other following by the same argument.

By repeated applications of (5.5) and (5.6), we obtain the following.

Lemma 6.2 We have the orthogonal direct sums

HomH(k − b, b) =
b⊕

j=0

Rb−j( kerR∗ ∩ HomH(k − j, j)
)
, b ≤ k − b, (6.4)

HomH(k − b, b) =
k−b⊕
j=0

(R∗)k−b−j
(

kerR ∩ HomH(j, k − j)
)
, k − b ≤ b. (6.5)

Further

(i) For a > b, R is 1-1 on HomH(a, b).

(ii) For a ≤ b, R maps HomH(a, b) onto HomH(a− 1, b+ 1).

Proof: Apply (5.5) and (5.6) repeatedly. For b ≤ k − b, we have

HomH(k − b, b) = (kerR∗ ∩ HomH(k − b, b))⊕RHomH(k − b+ 1, b− 1)

= (kerR∗ ∩ HomH(k − b, b))
⊕R{(kerR∗ ∩ HomH(k − b+ 1, b− 1))⊕RHomH(k − b+ 2, b− 2)}

= (kerR∗ ∩ HomH(k − b, b))⊕R(kerR∗ ∩ HomH(k − b+ 1, b− 1))

⊕R2(kerR∗ ∩ HomH(k − b+ 2, b− 2))⊕ · · · ⊕Rb(kerR∗ ∩ HomH(k, 0)).
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Similarly, for k − b ≤ b, we have

HomH(k − b, b) = (kerR ∩ HomH(k − b, b))⊕R∗(kerR ∩ HomH(k − b− 1, b+ 1))

⊕ (R∗)2(kerR ∩ HomH(k − b− 2, b+ 2))⊕ · · ·
· · · ⊕ (R∗)k−b(kerR ∩ HomH(0, k)),

which gives (6.4) and (6.5).
To show the injectivity of (i), it suffices to show that for k− b > b, i.e., b+ 1 ≤ k− b,

R is 1-1 on each summand in (6.4), i.e.,

Rb−j( kerR∗ ∩ HomH(k − j, j)
)
, 0 ≤ j ≤ b.

This follows from

R∗RRb−j( kerR∗ ∩ HomH(k − j, j)
)
= Rb−j( kerR∗ ∩ HomH(k − j, j)

)
,

which is (6.1) of Lemma 6.1 for α = 1, β = b− j + 1, a = k − j, b = j, since

b+ 1 ≤ k − b, j ≤ b =⇒ b+ j + 1 ≤ k, i.e., the condition β ≤ a− b holds.

For a ≤ b, a similar argument shows that R∗ is 1-1 on HomH(a − 1, b + 1). Here,
when a = 0, HomH(a − 1, b + 1) = 0. Therefore, (R∗|HomH(a−1,b+1))

∗ = R|HomH(a,b) is
onto, and we have (ii).

The following result says that the j-terms in the expansions of Lemma 6.2 (only one
of which holds for a given b, 2b 6= k) are in fact equal. This then allows for a single
expansion for both cases (Lemma 6.4).

Lemma 6.3 (Row movements) For 0 ≤ j ≤ k
2
, we have

Rk−2j+1(kerR∗ ∩ HomH(k − j, j)) = 0, (6.6)

(R∗)k−2j+1(kerR ∩ HomH(j, k − j)) = 0, (6.7)

and for j ≤ a ≤ k − j, we have

Ra−j(kerR∗ ∩ HomH(k − j, j)) = (R∗)k−a−j(kerR ∩ HomH(j, k − j)). (6.8)

Furthermore, all of the results above hold with HomH(p, q) replaced by H(p, q).

Proof: The equations (6.6) and (6.7) follow from Lemma 6.1 for the choice α = 0,
β = k − 2j + 1, a = k − j, b = j. These give the inclusions

Rk−2j(kerR∗ ∩ HomH(k − j, j)) ⊂ kerR ∩ HomH(j, k − j),

(R∗)k−2j(kerR ∩ HomH(j, k − j)) ⊂ kerR∗ ∩ HomH(k − j, j).
We now prove the cases a = k − j and a = j in (6.8), i.e.,

Rk−2j(kerR∗ ∩ HomH(k − j, j)) = kerR ∩ HomH(j, k − j), (6.9)

(R∗)k−2j(kerR ∩ HomH(j, k − j)) = kerR∗ ∩ HomH(k − j, j), (6.10)
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Taking α = β = k − 2j in Lemma 6.1 gives

(R∗)k−2jRk−2j(kerR∗ ∩ HomH(k − j, j)) = kerR∗ ∩ HomH(k − j, j), (6.11)

Rk−2j(R∗)k−2j(kerR ∩ HomH(j, k − j)) = kerR ∩ HomH(j, k − j).

Thus we have

kerR ∩ HomH(j, k − j) = Rk−2j(R∗)k−2j(kerR ∩ HomH(j, k − j))
⊂ Rk−2j(kerR∗ ∩ HomH(k − j, j))
⊂ kerR ∩ HomH(j, k − j),

which gives (6.9), with (6.10) following similarly. Now (6.11) and (6.9) give

Ra−j(kerR∗ ∩ HomH(k − j, j)) = Ra−j(R∗)k−2jRk−2j(kerR∗ ∩ HomH(k − j, j))
= Ra−j(R∗)k−2j(kerR ∩ HomH(j, k − j)). (6.12)

Taking α = a− j, β = k − 2j in Lemma 6.1 gives

Ra−j(R∗)k−2j(kerR ∩ HomH(j, k − j)) = (R∗)k−j−a(kerR ∩ HomH(j, k − j)),

which together with (6.12) gives (6.8).

We now present a key technical result.

Lemma 6.4 We have the orthogonal direct sum decompositions

Homk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

HomH(k − b, b)k−2j, (6.13)

Harmk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

H(k − b, b)k−2j, (6.14)

into U(Hd)-invariant subspaces, where

HomH(k − b, b)k−2j := Rb−j( kerR∗ ∩ HomH(k − j, j)
)

= (R∗)k−b−j
(

kerR ∩ HomH(j, k − j)
)

⊂ HomH(k − b, b), (6.15)

H(k − b, b)k−2j := Rb−j( kerR∗ ∩H(k − j, j)
)

= (R∗)k−b−j
(

kerR ∩H(j, k − j)
)

⊂ H(k − b, b). (6.16)

Proof: Since the Laplacian operator ∆ commutes with R and R∗ (Lemma 4.3), the
decomposition (6.14) follows from (6.13) by taking the intersection with the harmonic
polynomials. We therefore consider just the decomposition of HomH(k − b, b).

Since HomH(k− b, b) and H(k− b, b) are invariant under U(C2d), they are invariant
under U(Hd). Moreover, the action of U(Hd) commutes with R and R∗ (Lemma 4.4), and
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so the summands in (6.13) and (6.14) are U(Hd)-invariant. As an indicative calculation,
let U ∈ U(Hd), then

f ∈ kerR∗ ⇐⇒ U · (R∗f) = 0 ⇐⇒ R∗(U · f) = 0 ⇐⇒ U · f ∈ kerR∗,

and so

U ·H(k − b, b)k−2j = U ·Rb−j( kerR∗ ∩H(k − j, j)
)
= Rb−j(U · kerR∗ ∩ U ·H(k − j, j)

)
= Rb−j( kerR∗ ∩H(k − j, j)

)
= H(k − b, b)k−2j.

Since

j ≤ b ≤ k − j ⇐⇒ j ≤ b, j ≤ k − b ⇐⇒ j ≤ min{b, k − b},

the direct sum (6.13) can be rearranged as

Homk(Hd,C) =
⊕
0≤b≤k

min{b,k−b}⊕
j=0

HomH(k − b, b)k−2j.

By Lemma 6.3,

Rb−j( kerR∗ ∩ HomH(k − j, j)
)
= (R∗)k−b−j

(
kerR ∩ HomH(j, k − j)

)
,

which gives the equalities in (6.15) and (6.16), and so it suffices to show the orthogonal
direct sums

HomH(k − b, b) =
b⊕

j=0

Rb−j( kerR∗ ∩ HomH(k − j, j)
)
, b ≤ k − b,

HomH(k − b, b) =
k−b⊕
j=0

(R∗)k−b−j
(

kerR ∩ HomH(j, k − j)
)
, k − b ≤ b.

These are given by Lemma 6.2.

To calculate the dimensions of various irreducibles, we will need the following.

Lemma 6.5 Let 0 ≤ j ≤ k
2
. For d = 1, we have the following dimensions

dim
(

kerR∗ ∩ HomH(k − j, j)
)
= k − 2j + 1, dim

(
kerR∗ ∩H(k − j, j)

)
=

{
1, j = 0;

0, j 6= 0.

For d ≥ 2, we have

dim
(

kerR∗ ∩ HomH(k − j, j)
)
= (k − 2j + 1)

(k − j + 2d− 1)!(j + 2d− 2)!

(k − j + 1)!j!(2d− 1)!(2d− 2)!
, (6.17)

dim
(

kerR∗∩H(k−j, j)
)
= (k−2j+1)(k+2d−1)

(k − j + 2d− 2)!(j + 2d− 3)!

(k − j + 1)!j!(2d− 1)!(2d− 3)!
. (6.18)
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Proof: From (5.5), and the fact R is 1-1 on HomH(k− j+ 1, j− 1) (Lemma 6.2), we
have

dim(HomH(k − j, j) ∩ kerR∗) = dim (HomH(k − j, j))− dim (RHomH(k − j + 1, j − 1))

= dim (HomH(k − j, j))− dim (HomH(k − j + 1, j − 1)) .

Using this and (5.1), with p = k − j, q = j, we calculate (6.17) for d ≥ 1

dim(kerR∗ ∩ HomH(k − j, j))

=
1

(2d− 1)!2

{(p+ 2d− 1)!(q + 2d− 1)!

p!q!
− (p+ 2d)!(q + 2d− 2)!

(p+ 1)!(q − 1)!

}
=

(p+ 2d− 1)!(q + 2d− 2)!

(p+ 1)!q!(2d− 1)!2
{(q + 2d− 1)(p+ 1)− (p+ 2d)q}

=
(p+ 2d− 1)!(q + 2d− 2)!

(p+ 1)!q!(2d− 1)!2
(p− q + 1)(2d− 1).

The other formula follows in a similar way, from

dim(kerR∗ ∩H(k − j, j)) = dim(H(k − j, j))− dim(H(k − j + 1, j − 1))

=

(
k − j + 2d− 1

2d− 1

)(
j + 2d− 1

2d− 1

)
−
(
k − j + 2d

2d− 1

)(
j + 2d− 2

2d− 1

)
,

with the d = 1 case calculated separately, which completes the proof.

Example 6.6 For j = 0, (6.18) reduces to

dim
(

kerR∗ ∩H(k, 0)
)
=

(k + 2d− 1)!

k!(2d− 1)!
= dim

(
H(k, 0)

)
,

so that kerR∗ ∩H(k, 0) is the holomorphic polynomials, i.e.,

kerR∗ ∩H(k, 0) = H(k, 0) =
⊕
|α+β|=k

span{zαwβ} (orthogonal direct sum).

We also observe, from the proof of Lemma 6.5, that for 0 ≤ j ≤ k
2
, we have

kerR∗ ∩H(k − j, j) = {f ∈ H(k − j, j) : f ⊥
⊕
0≤a<j

H(k − a, a)},

so the by applying Gram-Schmidt to a spanning sequence ordered so that its elements
are in H(k, 0), H(k − 1, 1), . . . H(k − j, j), successively, the corresponding elements are
an orthonormal basis for kerR∗ ∩H(k, 0), . . . , kerR∗ ∩H(k − j, j).

The results of this section can found or deduced from those of the work of [BDE+14].
Their variables z1, . . . , z2p correspond to ours via

z1, . . . , z2p ←→ z1, w1, . . . , zp, wp,

and they define operators
ε = R∗, ε† = R.

The decomposition (6.14) for H(k − b, b) of Lemma 6.4 is presented as the two cases in
Lemma 6.2 (Theorems 5.1 and 5.2 of §5 [BDE+14]).
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7 Visualising the action of L and R on subspaces

The action of L and R given in Lemma 5.2 leads to the following orthogonal direct sums.

Lemma 7.1 We have the orthogonal direct sum decomposition into (k + 1)2 subspaces

Homk(Hd,C) =
⊕

0≤a,b≤k

Hom
(a,b)
k (Hd). (7.1)

For 0 ≤ a, b ≤ k, let ma = m
(k)
a := min{a, k − a}, mb = m

(k)
b := min{b, k − b}, and

m = m
(k)
a,b := min{ma,mb}, M = M

(k)
a,b := max{ma,mb}, c := min{a, b}. (7.2)

Then
Hom

(a,b)
k (Hd) = span{zα1wα2zα3wα4}(α1,α2,α3,α4)∈A, (7.3)

where A = Aa,b,k is given by

A := {α : |α1| = k−(a+b−c)−j, |α2| = a−c+j, |α3| = c−j, |α4| = b−c+j, 0 ≤ j ≤ m}.

In particular, we have

dim
(
Hom

(a,b)
k (Hd,C)

)
=

m∑
j=0

(
k −M − j + d− 1

d− 1

)(
j + d− 1

d− 1

)
×
(
m− j + d− 1

d− 1

)(
M −m+ j + d− 1

d− 1

)
. (7.4)

Proof: To establish (7.1), it suffices to show that the direct sums

Homk(Hd,C) =
⊕
a+b=k

HomH(a, b) =
⊕
p+q=k

HomK(p, q),

are orthogonal, which follows immediately since the monomials are orthogonal for (4.3).

We now consider (7.3). Let f = zα1wα2zα3wα4 ∈ Hom
(a,b)
k (Hd,C), i.e.,

|α1|+ |α4| = k − a, |α2|+ |α3| = a, |α1|+ |α2| = k − b, |α3|+ |α4| = b.

The above equations imply that once an allowable value of |α1|, |α2|, |α3|, |α4| is specified,
then the others are uniquely determined. The allowable values are determined by an
equation where the right hand side is m = min{a, k − a, b, k − b}, and so we must treat
(four) cases. First consider the case a ≤ b, i.e., m = a, k − b, for which we have

0 ≤ j = |α2| ≤ m ∈ {a, k − b}, |α3| = a− j, |α1| = k − b− j, |α4| = j + b− a,

and hence

Hom
(a,b)
k (Hd,C) = span{zα1wα2zα3wα4 : |α1| = k − b− j, |α2| = j, |α3| = a− j,

|α4| = j + b− a, 0 ≤ j ≤ m}.
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The corresponding condition for the case a ≥ b is

0 ≤ j = |α4| ≤ m ∈ {b, k − a}, |α1| = k − a− j, |α2| = a− b+ j, |α3| = b− j,

and so we obtain (7.3).

It follows from symmetries of the space Hom
(a,b)
k (Hd,C), or by direct calculation,

that its dimension, the cardinality of A, depends only on m,M (and k). Therefore, by
the case m = a = c, M = b, and the fact α1, . . . , α4 ∈ Zd+, we obtain (7.4).

Example 7.2 For d = 1, we have

dim(Hom
(a,b)
k (H)) = m+ 1, m := min{a, k − a, b, k − b}. (7.5)

Example 7.3 For k = 1, we have

Hom
(0,0)
1 (Hd) = span{z1, . . . , zd}, Hom

(0,1)
1 (Hd) = span{w1, . . . , wd},

Hom
(1,0)
1 (Hd) = span{w1, . . . , wd}, Hom

(1,1)
1 (Hd) = span{z1, . . . , zd}.

The corresponding result for harmonic polynomials is the following.

Lemma 7.4 We have the orthogonal direct sum decomposition into (k + 1)2 subspaces

Harmk(Hd,C) =
⊕

0≤a,b≤k

H
(a,b)
k (Hd). (7.6)

where
dim(H

(a,b)
k (Hd)) = dim(Hom

(a,b)
k (Hd))− dim(Hom

(a−1,b−1)
k−2 (Hd)). (7.7)

In particular, for d = 1, we have

dim(H
(a,b)
k (H)) = 1, 0 ≤ a, b ≤ k, (7.8)

and for d > 1, with m and M given by (7.2), we have

dim(H
(a,b)
k (Hd,C)) = F (k,m,M, d), 0 ≤ a, b ≤ k, (7.9)

where

F (k,m,M, d) :=
m∑
j=0

(
j + d− 1

d− 1

)(
M −m+ j + d− 1

d− 1

)
(7.10)

× (m− j + 1)d−2(k −M − j + 1)d−2
(d− 1)!(d− 2)!

(k −M +m− 2j + d− 1).

Proof: The dimension formula (7.7) follows since H
(a,b)
k (Hd) is the kernel of ∆ re-

stricted to Hom
(a,b)
k (Hd), and ∆ Hom

(a,b)
k (Hd) = Hom

(a−1,b−1)
k−2 (Hd).

To develop an explicit formula from (7.4), we need to take account of the case when

a ∈ {0, k} or b ∈ {0, k}, i.e., m = 0, in which case dim(H
(a−1,b−1)
k−2 (Hd)) = 0.
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For d = 1, (7.8) holds for m = 0, and otherwise (7.5) gives

dim(Hom
(a−1,b−1)
k−2 (H)) = min{a− 1, k − 2− (b− 1), b− 1, k − 2− (a− 1)}+ 1

= min{a, k − b, b, k − a} = dim(Hom
(a,b)
k (H))− 1.

A similar (elementary) calculation gives

m
(k−2)
a−1,b−1 = m

(k)
a,b − 1, M

(k−2)
a−1,b−1 = M

(k)
a,b − 1.

Hence, with m := m
(k)
a,b and M := M

(k)
a,b , (7.4) gives

dim
(
Hom

(a−1,b−1)
k−2 (Hd,C)

)
=

m−1∑
j=0

(
(k − 2)− (M − 1)− j + d− 1

d− 1

)(
j + d− 1

d− 1

)
(

(m− 1)− j + d− 1

d− 1

)(
(M − 1)− (m− 1) + j + d− 1

d− 1

)
,

where for d > 1 the “j = m” term above is zero by virtue of
(
(m−1)−m+d−1

d−1

)
= 0. Thus

(7.4) gives

dim(H
(a,b)
k (Hd,C)) =

m∑
j=0

(
j + d− 1

d− 1

)(
M −m+ j + d− 1

d− 1

){ }
,

where { }
=

(
k −M − j + d− 1

d− 1

)(
m− j + d− 1

d− 1

)
−
(
k − 1−M − j + d− 1

d− 1

)(
m− 1− j + d− 1

d− 1

)
,

which simplifies to give (7.10).

Example 7.5 For k = 2, we have three cases (m,M) = (0, 0), (0, 1), (1, 1), giving

dim(H
(a,b)
2 (Hd)) = F (2, 0, 0, d) = 1

2
d(d+ 1), (a, b) ∈ {(0, 0), (2, 0), (0, 2), (2, 2)},

dim(H
(a,b)
2 (Hd)) = F (2, 0, 1, d) = d2, (a, b) ∈ {(1, 0), (0, 1), (1, 2), (2, 1)},

dim(H
(a,b)
2 (Hd)) = F (2, 1, 1, d) = 2d2 − 1, (a, b) ∈ {(1, 1)}.

These formulas also hold for d = 1. We also have

dim(H
(a,b)
k (Hd)) =

(
k + d− 1

d− 1

)
= dim(Hom

(a,b)
k (Hd)), (a, b) ∈ {(0, 0), (k, 0), (0, k), (k, k)},

with the corresponding spaces given by A = Aa,b,k of Lemma 7.1, e.g.,

H
(0,0)
k (Hd) =

⊕
|α|=k

span{zα}, (orthogonal direct sum).
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The results of this section for Harmk(Hd,C) can be summarised as follows.

Schematic 7.6 The orthogonal decomposition (7.6) of Harmk(Hd,C) can be displayed
as a square matrix/array/table

K(k, 0)
K(k − 1, 1)

...
K(0, k)

H(k, 0) H(k − 1, 1) · · · H(0, k)
H

(0,0)
k (Hd) H

(0,1)
k (Hd) · · · H

(0,k)
k (Hd)

H
(1,0)
k (Hd) H

(1,1)
k (Hd) · · · H

(1,k)
k (Hd)

...
...

...

H
(k,0)
k (Hd) H

(k,1)
k (Hd) · · · H

(k,k)
k (Hd)


L∗↑

R∗←− R−→

L↓

(7.11)

where the rows are indexed by K(k − a, a) and the columns by H(k − b, b). Here

� Harmk(Hd,C) is the orthogonal direct sum of the (k + 1)2 entries of the matrix.

� The subspace in the K(k − a, a) row and H(k − b, b) column is

H
(a,b)
k (Hd) = K(k − a, a) ∩H(k − b, b).

� H(k − a, b) is the orthogonal direct sum of the entries of its column.

� K(k − a, a) is the orthogonal direct sum of the entries of its row.

� Multiplication by L moves down the columns, and L∗ up them.

� Multiplication by R moves right along the rows, and R∗ to the left of them. Further,
multiplication by R is 1-1 on the left hand side (half) of the table, and is onto on
the right hand side.

� Left multiplication by H∗ (and more generally by U(Hd)) moves within the columns.

� Right multiplication by H∗ moves within the rows.

� Multiplication by Lα, Lα, Rα and Rα does not move the entries of the matrix.

There is a similar “square” for the decomposition (7.1) of Homk(Hd,C).
There are also “symmetries” which permute the entries of the square, such as

H
(a,b)
k (Hd) = H

(k−a,k−b)
k (Hd).

It is convenient to imagine zero subspaces outside of the square matrix, which then
encodes properties such as

Rk+1 Harmk(Hd,C) = 0, R∗H(k, 0) = 0, L2K(1, k − 1) = 0.
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8 The one variable case

We now consider the d = 1 case in great detail. Though this is somewhat degenerate,
and usually not considered, it provides motivation and illustrates the main features of
the general case.

By Lemma 7.4, dim(Harmk(H,C)) = (k + 1)2, and the square matrix/table (7.11)

for Harmk(H,C) consists of the one-dimensional subspaces {H(a,b)
k (H)}0≤a,b≤k. Since the

polynomial zk is holomorphic, it is harmonic, and so

H
(0,0)
k (H) = spanC{zk}.

We consider what are the other harmonic monomials in Homk(H,C).

Example 8.1 The monomial zα1wα2zα3wα4, |α| = k, is harmonic if and only if(
∂2

∂z∂z
+

∂2

∂w∂w

)
zα1wα2zα3wα4 = α1α3z

α1−1wα2zα3−1wα4+α2α4z
α1wα2−1zα3wα4−1 = 0,

i.e., α1α3 = α2α4 = 0. This gives 4k harmonic monomials of degree k.

The harmonic monomials of degree k lie on the four “edges” (of length k + 1) of
the square table, which are given by α2 = α3 = 0 (top edge), α3 = α4 = 0 (left edge),
α1 = α2 = 0 (right edge), α1 = α4 = 0 (bottom edge), with

H
(α2+α3,α3+α4)
k (H) = spanC{zα1wα2zα3wα4}, |α| = k, α1α3 = α2α4 = 0.

An elementary calculation shows that

LkRk(zk) = (−1)kk!2zk, (8.1)

and so it follows from the Schematic 7.6, that by applying L and R to the upper left
corner zk ∈ H(0,0)

k (H), that we can “fill out the table” with nonzero polynomials in the
subspaces, which (in this case) gives a basis for them, e.g., for k = 2, we have

z2
R−→

L↓
K(2, 0)
K(1, 1)
K(0, 2)

H(2, 0) H(1, 1) H(0, 2) z2 2zw 2w2

2zw 2ww − 2zz −4zw
2w2 −4zw 4z2

. (8.2)

Since L and R commute, it makes no difference how one fills out the table by applying
L and R, e.g., the middle entry can be obtained as either of

RL(z2) = R(2zw) = 2ww − 2zz, LR(z2) = L(2zw) = 2ww − 2zz.

Even in this simple example, one can observe the following features of the general case:

� The harmonic functions on the edges of the square have the simplest description,
with the formulas becoming more complicated as one moves towards the centre.
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� There are symmetries of the polynomials given by certain permutations of z, w, z, w.

� One can move around the square table by applying L and L∗ (down and up) and
R and R∗ (across and back).

We now show that LaRb(zk) has an increasingly complicated formula as one moves
towards the centre of the table.

Lemma 8.2 The unique harmonic polynomial p
(a,b)
k in H

(a,b)
k (H) is given by

p
(a,b)
k =

m∑
j=0

(−1)j

j!

(−c)j(a+ b− c− k)j
(|b− a|+ 1)j

zk−(a+b−c)−jwa−c+jzc−jwb−c+j

=
(k − a− b+ c)!

k!(c− a− b)c
LaRb(zk), (8.3)

where

m = min{a, b, k − a, k − b}, c = min{a, b} =
1

2
(a+ b− |b− a|).

Proof: We consider the case a ≤ b, i.e., m = min{a, k − b}, the other being similar.
By Lemma 7.4, there is a unique (up to a scalar multiple) harmonic polynomial in

Hom
(a,b)
k (H,C), which by (7.3) has the form

f =
m∑
j=0

cjz
k−b−jwjza−jwb−a+j.

The condition that f be harmonic, i.e., ∇f = 0, gives

m−1∑
j=0

cj(k − b− j)(a− j)zk−b−j−1wjza−j−1wb−a+j

+
m−1∑
j=0

cj+1(j + 1)(b− a+ j + 1)zk−b−j−1wjza−j−1wb−a+j = 0,

and equating coefficients of the monomials gives

cj(k − b− j)(a− j) + cj+1(j + 1)(b− a+ j + 1) = 0, 0 ≤ j ≤ m− 1,

so that

cj+1 = −cj
(k − b− j)(a− j)

(j + 1)(b− a+ j + 1)
=⇒ cj =

(−1)j

j!

(k − b+ 1− j)j(a+ 1− j)j
(b− a+ 1)j

c0,

which gives the desired formula.
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The indices {(a, b)}0≤a,b≤k for the polynomials p
(a,b)
k ∈ H(a,b)

k (H) in the square table
can be partitioned into nested squares

Sm := {(a, b) : min{a, b, k − a, k − b} = m}, 0 ≤ m ≤ k

2
, (8.4)

with S0 giving the “edges of the table”. These have size

|Sm| =

{
4(k − 2m), 0 ≤ m < k

2
;

1, m = k
2
.

(8.5)

Here is an illustration for the case k = 4

0 0 0 0 0

0 1 1 1 0

0 1 2 1 0

0 1 1 1 0

0 0 0 0 0

, S0 = { 0 }, S1 = { 1 }, S2 = { 2 }.

From the formula (8.3), we have the first instance of a general phenomenon:

� The polynomials p
(a,b)
k , (a, b) ∈ Sm, have m + 1 terms, i.e., the complexity of the

formula for p
(a,b)
k increases as one gets closer to the center of the square array.

We now consider the decomposition of Harmk(Hd,C) into irreducibles.
The irreducible representations of the simply connected compact nonabelian Lie

group H∗ = U(H) = Sp(1) = SU(2) are well known [Hal15]. For now, we need only that
there is precisely one irreducible representation Wk of dimension k + 1, for each k ≥ 0.

Theorem 8.3 For left multiplication by U(H) = H∗, we have the following orthogonal
direct sum of irreducibles

Harmk(H,C) =
⊕

0≤a≤k

H(k − a, a) ∼= (k + 1)Wk,

and for right multiplication by H∗, we have the direct sum of irreducibles

Harmk(H,C) =
⊕
0≤b≤k

K(k − b, b) ∼= (k + 1)Wk,

Proof: From the Schematic 7.6 for Harmk(H,C), it follows that by taking columns
(respectively rows) of the table gives an orthogonal direct sum of invariant subspaces
for action given by left (respectively right) multiplication by H∗ (Ansatz 3.5), and so it
remains only to show that these (k + 1)-dimensional subspaces are irreducible.

We now show K(k − a, a) is irreducible for the action given by right multiplication.
The other case is similar, and can be found in [Fol95] Theorem 5.37. We have

K(k − a, a) = spanC{p
(a,b)
k }0≤b≤k = span{Rbp

(a,0)
k }0≤b≤k.
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Consider a nonzero polynomial

f =
∑

0≤b≤b∗
cbp

(a,b)
k ∈ K(k − a, a), cb∗ 6= 0.

Let V be an invariant subspace of K(k − a, a) containing f . Since R∗ maps nonzero

polynomials left across the table, we have that (R∗)b
∗
f is a nonzero multiple of p

(a,0)
k .

Thus, V contains p
(a,0)
k , and hence Rp

(a,0)
k , . . . , Rkp

(a,0)
k , giving V = K(k − a, a), i.e., V

is irreducible.

In both cases, there is a single homogeneous component corresponding to Wk.

Example 8.4 For left multiplication by H∗, i.e., the action given by

(α + jβ)(z + jw) = (αz − βw) + j(αw + βz),

we have the irreducible representation

H(k, 0) = spanC{zk, zk−1w, zk−2w2, . . . , wk},

which is given by Folland [Fol95] for the action of SU(2) ∼= H∗ given by(
α −β
β α

)(
z
w

)
=

(
αz − βw
αw + βz

)
.

Here L and L∗ reduce to L = w ∂
∂z

and L∗ = z ∂
∂w

.

We now consider the combined action given by both left and right multiplication by
H∗, i.e., the action of Sp(1)× Sp(1) = U(H)×H∗ given by(

(q1, q2) · f
)
(q) := f(q1qq2).

The invariant subspaces for this action are invariant under both L and R (and their
adjoints). This leads to the following.

Theorem 8.5 The action of Sp(1)× Sp(1) given by left and right multiplication by H∗
is irreducible on Harmk(H,C), i.e., for all nonzero f ∈ Harmk(H,C), we have

spanC{q 7→ f(q1qq2) : q1, q2 ∈ H∗} = Harmk(H,C). (8.6)

We consider the special case of the linear polynomials (k = 1).

Example 8.6 The linear polynomial

f(q) := q = x1 + ix2 + jx3 + kx4, x1, x2, x3, x4 ∈ R,

is in Harm1(H,H) = Hom1(H,H), as are the coordinate maps q 7→ x`, which are also in
Harm1(H,R) = Hom1(H,R). These can be written explicitly in the form (8.6) as follows

x1 =
1

4
(q − iqi− jqj − kqk), x2 =

1

4i
(q − iqi+ jqj + kqk),

x3 =
1

4j
(q + iqi− jqj + kqk), x4 =

1

4k
(q + iqi+ jqj − kqk). (8.7)
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The formula (8.7) is used by [Sud79] to show that the “polynomials of degree k in q”,
i.e., sums of the “monomials”

q 7→ a0qa1qa2 · · · qak−1qak, a0, a1, . . . , ak ∈ H,

is precisely Homk(H,H) as we have defined it, or, equivalently, the H-linear combinations
of the monomials in real variables x1, x2, x3, x4.

9 The irreducible representations of Harmk(Hd,C)
We now consider the irreducible representations of Harmk(Hd,C) for d ≥ 2 (the case
usually considered in the literature). Here, there is more than just the one irreducible
Wk involved. Our method is to construct rectangular arrays, like that in Schematic 7.6,
corresponding to a given irreducible Wk,Wk−2,Wk−4, . . .. We will say that these are
commuting arrays if we can move over them using L,R, L∗, R∗, as in the d = 1 case.
They can be visualised as the “layers on (square) wedding cake”.

We follow the development of Bachoc and Nebe [BN02]. For the action given by
right multiplication by H∗, let I(Wp)

(k) be the homogeneous component of Harmk(Hd,C)
corresponding to the irreducible Wp (of dimension p + 1), which gives the orthogonal
decomposition

Harmk(Hd,C) =
⊕
p≥0

I(Wp)
(k).

The values of p involved in this sum are p = k − 2j, 0 ≤ j ≤ k
2
, which is observed in

[BN02], and follows from our explicit decomposition (Theorem 9.1).
There is also the well known decomposition [IS68], [Rud80] (Chapter 12, §12.2) into

irreducibles for the action of left multiplication by U(C2d)

Harmk(Hd,C) =
⊕
a+b=k

H(a, b).

Since U(Hd) is the subgroup of U(C2d) ⊂ O(R4d) characterised as those elements of
U(C2d) which commute with right multiplication by H∗ (in the group O(R4d)), we have
the orthogonal direct sum of invariant U(Hd)-modules

Harmk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

H(k − b, b) ∩ I(Wk−2j)
(k). (9.1)

This is in fact an orthogonal direct sum of U(Hd)-irreducibles

R
(k)
k−2j
∼= H(k − b, b) ∩ I(Wk−2j)

(k), (9.2)

(see [II87] §1.2, [BN02] Theorem 4.1, for k even).
We now give the irreducibles for right multiplication by H∗. For d = 1, these were

obtained by taking a row of the square array (7.11), i.e., by choosing a (particular)

31



nonzero element f ∈ H(k, 0) = H(k, 0)∩ kerR∗, and applying R to it k times. Since R∗

moves back in the opposite direction to R, it followed that

spanC{f,Rf,R2f, . . . , Rkf} ∼= Wk (9.3)

was an irreducible. Exactly the same argument holds for d ≥ 2, i.e., for a nonzero
f ∈ H(k, 0) = H(k, 0) ∩ kerR∗ the subspace (9.3) is irreducible. These are all the
irreducibles for Wk, and for d = 1 this is the end of the story (Theorem 8.3). For d ≥ 2,
there are other irreducibles, constructed in a similar way: starting with a nonzero f in
the second column, which does not give the irreducible Wk, i.e., f ∈ H(k−1, 1)∩kerR∗,
one obtains the irreducible subspaces

spanC{f,Rf,R2f, . . . , Rk−2f} ∼= Wk−2,

and so forth.

Theorem 9.1 For the action on Harmk(Hd,C) given by right multiplication by H∗, the
homogeneous component corresponding to the irreducible Wk−2j, 0 ≤ j ≤ k

2
, is

I(Wk−2j)
(k) =

∑
f∈H(k−j,j)∩kerR∗

spanC{f,Rf, . . . , Rk−2jf} (sum of irreducibles),

=
⊕

j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗) (orthogonal direct sum).

Moreover, these are the only irreducibles that appear, i.e., we have

Harmk(Hd,C) =
⊕

0≤j≤ k
2

I(Wk−2j)
(k) (orthogonal direct sum),

where the summands above are all nonzero for d ≥ 2, and Harmk(H,C) = I(Wk)
(k).

Proof: From Lemma 6.4, we have the orthogonal direct sum decomposition

Harmk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗),

and so it suffices to show that every nontrivial irreducible subspace

V ⊂
⊕

0≤a≤k−2j

Ra(H(k − j, j) ∩ kerR∗) =
⊕

j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗)

has the form

V = spanC{f,Rf, . . . , Rk−2jf}, f ∈ H(k − j, j) ∩ kerR∗,

so that V ∼= Wk−2j.
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Choose a nonzero g ∈ V , and write

g =
∑

0≤a≤k−2j

Rafa, fa ∈ H(k − j, j) ∩ kerR∗.

Let a∗ be the largest value of a for which fa 6= 0. Then, by (5.17) of Lemma 5.5,

f := (R∗)a
∗
g = (R∗)a

∗
Ra∗fa∗ = (−a∗)a∗(2j − k)a∗fa∗ ,

which is a nonzero scalar multiple of fa∗ (for 2j − k = 0, a∗ = 0), and

W = spanC{f,Rf, . . . , Rk−2jf} ⊂ V, Rk−2jf 6= 0.

Hence dim(V ) ≥ dim(W ) = k − 2j + 1. By construction, W is invariant under the
action of R and R∗. Supposing each such W were invariant under right multiplication,
i.e., V = W , then our decomposition would have the same multiplicity of each irreducible
Wk−2j in Harmk(Hd,C) as as the abstract decomposition of [II87] and [BN02]. This must
indeed be the case, since otherwise a union of some of the W ’s would be an irreducible,
giving a contradiction.

The last part of the proof above gives the following.

Corollary 9.2 The irreducibles for right multiplication by H∗ and for multiplication by
R and R∗ are the same.

This is effectively the Ansatz 3.5, which we had hoped to prove by elementary means.
We will call a sequence

f,Rf, . . . , Rk−2jf, 0 ≤ j ≤ k
2
,

or any nonzero scalar multiples of it, an R-orbit (for Wk−2j) if

f ∈ HomH(k − j, j), R∗f = 0.

It follows from Theorem 9.1 that Rk−2jf 6= 0, and

R{f} := spanC{f,Rf, . . . , Rk−2jf}, (9.4)

is an irreducible subspace (of dimension k + 1− 2j) for right multiplication by H∗.
We can now give an explicit form for the U(Hd)-irreducibles.

Theorem 9.3 Let d ≥ 2. For the action on Harmk(Hd,C) given by U(Hd) = Sp(d), we
have the following orthogonal direct sum of irreducibles

Harmk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

H(k − b, b)k−2j

∼=
⊕

0≤j≤ k
2

(k − 2j + 1)R
(k)
k−2j, (9.5)
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where

H(k − b, b)k−2j := Rb−j( kerR∗ ∩H(k − j, j)
)

= (R∗)k−b−j
(

kerR ∩H(j, k − j)
)

= H(k − b, b) ∩ I(Wk−2j)
(k)

∼= R
(k)
k−2j := kerR∗ ∩H(k − j, j), (9.6)

and

dim(R
(k)
k−2j) = (k − 2j + 1)(k + 2d− 1)

(k − j + 2d− 2)!(j + 2d− 3)!

(k − j + 1)!j!(2d− 1)!(2d− 3)!
. (9.7)

Proof: By Lemma 6.4, we already have that (9.5) is an orthogonal direct sum of
U(Hd)-invariant subspaces, with H(k − b, b)k−2j ⊂ H(k − b, b), given by the first two
formulas in (9.6). We therefore need only show that they are U(Hd)-irreducible, i.e.,
given by the formula (9.1), i.e., the third formula, with (9.2) holding (the fourth formula).
By Theorem 9.1, we have

I(Wk−2j)
(k) =

⊕
j≤a≤k−j

Ra(H(k − j, j) ∩ kerR∗).

Since Ra(H(k − j, j) ∩ kerR∗) ⊂ H(k − j − a, j + a), the only contribution to the
intersection with H(k − b, b) is when b = j + a, which gives the third formula, i.e.,

H(k − b, b) ∩ I(Wk−2j)
(k) = Rb−j( kerR∗ ∩H(k − j, j)

)
.

We now show, that for j fixed, the H(k−b, b)k−2j are isomorphic U(Hd)-irreducibles.
Taking α = β = b− j in Lemma 6.1 gives

(R∗)b−jH(k − b, b)k−2j = (R∗)b−jRb−j( kerR∗ ∩H(k − j, j)
)
= kerR∗ ∩H(k − j, j).

This implies the subspaces have the same dimension as kerR∗ ∩ H(k − j, j), which is
given by equation (6.18) of Lemma 6.5. Finally, since the action of U(Hd) commutes
with the action of R (and its powers), these subspaces are all U(Hd)-isomorphic to

R
(k)
k−2j := kerR∗ ∩H(k − j, j).

This decomposition is given in [BN02] Theorem 4.1 (for k even, the summands not
given explicitly), and in [BDE+14] (Theorems 1 and 2). The presentation of [BDE+14]
involves two separate cases for the decomposition of H(a, b), namely

H(k − b, b)k−2j =

{
Rb−j(H(k − j, j) ∩ kerR∗), k − b ≥ b;

(R∗)k−b−j(H(j, k − j) ∩ kerR), k − b ≤ b.

We now consider the irreducibles for the action on Harmk(Hd,C) given by both left
multiplication by U ∈ U(Hd) and right multiplication by q∗ ∈ H∗, i.e.,

((U, q∗) · f)(q) := f(Uqq∗).
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Theorem 9.4 For the action on Harmk(Hd,C) given by U(Hd)×H∗ = Sp(d)× Sp(1),
d ≥ 2, we have the following orthogonal direct sum of irreducibles

Harmk(Hd,C) =
⊕

0≤j≤ k
2

Q
(k)
k−2j, (9.8)

where

Q
(k)
k−2j :=

⊕
j≤b≤k−j

H(k − b, b)k−2j

=
⊕

j≤b≤k−j

Rb−j( kerR∗ ∩H(k − j, j)
)
= I(Wk−2j)

(k), (9.9)

and

dim(Q
(k)
k−2j) = (k − 2j + 1)2(k + 2d− 1)

(k − j + 2d− 2)!(j + 2d− 3)!

(k − j + 1)!j!(2d− 1)!(2d− 3)!
. (9.10)

Proof: The subspace Q
(k)
k−2j is invariant under the actions of U(Hd) and H∗, as it is

a sum of irreducibles for each of these actions. We now show that it is irreducible.
Suppose V ⊂ Q

(k)
k−2j is irreducible under the action of U(Hd)×H∗. By Theorem 9.1,

V ⊂ I(Wk−2j)
(k), and V contains an irreducible for the action of H∗ of the form

spanC{f,Rf, . . . , Rk−2jf}, 0 6= Rb−jf ∈ H(k − b, b)k−2j, j ≤ b ≤ k − j.

Since each H(k − b, b)k−2j is U(Hd)-irreducible, we have that H(k − b, b)k−2j ⊂ V , and

hence V = Q
(k)
k−2j is irreducible.

In other words, the Sp(d)× Sp(1)-irreducibles Q
(k)
k−2j are precisely the homogeneous

components I(Wk−2j) for right multiplication by H∗.
The decomposition (9.8) of Harmk(Hd,C) into Sp(d) × Sp(1)-irreducibles is given

in [Smi75] Theorem 2.4, and [ACMM20] Proposition 2.1 (as the joint eigenfunctions of
operators ∆S and Γ), where the following notations are used (respectively)

Q
(k)
k−2j =

{
Hj, k

2
−j, (k even);

H̃j, k−1
2
−j, (k odd),

Q
(k)
k−2j = Hk,j.

Both observe that Q
(k)
k−2j is invariant under conjugation, and so has a basis of real-valued

polynomials, and a real-valued zonal function (a function invariant under the subgroup
of Sp(d)×Sp(1) that fixes a point). The structural form of this zonal is given in [Smi75]
Proposition 2.8, and it is given explicitly in [ACMM20] Proposition 3.1.

The invariance of Q
(k)
k−2j under conjugation follows directly from (4.7), i.e.,

H(k − b, b)k−2j = Rb−j
(

kerR∗ ∩ HomH(k − j, j)
)

= (R∗)b−j
(
kerR∗ ∩ HomH(k − j, j)

)
= (R∗)b−j

(
kerR ∩ HomH(j, k − j)

)
= H(b, k − b)k−2j. (9.11)
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Schematic 9.5 (Wedding cake) The orthogonal decomposition (9.5) of Harmk(Hd,C)
into U(Hd)-irreducibles can be displayed as layers of a “wedding cake”

H(k, 0) H(k − 1, 1) H(k − 2, 2) · · · H(2, k − 2) H(1, k − 1) H(0, k)

R∗

←−
.
.
.

R−→
R

(k)
k−4 : H(k − 2, 2)k−4 · · · H(2, k − 2)k−4

R
(k)
k−2 : H(k − 1, 1)k−2 H(k − 2, 2)k−2 · · · H(2, k − 2)k−2 H(1, k − 1)k−2

R
(k)
k : H(k, 0)k H(k − 1, 1)k H(k − 2, 2)k · · · H(2, k − 2)k H(1, k − 1)k H(0, k)k

where the layers (rows) correspond to the irreducible R
(k)
k−2j (the bottom layer is R

(k)
k ),

and the slices (columns) correspond to the decomposition of a given H(k − b, b) into
min{b, k− b}+ 1 different irreducibles. One can move along the layers using R and R∗,
as indicated. Therefore, the left most irreducibles (shaded in grey), i.e.,

H(k − j, j)k = H(k − j, j) ∩ kerR∗, 0 ≤ j ≤ k

2
,

are a distinguished copy of each irreducible, from which the other summands in the layer
can be obtained by applying R. Further, in view of the symmetries (9.11), i.e., that
conjugation reflects the cake around its centre, only half of these summands need be
calculated, in practice. Similarly, the right most entries are distinguished, and give the
other summands by applying R∗.

Example 9.6 We consider Harm2(Hd,C), for which (2.5) gives

dim(Harm2(Hd,C)) = 2d(4d+ 1)− 1 = (2d+ 1)(4d− 1).

For d = 2, we have the following table, where each line is an R-orbit, as in (9.4).

H(2, 0) H(1, 1) H(0, 2)

K(2, 0)
{ z21 z1w1 w1

2

z22 z2w2 w2
2

z1z2 z1w2 + z2w1 w1w2

z1w2 − z2w1

K(1, 1)
{

z1w1 z1z1 − w1w1 z1w1

z1w2 w1w2 − z1z2 w1z2
z2w1 w2w1 − z2z1 w2z1
z2w2 z2z2 − w2w2 z2w2

z1z2 + w1w2

z1z2 + w1w2

z2z2 + w2w2 − z1z1 − w1w1

K(0, 2)
{ w2

1 z1w1 z1
2

w2
2 z2w2 z2

2

w1w2 z1w2 + z2w1 z1z2

z1w2 − z2w1
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For example, we have the decomposition into irreducibles for right multiplication by H∗

K(2, 0) = (R{z21} ⊕R{z22} ⊕R{z1z2})⊕R{z1w2 − z2w1} ∼= 3W2 ⊕W0,

where

R{z21} = span{z21 , z1w1, w1
2} ∼= W2, R{z1w2 − z2w1} = span{z1w2 − z2w1} ∼= W0,

etc. This calculation was done for Hom2(H2), which has a dimension 1 higher. Apart
from applying R to fill out the rows, the only other calculation done was solving Rf = 0
or R∗f for f ∈ H(1,1)

2 (H2) = K(1, 1) ∩H(1, 1) gives a 4-dimensional space spanned by

z1z1 + w1w1, z2z2 + w2w2, z1z2 + w1w2, z1z2 + w1w2,

The first two have nonzero constant Laplacian, so their difference is harmonic, and the
second two are harmonic. Similar calculations give the general decomposition

K(2, 0) =
(⊕
|α|=2

R{zα}
)
⊕
( ⊕
1≤j<k≤d

R{zjwk − zkwj}
)
∼=

1

2
d(d+ 1)W2 ⊕

1

2
d(d− 1)W0,

K(1, 1) =
( ⊕
1≤j,k≤d

R{zjwk}
)
⊕
(⊕
j 6=k

R{zjzk + wjwk} ⊕
⊕
2≤j≤d

R{zjzj + wjwj − z1z1 − w1w1}
)

∼= d2W2 ⊕ (d2 − 1)W0,

K(0, 2) =
(⊕
|α|=2

R{wα}
)
⊕
( ⊕
1≤j<k≤d

R{zjwk − zkwj}
)
∼=

1

2
d(d+ 1)W2 ⊕

1

2
d(d− 1)W0,

into irreducibles (sums of R-orbits). In particular, the homogeneous components, i.e.,
the Sp(d)× Sp(1)-irreducibles, are

Harm2(Hd) = Q
(k)
2 ⊕Q

(k)
0 = I(W2)

(2) ⊕ I(W0)
(2) ∼= d(2d+ 1)W3 ⊕ (d− 1)(2d+ 1)W0.

Example 9.7 Since H(k, 0) ∩ kerR∗ = H(k, 0), we have

I(Wk)
(k) =

⊕
|α+β|=k

R{zαwβ} ∼=
(
k + 2d− 1

k

)
Wk (orthogonal direct sum).

10 Zonal polynomials

Here we consider the “zonal polynomials” for our irreducible representations of the
groups G = U(Hd), U(Hd) × H∗ on Harmk(Hd,C). There are two common notions of
zonal functions:

� The functions fixed by the action of the subgroup Gq′ which fixes a point q′.

� The Riesz representer of point evaluation at a point q′ (the reproducing kernel).

37



When Gq′ is a maximal compact subgroup of G these are equivalent. We will consider
the first notion. For a group G acting on Hd, we define the stabliser (or isotrophy)
subgroup of q′ ∈ Hd to be those elements which fix q′, i.e.,

Gq′ := {g ∈ G : g · q′ = q′}.

A function Hd → C which is fixed by the action of Gq′ is said to zonal (with pole q′).
We denote the subspace of zonal functions in a space V of polynomials by

V Gq′ := {f ∈ V : g · f = f}.

We now condsider the zonal polynomials for the group G = U(Hd).
Recall 〈v, w〉 = v∗w is the Euclidean inner product (2.2). For vectors q = z + jw,

q′ = z′ + jw′ in Hd, we define two inner products

〈q′, q〉Hd := 〈q′, q〉 ∈ H, 〈q′, q〉C2d := 〈
(
z′

w′

)
,

(
z
w

)
〉 ∈ C. (10.1)

Lemma 10.1 For q, q′ ∈ Hd, we have

〈q′, q〉Hd = 〈q′, q〉C2d + j〈q′j, q〉C2d . (10.2)

For the action of U(Hd) the following are zonal polynomials Hd → C with pole q′

q 7→ 〈q′, q〉C2d = z′1z1 + · · ·+ z′dzd + w′1w1 + · · ·+ w′dwd,

q 7→ 〈q′j, q〉C2d = z′1w1 + · · ·+ z′dwd − w′1z1 − · · · − w′dzd.
When q′ = e1, the zonal polynomials above are

z + jw 7→ z1, z + jw 7→ w1.

Proof: Using (2.1), we calculate

q′j = (z′ + jw′)j = z′j + jw′j = −w′ + jz′,

and so

〈q′, q〉Hd = (z′ + jw′)∗(z + jw) = ((z′)∗ − (w′)∗j)(z + jw)

= (z′)∗z + (w′)∗w + j(z′)∗w − j(w′)∗z

= 〈
(
z′

w′

)
,

(
z
w

)
〉+ j〈

(
−w′
z′

)
,

(
z
w

)
〉 = 〈q′, q〉C2d + j〈q′j, q〉C2d ,

which is (10.2). Let U ∈ U(Hd) with Uq′ = q′, then we have

〈q′, q〉Hd = 〈Uq′, Uq〉Hd = 〈q′, Uq〉Hd = 〈q′, Uq〉C2d + j〈q′j, Uq〉C2d ,

so that
〈q′, Uq〉C2d = 〈q′, q〉C2d , 〈q′j, Uq〉C2d = 〈q′j, q〉C2d ,

which shows that the linear polynomials given are zonal.
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We note that z1 and w1 are zonal polynomials in the U(Hd)-irreducible subspace

H(1, 0)1 = span{z1, . . . , zd, w1, . . . wd},

and so the space of zonal polynomials in a given U(Hd)-irreducible is not 1-dimensional,
as it is in the real and complex cases.

Example 10.2 The quadratic polynomial q 7→ ‖q‖2 = 〈q, q〉Hd is zonal (for any q′). By
folk law (the real and complex cases), the zonal polynomials should be a function of this
and the quaternionic inner product q 7→ 〈q′, q〉Hd = (q′)∗q. Using (8.7), we have the
explicit formulas:

〈q′, q〉C2d =
1

2
(〈q′, q〉Hd − i〈q′, q〉Hdi), 〈q′j, q〉C2d =

1

2j
(〈q′, q〉Hd + i〈q′, q〉Hdi).

Using the zonal polynomials above, which commute, since they are complex-valued,
[BN02] define zonal polynomials in Homk(Hd,C) by

[α1, α2, α3, α4, r]q′(q) := 〈q′, q〉α1

C2d〈q′j, q〉α2

C2d〈q′, q〉
α3

C2d〈q′j, q〉
α4

C2d‖q‖2r, (10.3)

where α1 + α2 + α3 + α4 + 2r = k. These span and hence are a basis for the zonal
polynomials in Homk(Hd,C) (Proposition 4.2, [BN02]).

Example 10.3 For a general q′, we have

[α1, α2, α3, α4, r]q′ ∈ HomH(α1 + α2 + r, α3 + α4 + r),

and for q′ = e1, we have

[α1, α2, α3, α4, r]e1 = zα1
1 wα2

1 z1
α3w1

α4‖z + jw‖2r, α1 + α2 + α3 + α4 + 2r = k, (10.4)

so that
[α1, α2, α3, α4, r]e1 ∈ Hom

(α2+α3+r,α3+α4+r)
k (Hd).

We can take advantage of (10.4) to simplify the proof and presentation of results,
since if U is unitary with Uq′ = e1, then we have the following correspondence between
zonal polynomials with poles q′ and e1

[a1, a2, a3, a4, r]q′ = [a1, a2, a3, a4, r]e1(V ·),

This follows from the calculation

〈q′, q〉Hd = 〈Uq′, Uq〉Hd = 〈e1, Uq〉Hd ,

and the fact that such a U can always be constructed, since U(Hd) is transitive on the
quaternionic sphere. In effect, a zonal polynomial for q′ can be obtained from one with
pole e1 by making the substitution

z1 7→ 〈q′, q〉C2d , w1 7→ 〈q′j, q〉C2d . (10.5)

The number of zonal functions given by (10.3) is independent of the dimension d.
For d = 1, these zonal polynomials have linear dependencies, e.g.,

[1, 0, 1, 0, 0] + [0, 1, 0, 1, 0] = z1z1 + w1w1 = [0, 0, 0, 0, 1],

and for d > 1 they are linearly dependent. Thus we obtain the following dimensions.
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Lemma 10.4 For Z := U(Hd)q′, d ≥ 2, the zonal polynomials have dimensions

dim(Homk(Hd,C)Z) =
∑

0≤j≤ k
2

(
k − 2j + 3

3

)
, (10.6)

dim(Harmk(Hd,C)Z) =

(
k + 3

3

)
=
∑

0≤j≤ k
2

(k − 2j + 1)2. (10.7)

Further, if q′ = z′ ∈ Cd, e.g., q′ = e1, then

dim(Hom
(a,b)
k (Hd)Z) =

1

2
(m+ 1)(m+ 2), (10.8)

dim(H
(a,b)
k (Hd)Z) = m+ 1, (10.9)

where
m := min{a, k − a, b, k − b}.

Proof: Since the zonal polynomials in (10.4) are clearly linearly independent and
span Homk(Hd,C)Z (see [BN02] Proposition 4.2), it suffices to count them, which gives

dim(Homk(Hd,C)Z) =
∑

0≤r≤ k
2

dim(Homk−2r(H,C)) =
∑

0≤r≤ k
2

(
k − 2r + 3

3

)
.

When q′ = z′ (w′ = 0), each of these zonal polynomials is in some Hom
(a,b)
k (Hd), so that

Hom
(a,b)
k (Hd)Z =

⊕
m≤r≤ k

2

spanC
{

[α1, α2, α3, α4, r] :
α1 + α4 = k − a− r, α2 + α3 = a− r
α1 + α2 = k − b− r, α3 + α4 = b− r

}
,

(10.10)

and counting again, using (7.4) and m
(k−2r)
a−r,b−r = m+ 1− r, gives

dim(Hom
(a,b)
k (Hd)Z) =

∑
m≤r≤ k

2

dim(Hom
(a−r,b−r)
k−2r (H))

= 1 + 2 + · · ·+m+ (m+ 1) =
1

2
(m+ 1)(m+ 2).

Since the Laplacian maps Hom
(a,b)
k (Hd) onto Hom

(a−1,b−1)
k−1 (Hd) and zonal polynomials to

zonal polynomials (Lemma 14.2), we have

dim(Harmk(Hd,C)Z) = dim(Homk(Hd,C)Z)− dim(Homk−2(Hd,C)Z) =

(
k + 3

3

)
,

dim(H
(a,b)
k (Hd)Z) = dim(Hom

(a,b)
k (Hd)Z)− dim(Hom

(a−1,b−1)
k−2 (Hd)Z)

=
1

2
(m+ 1)(m+ 2)− 1

2
(m− 1 + 1)(m− 1 + 2) = m+ 1,

which completes the proof.
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We will give a simple example first, which motivates the general and constructive
result to follow.

Example 10.5 For q′ = e1, the unique zonal polynomial in H
(0,0)
k (Hd) is

[k, 0, 0, 0, 0] = zk1 .

We may apply L (down) and R (right) to this, as in the univariate case (Schematic 7.6
and Lemma 8.2), to obtain (k + 1)2 zonal polynomials in I(Wk)

(k).

zk1 kzk−11 w1 · · · k!w1
k

kzk−11 w1 k(k − 1)zk−21 w1w1 − kzk−11 z1 · · · −k!kz1w1
k−1

k(k − 1)zk−21 w2
1 k(k − 1){(k − 2)zk−31 w2

1w1 − 2zk−21 w1z1} · · · k!k(k − 1)z1
2w1

k−2

...
...

...
k!z1w

k−1
1 k!wk−11 w1 − k!(k − 1)z1w

k−2
1 z1 · · · (−1)k−1k!2z1

k−1w1

k!wk1 −k!kwk−11 z1 · · · (−1)kk!2z1
k

Theorem 10.6 Let q′ = e1. For d ≥ 2, there is a unique harmonic zonal polynomial

P
(k)
k−2j = P

(k)
k−2j,d ∈ kerL∗ ∩ kerR∗ ∩H(j,j)

k (Hd), 0 ≤ j ≤ k

2
,

given by

P
(k)
k−2j :=

∑
b+c+r=j

(−1)r

b!c!r!

(k + 2− j − r)r
(k + 2d− 1− r)r

[k − j − b− r, b, c, b, r], (10.11)

which has 1
2
(j + 1)(j + 2) terms. Let

P
(k)
k−2j,a,b := La−jRb−jP

(k)
k−2j, j ≤ a, b ≤ k − j. (10.12)

Then the zonal polynomials (with pole e1) in Harmk(Hd,C) have the following orthogonal
direct sum decomposition into one-dimensional subspaces

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2

⊕
j≤a,b≤k−j

span{P (k)
k−2j,a,b}. (10.13)

Proof: By (10.10), a general zonal polynomial in Hom
(j,j)
k (Hd) has the form

f :=
∑

b+c+r=j

Cbcr[k − j − b− r, b, c, b, r], Cbcr ∈ C,

which involves 1
2
(j+1)(j+2) terms. By Lemma 14.2, the condition for f to be harmonic

is

1

4
∆f =

∑
b+c+r=j

Cbcr
{

(k − j − b− r)c[k − j − b− r − 1, b, c− 1, b, r]

+ b2[k − j − b− r, b− 1, c, b− 1, r]

+ r(k + 2d− 1− r)[k − j − b− r, b, c, b, r − 1]
}

= 0,
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which gives 1
2
j(j+1) equations, and hence j+1 = dim((H

(j,j)
k )Z) free parameters. Hand

calculations indicated that ∆f = 0 together with the conditions R∗f = 0 and L∗f = 0
leads to a unique (one parameter) solution f . From these special cases, we “guessed” the
formula (10.11). We will now verify directly that f defined by (10.11) has the desired
properties, and then conclude that it is unique (by a cardinality argument).

By Lemma 14.2 and Lemma 14.1, we have

∆([k − j − b− r, b, c, b, r]) = (k − j − b− r)c[k − j − b− r − 1, b, c− 1, b, r]

+ b2[k − j − b− r, b− 1, c, b− 1, r]

+ r(k + 2d− 1− r)[k − j − b− r, b, c, b, r − 1],

R∗([k − j − b− r, b, c, b, r]) = −c[k − j − b− r, b+ 1, c− 1, b, r]

+ b[k − j − b− r + 1, b, c, b− 1, r],

L∗([k − j − b− r, b, c, b, r]) = b[k − j − b− r + 1, b− 1, c, b, r]

− c[k − j − b− r, b, c− 1, b+ 1, r].

Hence, the [k − j − b′ − r′ − 1, b′, c′, b′, r′] coefficient of ∆f is

(−1)r
′

(b′)!(c′)!

(k + 2− j − r′)r′
(k + 2d− 1− r′)r′

{ 1

c′ + 1
(k − j − b′ − r′)(c′ + 1)

+
1

b′ + 1
(b′ + 1)2 − 1

r′ + 1

(k + 2− j − r′ − 1)

(k + 2d− 1− r′ − 1)
(r′ + 1)(k + 2d− 1− r′ − 1)

}
= 0,

the [k − j − b′ − r + 1, b′, c′, b′ − 1, r], b′ 6= 0, coefficient of R∗f is

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

( 1

(b′ − 1)!(c′ + 1)!
(−(c′ + 1)) +

1

(b′)!(c′)!
b′
)

= 0,

and the [k − j − b′ − r + 1, b′ − 1, c′, b′, r], b′ 6= 0, coefficient of L∗f is

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

{ 1

(b′)!(c′)!
(b′)− 1

(b′ − 1)!(c′ + 1)!
(c′ + 1)

}
= 0,

so that f = P
(k)
k−2j ∈ ker(L∗)∩ker(R∗)∩H(j,j)

k (Hd)Z . Since P
(k)
k−2j ∈ H

(j,j)
k (Hd), by Lemma

14.3 and Lemma 14.1, we have the orthogonal direct sum decomposition⊕
0≤j≤ k

2

⊕
j≤a,b≤k−j

span{La−jRb−jP
(k)
k−2j} ⊂ Harmk(Hd,C)Z ,

and by a dimension count using (10.7), we obtain (10.13), and hence the uniqueness of

P
(k)
k−2j up to a scalar multiple.

It follows from Theorem 10.6 (also see [BN02]) the zonal functions satisfy

dim((I(Wk−2j)
(k))Z) = (k − 2j + 1)2,

dim(H(k − b, b)Zk−2j) = k − 2j + 1, j ≤ b ≤ k − j,
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and for q′ = e1, we have

dim(H(k − b, b)k−2j ∩H(a,b)
k (Hd)Z) =

{
1, j ≤ a, b ≤ k − j;
0, otherwise.

(10.14)

Let Z
(k)
k−2j,a,b be the zonal polynomial with pole q′ obtained from P

(k)
k−2j,a,b by making

the substitution (10.5).

Corollary 10.7 The zonal polynomials in Harmk(Hd,C) have the following orthogonal
direct sum decomposition into one-dimensional subspaces

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2

⊕
j≤a,b≤k−j

span{Z(k)
k−2j,a,b}. (10.15)

Proof: Apply the substitution (10.5) to the orthogonal direct sum (10.13).

The existence of the zonal polynomials Z
(k)
k−2j,a,b in (10.13) is proved inductively in

[BN02], where they are denoted by Z(k)
p,w,w′ . We now outline how the two are related.

Here p = k − 2j, and the “weight” parameters w,w′ are related to (a, b), as follows

a =
k − w′

2
, b =

k − w
2

, w′ = k − 2a, w = k − 2b, (10.16)

which gives the correspondence between indices

(a, b) ∈ {0, 1, . . . , k}2 ⇐⇒ (w,w′) ∈ {−k,−k + 2, . . . , k − 2, k}2.

We note that for k even (the case considered in [BN02]) the weights w and w′ are even,
and for k odd, they are odd. They define the space of zonal polynomials

E
(k)
w,w′ := span{[α1, α2, α3, α4, r]q′ : α1 + α2 + α3 + α4 + 2r = k,

α1 + α2 − α3 − α4 = w, α1 − α2 − α3 + α4 = w′}, (10.17)

which satisfies
E

(k)
w,w′ = Hom

(a,b)
k (Hd)Z , for q′ = z′ ∈ Cd,

and the space

V (k)
w = H

(k + w

2
,
k − w

2

)
= H(k − b, b).

In [BN02] (Proposition 4.5), the zonal polynomials Z(k)
p,w,w′ are characterised by the fol-

lowing properties:

� Zp,w,w′ ∈ E(k)
w,w′ , i.e., Z

(k)
k−2j,a,b has the structural form given by (10.11) and (10.12).

� {Zp,w,w′}w′∈{−p,...,p−2,p} is a basis of (the zonal polynomials in) I(Wp)
(k) ∩V (k)

w , i.e.,

{Z(k)
k−2j,a,b}j≤a≤k−j is a basis of the zonal polynomials in I(Wk−2j)

(k) ∩H(k − b, b).
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� {Zp,w,w′}w∈{−p,...,p−2,p} is a basis of zonal polynomials for an irreducible subspace

for right multiplication by H∗, (which is isomorphic to Wp), i.e., {Z(k)
k−2j,a,b}j≤b≤k−j

is an R-orbit for a Wk−2j.

These follow from our construction, and the observation (by Lemma 14.1) that

Z
(k)
k−2j,a,b = Rb−jZ

(k)
k−2j,a,0, j ≤ b ≤ k − j.

Example 10.8 The first three polynomials Z
(k)
k−2j = Z

(k)
k−2j,0,0 given by (10.11) are

Z
(k)
k = [k, 0, 0, 0, 0],

Z
(k)
k−2 = [k − 2, 1, 0, 1, 0] + [k − 1, 0, 1, 0, 0]− k

k + 2d− 2
[k − 2, 0, 0, 0, 1],

Z
(k)
k−4 = [k − 4, 2, 0, 2, 0] + [k − 2, 0, 2, 0, 0] + 2[k − 3, 1, 1, 1, 0]− 2(k − 1)

k + 2d− 2
[k − 4, 1, 0, 1, 1]

− 2(k − 1)

k + 2d− 2
[k − 3, 0, 1, 0, 1] +

(k − 1)(k − 2)

(k + 2d− 2)(k + 2d− 3)
[k − 4, 0, 0, 0, 2].

We observe that, except for the first, these depend on the dimension d.

Example 10.9 For k = 1, the zonal polynomials in (10.15) are

Z
(1)
1 := [1, 0, 0, 0, 0] = z1, RZ

(1)
1 = [0, 0, 0, 1, 0] = w1,

LZ
(1)
1 = [0, 1, 0, 0, 0] = w1, −LRZ(1)

1 = [0, 0, 1, 0, 0] = z1.

and for k = 2, they are given by the schematic

H(1, 1)0
K(1, 1) [1, 0, 1, 0, 0] + [0, 1, 0, 1, 0]− 1

d
[0, 0, 0, 0, 1]

H(2, 0)2 H(1, 1)2 H(0, 2)2
K(2, 0) [2, 0, 0, 0, 0] [1, 0, 0, 1, 0] [0, 0, 0, 2, 0]
K(1, 1) [1, 1, 0, 0, 0] [0, 1, 0, 1, 0]− [1, 0, 1, 0, 0] [0, 0, 1, 1, 0]
K(0, 2) [0, 2, 0, 0, 0] [0, 1, 1, 0, 0] [0, 0, 2, 0, 0]

with the indexing of rows and columns as before.

Similarly to the Schematic 9.5, the summands {Zk−2j,a,b}j≤a,b≤k−j, 0 ≤ j ≤ k
2
, in

(10.15) can be arranged as the layers of a “wedding cake” (see Figure 1).

We now seek an explicit formula for the zonal polynomial LαRβP
(k)
k−2j of Theorem

10.6. We first determine its structural form. The Lemma 10.10, below, says that the
complexity of the formula depends on how far the index (α, β) is from the edges of the
array of indices A = {0, 1, . . . , k − 2j}2. Partition A into “nested squares”, as in (8.4),

Sk,j,m := {(α, β) : min{j + α, j + β, k − j − α, k − j − β} = m}, j ≤ m ≤ k

2
. (10.18)
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H(2, 2)0
K(2, 2) P0 = P

(4)
000

H(3, 1)2 H(2, 2)2 H(1, 3)2
K(3, 1) P2 = P

(4)
200 RP2 R2P2

K(2, 2) LP2 LRP2 LR2P2

K(1, 3) L2P2 L2RP2 L2R2P2

H(4, 0)4 H(3, 1)4 H(2, 2)4 H(1, 3)4 H(0, 4)4
K(4, 0) P4 = P

(4)
400 RP4 R2P4 R3P4 R4P4

K(3, 1) LP4 LRP4 LR2P4 LR3P4 LR4P4

K(2, 2) L2P4 L2RP4 L2R2P4 L2R3P4 L2R4P4

K(1, 3) L3P4 L3RP4 L3R2P4 L3R3P4 L3R4P4

K(0, 4) L4P4 L4RP4 L4R2P4 L4R3P4 L4R4P4

Figure 1: Schematic of the 12+32+52 zonal functions for Harm4(Hd,C) given by (10.12).

Lemma 10.10 Let 0 ≤ α, β ≤ k − 2j, 0 ≤ j ≤ k
2
, and

m := min{j + α, k − j − β, j + β, k − j − α} i.e., (α, β) ∈ Sk,j,m.

Then LαRβP
(k)
k−2j ∈ K(k − j − α, j + α) ∩H(k − j − β, j + β) has the form

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k − j − β − b− r, b, α + j − r − b, β − α + b, r], α ≤ β,

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br ‘[k − j − α− b− r, α− β + b, j + β − b− r, b, r], α ≥ β,

which involves 1
2
(j + 1)(2m+ 2− j) terms.

Proof: A general zonal polynomial of degree k has the form

f =
∑

a+b+c+d+2r=k

Cabcdr[a, b, c, d, r].

By Lemma 14.1, L and R applied to [a, b, c, d, r] preserves the value of r, so that

f = LαRβP
(k)
k−2j

has the same restriction on r as P
(k)
k−2j does, i.e., 0 ≤ r ≤ j.

The condition that f = LαRβP
(k)
k−2j ∈ K(k− j−α, j+α)∩H(k− j−β, j+β) gives

a+ b+ r = k − j − β, c+ d+ r = j + β,

a+ d+ r = k − j − α, b+ c+ r = j + α.
(10.19)
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First consider the case α ≤ β, i.e., m = j + α or m = k − j − β. If m = j + α, then
(10.19) gives

b+ c = m− r, a = k − j − β − b− r, d = j + β − c− r,

so that

LαRβP
(k)
k−2j =

∑
0≤r≤j

b+c=m−r

Cbcr[k − j − β − b− r, b, c, j + β − c− r, r], m = j + α.

Using b+ c+ r = j + α to eliminate c above, gives

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

Cbr[k − j − β − b− r, b, j + α− r − b, β − α + b, r]. (10.20)

Now consider m = k − j − β. Then (10.19) gives

a+ b = m− r, a = k − j − β − b− r, c = j + α− r − b, d = β − α + b,

so that (10.20) holds for m = j + α and m = k − j − β, i.e., α ≤ β.
For the case α ≥ β, i.e., m = j + β or m = k − j − α, we have, respectively

c+ d = m− r, a = k − j − α− d− r, b = α− β + d, c = j + β − d− r,

a+ d = m− r, a = k − j − α− d− r, b = α− β + d, c = j + β − d− r,

which (replacing d by b) gives the second formula.
In the sum, we can have r = 0, 1, . . . , j (j + 1 choices), with m+ 1− r choices for b,

and so the number of terms is

(m+ 1) +m+ (m− 1) + · · ·+ (m+ 1− j) =
1

2
(j + 1)(2m+ 2− j).

An explicit formula for LαRβP
(k)
k−2j can by found by applying (14.4) and (14.8). This

gives very complicated coefficients. Instead, we used Lemma 8.2 and numerous symbolic
calculations for low values of α and β, such as Lemma 10.11 below, to conjecture the
formulas of Theorems 10.12 and 10.14, which were then proved for a general (α, β).

Lemma 10.11 For 0 ≤ β ≤ k − 2j, 0 ≤ j ≤ k
2
, we have

RβZ
(k)
k−2j =

∑
b+c+r=j

(−1)r

b!c!r!

(k + 2− j − r)r
(k + 2d− 1− r)r

(k− 2j − β + 1)β[k− 2j − β + c, b, c, b+ β, r].

Proof: Use induction on 0 ≤ β ≤ k − 2j, with β = 0 being trivial. Suppose that it
holds for β − 1 ≥ 0, then

RβZ
(k)
k−2j =

∑
b+c+r=j

(−1)r

b!c!r!

(k + 2− j − r)r
(k + 2d− 1− r)r

(k − 2j − (β − 1) + 1)β−1R([ ]), (10.21)
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where, by (14.4) of Lemma 14.1,

R([ ]) = R([k − 2j − β + 1 + c, b, c, b+ β − 1, r])

= (k − 2j − β + 1 + c)[k − 2j − β + c, b, c, b+ β, r]

− b[k − 2j − β + 1 + c, b− 1, c+ 1, b+ β − 1, r].

The [k − 2j − β + c′, b′, c′, b′ + β, r], b′ + c′ + r = j, coefficient in (10.21) is

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

(k − 2j − β + 2)β−1

{ }
,

where { }
=

1

(b′)!(c′!)
(k − 2j − β + 1 + c′)− 1

(b′ + 1)!(c′!− 1)
((b′ + 1)

=
1

(b′)!(c′!)
(k − 2j − β + 1 + c′ − c′) =

1

(b′)!(c′!)
(k − 2j − β + 1),

which completes the induction.

Theorem 10.12 For 0 ≤ α ≤ β ≤ k − 2j, 0 ≤ j ≤ k
2
, we have

LαRβZ
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k − j − β − b− r, b, j + α− r − b, β − α + b, r],

where m = min{j + α, k − j − β} and C
(α,β)
br = A

(α,β)
br B

(α,β)
br , with

A
(α,β)
br :=

(−1)r

b!(j + α− b− r)!r!
(k + 2− j − r)r
(k + 2d− 1− r)r

(k − 2j − β + 1)β, (10.22)

B
(α,β)
br : =

∑
u+v=α

α!

u!v!
(k − 2j − α + 1)u(b− u+ 1)u(j − r + 1)v(−β)v

= (1 + j − r)α(−β)α 3F2

(−α,−b, k − 2j − α + 1
r − j − α, β + 1− α ; 1

)
. (10.23)

The constant B
(α,β)
br can also be calculated from B

(0,β)
br := 1 and the recurrence

B
(α,β)
br = (k− j−β− b+ 1− r)bB(α−1,β)

b−1,r − (β−α+ 1 + b)(j+α− b− r)B(α−1,β)
br . (10.24)

Proof: We first prove the result for B
(α,β)
br given by the recurrence relation (10.24), by

using induction on α. This is true for α = 0 and all β by Lemma 10.11 (where m = j).

Let A
(α,β)
−1,r and B

(α,β)
−1,r take some value (it matters not which). Then we have

A
(α−1,β)
b−1,r = bA

(α,β)
br , A

(α−1,β)
br = (j + α− b− r)A(α,β)

br , α > 0. (10.25)

47



Suppose that α > 0, then by the inductive hypothesis, we have

Lα−1RβZ
(k)
k−2j =

∑
0≤r≤j

0≤b′≤m−r

C
(α−1,β)
b′r [k− j−β− b′− r, b′, j+α− 1− r− b′, β−α+ 1 + b′, r].

We apply L to this, using (14.8), i.e.,

L([k − j − β − b′ − r, b′, j + α− 1− r − b′, β − α + 1 + b′, r])

= (k − j − β − b′ − r)[k − j − β − b′ − r − 1, b′ + 1, j + α− 1− r − b′, β − α + 1 + b′, r]

− (β − α + 1 + b′)[k − j − β − b′ − r, b′, j + α− r − b′, β − α + b′, r]

and (10.25), to obtain

C
(α,β)
br = (k − j − β − (b− 1)− r)C(α−1,β)

b−1,r − (β − α + 1 + b)C
(α−1,β)
br

= (k − j − β − b+ 1− r)bA(α,β)
br B

(α,β)
b−1,r − (β − α + 1 + b)(j + α− b− r)A(α,β)

br B
(α−1,β)
br .

Since A
(α,β)
br 6= 0, we may divide the above by it, to obtain

B
(α,β)
br = (k − j − β − b+ 1− r)bB(α−1,β)

b−1,r − (β − α + 1 + b)(j + α− b− r)B(α−1,β)
br ,

i.e., (10.24), which completes the induction.

Finally, we show that the formula (10.23) for B
(α,β)
br involving a 3F2 hypergeometric

series holds, i.e., it satisfies the recurrence. This we do by induction on α. The case
α = 0 is immediate, and the inductive step follows from the contiguous relation

(de) 3F2

(−n, a, c
d, e

; 1
)

= (a+ c− d− e+ 1− n)(−a) 3F2

(1− n, a+ 1, c+ 1
d+ 1, e+ 1

; 1
)

− (e− a)(a− d) 3F2

(1− n, a, c+ 1
d+ 1, e+ 1

; 1
)
.

for hypergeometric functions, for the choice

n = α, a = −b, c = k − 2j − α + 1, d = r − j − α, e = β + 1− α.

The recurrence relation (10.24) was determined first. It suggests that (b, β) 7→ Bα,β
br

is a polynomial of degree 2α, where in fact it has degree α, as is indicated by (10.23).
We could not prove formula (10.23) directly, without recourse to the contiguous relation.
To indicate the complexity of such a calculation, we give the inductive step for α = 1, 2

B
(1,β)
br = (k − j − β − b+ 1− r)b− (β + b)(j + 1− b− r) = (k − 2j)b− (j − r + 1)β,

B
(2,β)
br = (k − j − β − b+ 1− r)b{(k − 2j)(b− 1)− (j − r + 1)β}

− (β − 1 + b)(j + 2− b− r){(k − 2j)b− (j − r + 1)β}
= (j − r + 1)2(−β)2 + 2(k − 2j − 1)b(j − r + 1)(−β) + (k − 2j − 2)2(b− 1)2.
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Example 10.13 For r = j, the hypergeometric series in (10.23) can be summed using
the generalised binomial theorem, or Gauss’s summation for the resulting 2F1, to obtain

B
(α,β)
bj =

b∑
u=0

α!

u!v!
(k − 2j − α + 1)u

b!

(b− u)!
v!(−β)α−b(−β + α− b)b−u

= α!(−β)α
(β − k + 2j)b
(β + 1− α)b

,

C
(α,β)
bj =

(−1)j

j!

(k + 2− 2j)j
(k + 2d− 1− j)j

(k − 2j − β + 1)β(−β)α
(−1)b

b!

(−α)b(β − k + 2j)b
(β + 1− α)b

.

For the case j = 0, this further reduces to

C
(α,β)
b0 = (k − β + 1)β(−β)α

(−1)b

b!

(−α)b(β − k)b
(β + 1− α)b

,

and we recover the Lemma 8.2 as the particular case j = 0 and d = 1.

The case α ≥ β can easily be obtained in a similar way to Theorem 10.12.

Theorem 10.14 For 0 ≤ α, β ≤ k − 2j, 0 ≤ j ≤ k
2
, let

m := min{j + α, k − j − β, j + β, k − j − α}, c := min{α, β}.

Then we have

LαRβZ
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k−j+c−α−β−b−r, α−c+b, j+c−b−r, β−c+b, r], (10.26)

where and C
(α,β)
br := A

(α,β)
br B

(α,β)
br is given by (10.22) and (10.23) for α ≤ β, and by

A
(α,β)
br := A

(β,α)
br , B

(α,β)
br := B

(β,α)
br , α ≥ β.

For β ≥ α, the constant B
(α,β)
br can be calculated from B

(α,0)
br := 1 and the recurrence

B
(α,β)
br = (k− j−α− b+ 1− r)bB(α,β−1)

b−1,r − (α−β+ 1 + b)(j+β− b− r)B(α,β−1)
br . (10.27)

Proof: In light of Theorem 10.12, we need only consider the case α ≥ β. It follows
from (10.24) that B

(α,β)
br := B

(β,α)
br , α ≥ β, satisfies (10.27). The formula (10.26) can be

proved as in Theorem 10.12, using induction on β and by applying R to B
(α,β−1)
br .
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We now consider an alternative formula for the zonal polynomial of (10.11), i.e.,

P
(k)
k−2j :=

∑
b+c+r=j

(−1)r

b!c!r!

(k + 2− j − r)r
(k + 2d− 1− r)r

[k − j − b− r, b, c, b, r],

where

[k − j − b− r, b, c, b, r] = zk−j−b−r1 wb1z1
cw1

b‖z + jw‖2r = zk−2j1 |z1|2c|w1|2b‖z + jw‖2r.

By the binomial identity, we have

P
(k)
k−2j =

j∑
r=0

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

zk−2j1 ‖z + jw‖2r 1

(j − r)!
∑

b+c=j−r

(b+ c)!

b!c!
|z1|2c|w1|2b

= zk−2j1

j∑
r=0

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

‖z + jw‖2r 1

(j − r)!
(|z1|2 + |w1|2)j−r.

This has the structural form

P
(k)
k−2j = zk−2j1 F (‖z + jw‖2, |z1|2 + |w1|2), (10.28)

where F is a homogeneous polynomial of degree j with real coefficients. An elementary
calculation shows that the polynomial

|〈z + jw, e1〉|2 = |z1|2 + |w1|2 = z1z1 + w1w1

is in the kernel of R, R∗, L and L∗, e.g.,

R(z1z1 + w1w1) = w1z1 − z1w1 = 0.

Hence, by (3.5), all polynomials of the form

g = G(z1z1 + w1w1, · · · , zdzd + wdwd), (10.29)

which include ‖z + jw‖2 and |z1|2 + |w1|2, are in the kernel of R, R∗, L and L∗, and
hence

T (fg) = T (f)g + fT (g) = T (f)g, T = R,R∗, L, L∗. (10.30)

Applying this to (10.28) gives the following.

Theorem 10.15 Let q′ = e1. For d ≥ 2, 0 ≤ j ≤ k
2
, the zonal polynomials of Theorem

10.6 are given by

LαRβP
(k)
k−2j = LαRβ(zk−2j1 )F, 0 ≤ α, β ≤ k − 2j, (10.31)

where F = F (‖z + jw‖2, |z1|2 + |w1|2) does not depend on α and β, and is given by

F =
(−1)j(k − 2j + 2)j
(k + 2d− 1− j)jj!

j∑
s=0

(−j)s
(k − 2j + 2d− 1 + j)s

(k − 2j + 2)s

1

s!
‖z + jw‖2(j−s)

(
|z1|2 + |w1|2

)s
=

(−1)j

(k + 2d− 1− j)j
‖z + jw‖2jP (k−2j+1,2d−3)

j

(
1− 2

|z1|2 + |w1|2

‖z + jw‖2
)
,

(10.32)

with P
(k−2j+1,2d−3)
j a Jacobi polynomial.
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Proof: Since the function F of (10.28) is of the form (10.29), we may apply (10.30)
repeatedly, to obtain

LαRβP
(k)
k−2j = LαRβ

(
zk−2j1

)
F (‖z + jw‖2, |z1|2 + |w1|2),

where F does not depend on α and β, and is given by

F =
P

(k)
k−2j

zk−2j1

=

j∑
r=0

(−1)r

r!

(k + 2− j − r)r
(k + 2d− 1− r)r

‖z + jw‖2r 1

(j − r)!
(|z1|2 + |w1|2)j−r.

By making the change of variables s = j − r, we obtain

F =
(−1)j(k − 2j + 2)j
(k + 2d− 1− j)jj!

j∑
s=0

(−j)s
(k − 2j + 2d− 1 + j)s

(k − 2j + 2)s

1

s!
‖z + jw‖2(j−s)

(
|z1|2 + |w1|2

)s
=

(−1)j(k − 2j + 2)j
(k + 2d− 1− j)jj!

‖z + jw‖2j
j∑
s=0

(−j)s
(k − 2j + 2d− 1 + j)s

(k − 2j + 2)s

1

s!

( |z1|2 + |w1|2

‖z + jw‖2
)s
,

so that F can be expressed in terms of a Jacobi polynomial, i.e..

F =
(−1)j

(k + 2d− 1− j)j
zk−2j1 ‖z + jw‖2jP (k−2j+1,2d−3)

j

(
1− 2

|z1|2 + |w1|2

‖z + jw‖2
)
.

The formula (10.32) for the zonal polynomial (reproducing kernel) P
(k)
k−2j = zk−2j1 F ,

involving the Jacobi polynomial, appears in [DBSW17] (Theorem 8). An explicit formula
for the factor LαRβ(zk−2j1 ) is given by the formula (8.3) for the univariate case (replace
z by z1, etc).

By writing the zonal polynomials in the form (10.31), the squares in the table/schematic
for the zonal polynomials (see Figure 1) become essentially those for the univariate cases
Harmk−2j(H,C), as depicted in (8.2).

11 Symmetries

The polynomials LαRβP
(k)
k−2j and the spaces H

(α,β)
k (Hd) have certain natural symmetries

that correspond to the symmetries of the square (see the array in Example 10.5).
Let the permutation group Sym(4) act on functions of four variables in the natural

way, i.e.,
σ · f(x1, x2, x3, x4) = f(xσ1, xσ2, xσ3, xσ4),

and hence on functions f(z, w, z, w) ∈ Homk(Hd,C). There is a subgroup G of Sym(4)
which maps Harmk(Hd,C) to itself, which is generated by the permutations

σ := (24), τ := (14)(23). (11.1)

This group is the dihedral group of symmetries of the square

D4 = 〈a, b|a4 = b2 = (ba)2 = 1〉, a = στ, b = σ,
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and hence has order eight. By considering the action on monomials, one obtains

σ ·H(α,β)
k (Hd,C) = H

(β,α)
k (Hd,C), τ ·H(α,β)

k (Hd,C) = H
(α,k−β)
k (Hd,C), (11.2)

and so G permutes the subspaces H
(a,b)
k (Hd,C), where

(a, b) ∈ {(α, β), (α, k−β), (k−α, β), (k−α, k−β), (β, α), (β, k−α−k), (k−β, α), (k−β, k−α)},

via the action on the indices given by

σ · (α, β) := (β, α), τ · (α, β) := (α, k − β).

It clear from Lemma 7.4 that these subspaces do indeed have the same dimension. The
number of subspaces above can be 1, 2, 4, 8, depending on the position of the index
(α, β) in the square array {0, 1, . . . , k}2. The corresponding symmetries of the zonal
polynomials

LαRβP
(k)
k−2j ∈ H

(α+j,β+j)
k (Hd,C), 0 ≤ α, β,≤ k − 2j, (11.3)

are as follows.

Lemma 11.1 (Eight symmetries) The zonal polynomials (LαRβP
(k)
k−2j)0≤α,β,≤k−2j have

the following basic symmetries corresponding to the σ and τ of (11.1)

LαRβP
(k)
k−2j(z, w, z, w) = LβRαP

(k)
k−2j(z, w, z, w) (σ)

= cα,βL
αRk−2j−βP

(k)
k−2j(w, z, w, z) (τ), (11.4)

where cα,β is a constant. The identities for the remaining nontrivial elements of G are

LαRβP
(k)
k−2j(z, w, z, w)

= cα,βL
k−2j−βRαP

(k)
k−2j(w, z, w, z) (στ)

= cβ,αL
βRk−2j−αP

(k)
k−2j(w, z, w, z) (τσ)

= cβ,αL
k−2j−αRβP

(k)
k−2j(w, z, w, z) (στσ)

= cα,βck−2j−β,αL
k−2j−βRk−2j−αP

(k)
k−2j(z, w, z, w) (τστ)

= cα,βck−2j−β,αL
k−2j−αRk−2j−βZ

(k)
k−2j(z, w, z, w) (στστ). (11.5)

Proof: The permutations σ and τ map zonal polynomials to zonal polynomials, and
so, in light of (11.2) and (11.3, we obtain (11.4). This could also be established, with

values of the constants, from the formulas for LαRβP
(k)
k−2j given in Theorem 10.12, or by

using identities such as

σ · (Rf) = Lf, σ · (Lf) = Rf, τ · (Rf) = R∗f, τ · (Lf) = −Lf,

together with Lemma 5.5.

52



The formulas in Lemma 11.1 for P
(k)
k−2j,a,b = La−jRb−jP

(k)
k−2j, α = a − j, β = b − j,

do not have a simple formula for the constants, as the normalisation of LαRβP
(k)
k−2j is

biased towards the (starting) polynomial P
(k)
k−2j ∈ H

(j,j)
k (Hd,C), which corresponds to a

corner of the array of indices. For k even, one could start with the “centre” polynomial

C
(k)
k−2j = P

(k)

k−2j, k
2
, k
2

= L
k
2
−jR

k
2
−jP

(k)
k−2j ∈ H

( k
2
, k
2
)

k (Hd,C),

to obtain zonal polynomials

Lmax{α, k
2
−j}(L∗)max{ k

2
−j−α,0}Rmax{β, k

2
−j}(R∗)max{ k

2
−j−β,0}C

(k)
k−2j.

By using Lemma 5.5, these can be written as

P
(α,β)
k,k−2j :=

Mα!

α!

Mβ!

β!
RαLβP

(k)
k−2j,

where
Mα := max{α, k − 2j − α}, Mβ := max{β, k − 2j − α}.

The σ and τ symmetries of Lemma 11.1 then become

P
(α,β)
k,k−2j(z, w, z, w) = P

(β,α)
k,k−2j(z, w, z, w) (σ)

= (−1)αP
(α,k−2j−β)
k,k−2j (w, z, w, z) (τ). (11.6)

12 The fine scale decomposition for left and right

multiplication by H∗

By taking the intersection of the decomposition into irreducibles for right multiplication
by H∗ (Theorem 9.1) with the corresponding one for left multiplication, we obtain the
following decomposition into low dimensional subspaces. All of our decompositions, and
others, can be built up from this.

Theorem 12.1 (Fine scale decomposition) Let

V
(j1,j2)
k (Hd) := kerL∗ ∩ kerR∗ ∩H(j1,j2)

k (Hd), 0 ≤ j1, j2 ≤
k

2
.

Then for d ≥ 2, we have the orthogonal direct sum

Homk(Hd,C) =
⊕

0≤j1,j2≤ k2

⊕
j1≤a≤k−j1
j2≤b≤k−j2

min{j1,j2}⊕
i=0

‖ · ‖2iLa−j1Rb−j2V
(j1−i,j2−i)
k−2i (Hd), (12.1)

and in particular

Harmk(Hd,C) =
⊕

0≤j1,j2≤ k2

⊕
j1≤a≤k−j1
j2≤b≤k−j2

La−j1Rb−j2V
(j1,j2)
k (Hd), (12.2)

where
dim(La−j1Rb−j2V

(j1,j2)
k (Hd)) = dim(V

(j1,j2)
k (Hd)).

53



Proof: We note that for j ≤ k
2
, j ≤ k − j, so that min{j, k − j} = j, and

HomH(k − j, j) =

j⊕
i=0

‖ · ‖2iH(k − j − i, j − i). (12.3)

We observe that Lemma 14.1 implies multiplication of polynomials by ‖ · ‖2 commutes
with the action of R,L,R∗, L∗. Thus from (12.3), we obtain

HomH(k − j, j)k−2j := kerR∗ ∩ HomH(k − j, j)

=

j⊕
i=0

‖ · ‖2i(kerR∗ ∩H(k − j − i, j − i)),

so that Lemma 6.4 gives the orthogonal direct sum decomposition

Homk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤b≤k−j

j⊕
i=0

‖ · ‖2iRb−j(kerR∗ ∩H(k − j − i, j − i)).

Similarly, we obtain the orthogonal direct sum decomposition

Homk(Hd,C) =
⊕

0≤j≤ k
2

⊕
j≤a≤k−j

j⊕
i=0

‖ · ‖2iLa−j(kerL∗ ∩K(k − j − i, j − i)).

Thus Homk(Hd,C) is an orthogonal direct sum of subspaces

‖ · ‖2i1La−j1(kerL∗∩K(k− j1− i1, j1− i1))∩‖ · ‖2i2Rb−j2(kerR∗∩H(k− j2− i2, j2− i2)).

In view of the uniqueness of the Fischer decomposition, these can be nonzero only if
i1 = i2 = i ≤ min{j1, j2}. Since L,R and ‖ · ‖2 commute, the intersection above can be
written

‖ · ‖iLa−j1Rb−j2(kerL∗ ∩ kerR∗ ∩K(k − j1 − i1, j1 − i1)) ∩H(k − j2 − i2, j2 − i2)),

which gives (12.1), with the i = 0 terms giving (12.2). The dimension formula follows
from Lemma 14.3

Theorem 12.1 also holds for d = 1, in a degenerate way, with

V
(j1,j2)
k (H) = 0, (j1, j2) 6= (0, 0).

Corollary 12.2 The decomposition of zonal polynomials for Z = U(Hd)q′, q
′ = z′ ∈ Cd,

corresponding to (12.2) is

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2

⊕
j≤a,b≤k−j

(
La−jRb−jV

(j,j)
k (Hd)

)Z
, (12.4)

where
dim(La−jRb−jV

(j,j)
k (Hd)Z) = 1.
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Moreover, we have

H
(a,b)
k (Hd) =

⊕
0≤j1≤m

(k)
a

0≤j2≤m
(k)
b

La−j1Rb−j2V
(j1,j2)
k (Hd). (12.5)

Proof: The decomposition (12.4) is given in Theorem 10.6, and the decomposition

(12.5) follows from (12.2) by grouping the terms La−j1Rb−j2V
(j1,j2)
k (Hd) ∈ H(a,b)

k (Hd).

The dimension of V
(a,b)
k (Hd) is as follows (see §14 for the proof).

Lemma 12.3 For 0 ≤ a, b ≤ k
2
, we have that

dim(V
(a,b)
k (Hd)) = F (k,m,M, d) + F (k,m− 1,M − 1, d)

− F (k,m− 1,M, d)− F (k,m,M − 1, d), (12.6)

where F is given by (7.10), and m = min{a, b}, M = max{a, b}. In particular,

dim(V
(a,b)
k (H2)) = (m+ 1)(k − 2M + 1).

The zonal polynomials in V
(a,b)
k (Hd)Uq is given by

dim(V
(a,b)
k (Hd)Uq) =

{
1, a = b;

0, a 6= b.

For d ≥ 2, it follows from Lemma 12.3 that all the summands in (12.1) and (12.2)
are nontrivial.

Example 12.4 We have

V
(0,0)
k (Hd) = H

(0,0)
k (Hd) = span{zα : |α| = k}, dim(V

(0,0)
k (Hd)) =

(
k + d− 1

d− 1

)
.

For k = 2, d = 2, V
(0,0)
2 (H2) = span{z21 , z1z2, z22}, and

V
(0,1)
2 (H2) = span{z1w2 − z2w1}, V

(1,0)
2 (H2) = span{z1w2 − z2w1},

V
(1,1)
2 (H2) = span{z1z1 + w1w1 − z2z2 − w2w2, z1z2 + z1z2 + w1w2 + w1w2}.

Here we can see explicitly, that the zonal polynomials for Z = U(H2)e1 are given by

V
(0,0)
2 (H2)Z = span{z21}, V

(0,1)
2 (H2)Z = 0, V

(1,0)
2 (H2)Z = 0,

V
(1,1)
2 (H2)Z = span{2(z1z1 + w1w1)− ‖(z, w)‖2}.

The decomposition of (12.4) involves subspaces of dimensions 3 (nine), 2 (one) and 1
(six), with

dim(Harm2(H2)) = 9 · 3 + 1 · 2 + 6 · 1 = 35.
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13 Conclusion

The fine scale decomposition of Theorem 12.1 refines all the decompositions of the
harmonic polynomials Harmk(Hd,C) under the action of a group G ⊂ U(R4d) that we
have given or described. These can be summarised as follows:

U(R4d)
|

U(C2d)
|

U(Hd)× U(H)
|

U(Hd)
|

U(H)
|
1

(a single irreducible) [ABR01]

(the spaces H(k − b, b)) [Koo73], [Fol75], [Rud80], [BS13]

(Theorem 9.4) [Smi75], [ACMM20]

(Theorem 9.3) [BN02], [BDE+14]

(Theorem 9.1) [BN02]

(a single homogeneous component).

Here the action of U(Hd)×U(H) = Sp(d)× Sp(1), and similar products, is not faithful,
since the real unitary scalar matrix −I belongs to U(Hd) and U(H), where it has the
same action. One can naturally obtain irreducible decompositions by applying the given
group to components of the fine scale decomposition. For example, we have the following.

Corollary 13.1 Let d ≥ 2. For the action given by left and right multiplication by
H∗ = Sp(1), i.e., the group G = Sp(1) × Sp(1), we have the following orthogonal direct
sum of homogeneous components

Harmk(Hd,C) =
⊕

0≤j1,j2≤ k2

{ ⊕
j1≤a≤k−j1
j2≤b≤k−j2

La−j1Rb−j2V
(j1,j2)
k (Hd)

}
=

⊕
0≤j1,j2≤ k2

I(Wk−2j1,k−2j2)
(k)

∼=
⊕

0≤j1,j2≤ k2

dim(V
(j1,j2)
k (Hd)) ·Wk−2j1,k−2j2 ,

(13.1)

for the irreducibles

Wk−2j1,k−2j2
∼= spanC{La−j1Rb−j2f} j1≤a≤k−j1

j2≤b≤k−j2
, f 6= 0, f ∈ V (j1,j2)

k (Hd). (13.2)

Proof: The orthogonal direct sums in (13.1) are immediate, and the I(Wk−2j1,k−2j2)
(k)

defined is a sum of the subspaces in (13.2). It is easily seen from Theorem 9.1, and its
analogue for L, that these subspaces, i.e.,

spanC{LαRβf} 0≤α≤k−2j1
0≤β≤k−2j2

, f 6= 0, f ∈ V (j1,j2)
k (Hd),

are invariant under left and right multiplication by H∗, that the action is irreducible,
and they are isomorphic CG-modules.
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Finally, we observe that the central idea underlying our development is Corollary
9.2, which can be stated as follows

� A subspace of Homk(Hd,C) is invariant under the group action given by right
multiplication by H∗ if and only if it is invariant under R and R∗.

This was taken as an Ansatz, then proved indirectly. A simple constructive proof has
eluded us, i.e., finding an explicit formula

f
(
(z + jw)(α + jβ)

)
=
∑
|a|=k

αa1βa2αa3β
a4
pa(R,R

∗), ∀f ∈ Homk(Hd,C),

where pa(x, y) is a polynomial of degree k in the noncommuting variables x and y. Such
a formula would give additional insight and simplify the theory.

14 Appendix: technical details

Here we give proofs of some technical results used, which are routine, but not insightful.

Lemma 4.1. The operators R∗ and L∗ are the adjoints of R and L with respect to both
the inner products (4.1) and (4.3) defined on Homk(Hd,C).

Proof: This is by direct computation. We will just consider R∗ (the case for L∗ is
similar). Without loss of generality, let f, g ∈ Homk(Hd,C) be the monomials

f = zα1wα2zα3wα4 , g = zβ1wβ2zβ3wβ4 .

With (αi)j denoting the j-th entry of the multi-index αi, etc, we have

Rg =
d∑
j=1

{
(β1)jz

β1−ejwβ2zβ3wβ4+ej − (β2)jz
β1wβ2−ejzβ3+ejwβ4

}
,

R∗f =
d∑
j=1

{
−(α3)jz

α1wα2+ejzα3−ejwα4 + (α4)jz
α1+ejwα2zα3wα4−ej

}
.

For the first inner product, it follows from (4.2) that all terms of the inner products

〈f,Rg〉 =
∑
j

∫
S(C2d)

{
(β1)jz

α3+β1−ejwα4+β2zα1+β3wα2+β4+ej

− (β2)jz
α3+β1wα4+β2−ejzα1+β3+ejwα2+β4

}
,

〈R∗f, g〉 =
∑
j

∫
S(C2d)

{
−(α3)jz

α3+β1−ejwα4+β2zα1+β3wα2+β4+ej

+ (α4)jz
α3+β1wα4+β2−ejzα1+β3+ejwα2+β4

}
,
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are zero, except for when α3 + β1 − ej = α1 + β3, α4 + β2 = α2 + β4 + ej, in which case

〈f,Rg〉 =
1

(2d)k

∑
j

{
(β1)j(β1 − ej + α3)!(β2 + α4)!− (β2)j(β1 + α3)!(β2 + α4 − ej)!

}
=

1

(2d)k
(β1 + α3 − ej)!(β2 + α4 − ej)!{(β1)j((β2)j + (α4)j)− (β2)j((β1)j + (α3)j)}

=
1

(2d)k
(α1 + β3)!(α2 + β4)!{(β1)j(α4)j − (β2)j(α3)j)},

〈R∗f, g〉 =
1

(2d)k

{
−(α3)j(β1 + α3 − ej)!(β2 + α4)! + (α4)j(β1 + α3)!(β2 + α4 − ej)!

}
=

1

(2d)k
(β1 + α3 − ej)!(β2 + α4 − ej)!{−(α3)j((β2)j + (α4)j) + (α4)j((β1)j + (α3)j)}

= 〈f,Rg〉,

which shows that R∗ is indeed the adjoint of R.
We now consider the inner product 〈f, g〉∂, for which the monomials are orthogonal.

The inner products 〈f,Rg〉∂ and 〈R∗f, g〉∂ have nonzero terms if and only if either

α1 = β1 − ej, α2 = β2, α3 = β3, α4 = β4 + ej,

or α1 = β1, α2 = β2 − ej, α3 = β3 + ej, α4 = β4.

For the first case above, these inner products are

〈f,Rg〉∂ = (β1)j〈zα1wα2zα3wα4 , zα1wα2zα3wα4〉∂ = (β1)j(β1 − ej)!β2!β3!(β4 + ej)!,

〈R∗f, g〉∂ = (α4)j〈zβ1wβ2zβ3wβ4 , zβ1wβ2zβ3wβ4〉∂ = ((β4)j + 1)β1!β2!β3!β4! = 〈f,Rg〉∂,

and, similarly, for the second case

〈f,Rg〉∂ = −(β2)j〈zα1wα2zα3wα4 , zα1wα2zα3wα4〉∂ = −(β2)jβ1!(β2 − ej)!(β3 + ej)!β4,

〈R∗f, g〉∂ = −(α3)j〈zβ1wβ2zβ3wβ4 , zβ1wβ2zβ3wβ4〉∂ = −((β3)j + 1)β1!β2!β3β4! = 〈f,Rg〉∂.

Hence R∗ is the adjoint of R for the second inner product also.

Lemma 4.3. The operators R,R∗, L and L∗ commute with the Laplacian ∆, and so
map harmonic functions to harmonic functions.

Proof: We consider R, the others being similar. Since

R =
∑
j

(
wj

∂

∂zj
− zj

∂

∂wj

)
,

1

4
∆ =

∑
k

( ∂2

∂zk∂zk
+

∂2

∂wk∂wk

)
,

we calculate

1

4
R∆ =

∑
j,k

{
wj

( ∂3

∂zj∂zk∂zk
+

∂3

∂zj∂wk∂wk

)
− zj

( ∂3

∂wj∂zk∂zk
+

∂3

∂wj∂wk∂wk

)}
,
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and

1

4
∆R =

∑
j,k

{ ∂2

∂zk∂zk

(
wj

∂

∂zj
− zj

∂

∂wj

)
+

∂2

∂wk∂wk

(
wj

∂

∂zj
− zj

∂

∂wj

)}
=
∑
j,k

{(
wj

∂3

∂zk∂zk∂zj
− zj

∂3

∂zk∂zk∂wj
− δjk

∂2

∂zk∂wj

)
+
(
wj

∂3

∂wk∂wk∂zj
+ δjk

∂2

∂wk∂zj
− zj

∂3

∂wk∂wk∂wj

)}
,

which are clearly equal, since the δjk terms cancel.
If f is harmonic, i.e., ∆f = 0, then ∆(Rf) = R(∆f) = 0, so Rf is harmonic.

Lemma 5.3. The operators L and L∗ commute with R and R∗, and we have

R∗R−RR∗ =
∑
j

(
zj

∂

∂zj
+ wj

∂

∂wj
− zj

∂

∂zj
− wj

∂

∂wj

)
, (14.1)

L∗L− LL∗ =
∑
j

(
zj

∂

∂zj
− wj

∂

∂wj
− zj

∂

∂zj
+ wj

∂

∂wj

)
. (14.2)

Proof: This is by direct computation. We give indicative cases. First consider

L =
∑
j

(
wj

∂

∂zj
− zj

∂

∂wj

)
, R∗ =

∑
k

(
−wk

∂

∂zk
+ zk

∂

∂wk

)
.

We have

LR∗ =
∑
j,k

{
wj

(
−wk

∂2

∂zj∂zk
+ zk

∂2

∂zj∂wk
+ δjk

∂

∂wk

)
− zj

(
−wk

∂2

∂wj∂zk
+ zk

∂2

∂wj∂wk

)}
,

R∗L =
∑
k,j

{
−wk

(
wj

∂2

∂zk∂zj
− zj

∂2

∂zk∂wj
− δjk

∂

∂wj

)
+ zk

(
wj

∂2

∂wk∂zj
− zj

∂2

∂wk∂wj

)}
,

which are clearly equal (when applied to polynomials).
Now consider R∗R−RR∗. We have

R∗R =
∑
k,j

{
−wk

(
wj

∂2

∂zk∂zj
−zj

∂2

∂zk∂wj
−δjk

∂

∂wj

)
+zk

(
wj

∂2

∂wk∂zj
+δjk

∂

∂zj
−zj

∂2

∂wk∂wj

)}
,

RR∗ =
∑
j,k

{
wj

(
−wk

∂2

∂zj∂zk
+zk

∂2

∂zj∂wk
+δjk

∂

∂wk

)
−zj

(
−wk

∂

∂wj∂zk
−δjk

∂

∂zk
+zk

∂2

∂wj∂wk

)}
.

Taking the difference of these gives

R∗R−RR∗ =
∑
j,k

δjk

(
wk

∂

∂wj
+ zk

∂

∂zj
− wj

∂

∂wk
− zj

∂

∂zk

)
=
∑
j

(
zj

∂

∂zj
+ wj

∂

∂wj
− zj

∂

∂zj
− wj

∂

∂wj

)
,

as supposed.
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Lemma 12.3. For 0 ≤ a, b ≤ k
2
, we have that

dim(V
(a,b)
k (Hd)) = F (k,m,M, d) + F (k,m− 1,M − 1, d)

− F (k,m− 1,M, d)− F (k,m,M − 1, d), (14.3)

where F is given by (7.10), and m = min{a, b}, M = max{a, b}. In particular,

dim(V
(a,b)
k (H2)) = (m+ 1)(k − 2M + 1).

The zonal polynomials in V
(a,b)
k (Hd)Uq is given by

dim(V
(a,b)
k (Hd)Uq) =

{
1, a = b;

0, a 6= b.

Proof: From Lemma 5.2, we have

K(k − a, a) = (K(k − a, a) ∩ kerL∗)⊕ LK(k − a+ 1, a− 1),

H(k − b, b) = (H(k − b, b) ∩ kerR∗)⊕RH(k − b+ 1, b− 1),

which gives the orthogonal direct sum decompositions

H
(a,b)
k (Hd) = (kerL∗ ∩ kerR∗ ∩H(a,b)

k (Hd))⊕ L(kerR∗ ∩H(a−1,b)
k (Hd))

⊕R(kerL∗ ∩H(a,b−1)
k (Hd))⊕ LRH(a−1,b−1)

k (Hd),

H
(a,b)
k (Hd) = (H

(a,b)
k (Hd) ∩ kerL∗)⊕ LH(a−1,b)

k (Hd)

=⇒ H
(a,b−1)
k (Hd) = (H

(a,b−1)
k (Hd) ∩ kerL∗)⊕ LH(a−1,b−1)

k (Hd),

H
(a,b)
k (Hd) = (H

(a,b)
k (Hd) ∩ kerR∗)⊕RH(a,b−1)

k (Hd)

=⇒ H
(a−1,b)
k (Hd) = (H

(a−1,b)
k (Hd) ∩ kerR∗)⊕RH(a−1,b−1)

k (Hd).

Since the action of R,L and RL in the above summands is 1–1, we obtain

dim(V
(a,b)
k (Hd)) = dim(H

(a,b)
k (Hd))− dim(H

(a−1,b−1)
k (Hd))

− dim(kerR∗ ∩H(a−1,b)
k (Hd))− dim(kerL∗ ∩H(a,b−1)

k (Hd))

= dim(H
(a,b)
k (Hd))− dim(H

(a−1,b−1)
k (Hd))

− {dim(H
(a−1,b)
k (Hd))− dim(H

(a−1,b−1)
k (Hd))}

− {dim(H
(a,b−1)
k (Hd))− dim(H

(a−1,b−1)
k (Hd)}

= dim(H
(a,b)
k (Hd)) + dim(H

(a−1,b−1)
k (Hd))

− dim(H
(a−1,b)
k (Hd))− dim(H

(a,b−1)
k (Hd)).

The formula for dim(V
(a,b)
k (Hd)) above is symmetric in a and b, and so depends only on

m = min{a, b} and M = max{a, b}. Since 0 ≤ a, b ≤ k
2
, this m and M are the same as

those given by (7.2). Suppose, without loss of generality, that a ≤ b ≤ k
2
. Then we have

m := m
(k)
a,b = a, M := M

(k)
a,b = b, m

(k)
a−1,b−1 = m− 1, M

(k)
a−1,b−1 = M − 1,
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m
(k)
a−1,b = m− 1, M

(k)
a−1,b = M, m

(k)
a,b−1 = m− δab, M (k)

a,b−1 = M − 1 + δab,

and hence, for a 6= b, by Lemma 7.4 we have

dim(V
(a,b)
k (Hd)) = F (k,m,M, d) + F (k,m− 1,M − 1, d)

− F (k,m− 1,M, d)− F (k,m,M − 1, d).

This is formula (14.3), which also holds for a = b, i.e., m = M = a = b, in which case

dim(V
(a,a)
k (Hd)) = F (k,m,m, d) + F (k,m− 1,m− 1, d)

− F (k,m− 1,m, d)− F (k,m− 1,m, d).

For d = 2, the sum F (k,m,M, d) simplifies to

F (k,m,M, 2) =
m∑
j=0

(j + 1)(M −m+ j + 1)(k −M +m− 2j + 1).

Thus, from (14.3), we calculate

dim(V
(a,b)
k (H2)) = (m+ 1)2(k − 2m+ 1)− (m+ 1)M(k −M −m+ 2) +

m−1∑
j=0

{ }
,

where { }
= 2(j + 1)(M −m+ j + 1)(k −M +m− 2j + 1)

− (j + 1)(M −m+ 1 + j + 1)(k −M +m− 1− 2j + 1)

− (j + 1)(M − 1−m+ j + 1)(k −M + 1 +m− 2j + 1)

= 2 + 2j,

and so we obtain

dim(V
(a,b)
k (H2)) = (m+ 1)2(k − 2m+ 1)− (m+ 1)M(k −M −m+ 2) + 2

{
m+

m(m− 1)

2

}
= (m+ 1)(k − 2M + 1).

For any subgroup G of U(Hd), following the above argument (for G = 1), we obtain

dim(V
(a,b)
k (Hd)G) = dim(H

(a,b)
k (Hd)G) + dim(H

(a−1,b−1)
k (Hd)G)

− dim(H
(a−1,b)
k (Hd)G)− dim(H

(a,b−1)
k (Hd)G).

In particular, for G = Uq, we have

dim((H
(a,b)
k (Hd)Uq) = ma,b + 1, ma,b = min{a, k − a, b, k − b},

and so
dim(V

(a,b)
k (Hd)Uq) = ma,b +ma−1,b−1 −ma−1,b −ma,b−1.

Calculating this gives

ma,b +ma−1,b−1 −ma−1,b −ma,b−1 = a+ (a− 1)− (a− 1)− (a− 1) = 1, a = b,

ma,b +ma−1,b−1 −ma−1,b −ma,b−1 = a+ (a− 1)− (a− 1)− a = 0, a < b,

as supposed.
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We now show that R and L map the space of zonal polynomials for q′ = e1 to itself.
This was assumed to be true for a general q′, but calculations show otherwise (for L).

Lemma 14.1 R and R∗ map zonal polynomials to zonal polynomials, i.e.,

R([a, b, c, d, r]) = a[a− 1, b, c, d+ 1, r]− b[a, b− 1, c+ 1, d, r], (14.4)

R∗([a, b, c, d, r]) = −c[a, b+ 1, c− 1, d, r] + d[a+ 1, b, c, d− 1, r], (14.5)

and L and L∗ map zonal polynomials for q′ = z′ + jw′ as follows

L([a, b, c, d, r]) = a[a− 1, b, c, d, r][0, 1, 0, 0, 0]z′ − d[a, b, c, d− 1, r][0, 0, 1, 0, 0]z′

− b[a, b− 1, c, d, r][1, 0, 0, 0, 0]jw′ + c[a, b, c− 1, d, r][0, 0, 0, 1, 0]jw′ , (14.6)

L∗([a, b, c, d, r]) = b[a, b− 1, c, d, r][1, 0, 0, 0, 0]z′ − c[a, b, c− 1, d, r][0, 0, 0, 1, 0]z′

− a[a− 1, b, c, d, r][0, 1, 0, 0, 0]jw′ + d[a, b, c, d− 1, r][0, 0, 1, 0, 0]jw′ . (14.7)

For q′ = z′ ∈ Rn, L and L∗ map zonal polynomials to zonal polynomials, i.e.,

L([a, b, c, d, r]) = a[a− 1, b+ 1, c, d, r]− d[a, b, c+ 1, d− 1, r], (14.8)

L∗([a, b, c, d, r]) = b[a+ 1, b− 1, c, d, r]− c[a, b, c− 1, d+ 1, r]. (14.9)

Proof: Let T be any of R,R∗, L or L∗. Since T ([0, 0, 0, 0, 1]) = 0, by applying the
product rule (3.5) to

[a, b, c, d, r] = [1, 0, 0, 0, 0]a[0, 1, 0, 0, 0]b[0, 0, 1, 0, 0]c[0, 0, 0, 1, 0]d[0, 0, 0, 0, 1]r,

we obtain

T ([a, b, c, d, r])

= a[a− 1, b, c, d, r]T ([1, 0, 0, 0, 0]) + b[a, b− 1, c, d, r]T ([0, 1, 0, 0, 0])

+ c[a, b, c− 1, d, r]T ([0, 0, 1, 0, 0]) + d[a, b, c, d− 1, r]T ([0, 0, 0, 1, 0]). (14.10)

Thus it suffices to calculate T applied to [1, 0, 0, 0, 0], . . . , [0, 0, 0, 1, 0] directly. We give
representative calculations. By Lemma 10.1, for q′ = z′+ jw′, q = z+ jw ∈ Hn, we have

[1, 0, 0, 0, 0] = z′1z1 + · · ·+ z′nzn + w′1w1 + · · ·+ w′nwn,

[0, 1, 0, 0, 0] = z′1w1 + · · ·+ z′nwn − w′1z1 − · · · − w′nzn,
[0, 0, 1, 0, 0] = z′1z1 + · · ·+ z′nzn + w′1w1 + · · ·+ w′nwn,

[0, 0, 0, 1, 0] = z′1w1 + · · ·+ z′nwn − w′1z1 − · · · − w′nzn.

Applying the formulas of (3.13) and (3.14), gives

R([1, 0, 0, 0, 0]) = w1z′1 + · · ·+ wnz′n − z1w′1 − · · · − znw′n = [0, 0, 0, 1, 0],

R([0, 1, 0, 0, 0]) = −w1w
′
1 + · · · − wnw′n − z1z′1 − · · · − znz′n = −[0, 0, 1, 0, 0],

R([0, 0, 1, 0, 0]) = R([0, 0, 0, 1, 0]) = 0,

L([1, 0, 0, 0, 0]) = w1z′1 + · · ·+ wnz′n = [0, 1, 0, 0, 0]z′ ,

L([0, 1, 0, 0, 0]) = −w1w
′
1 − · · · − wnw′n = −[1, 0, 0, 0, 0]jw′ ,

L([0, 0, 1, 0, 0]) = −z1w′1 − · · · − znw′n = [0, 0, 0, 1, 0]jw′ ,

L([0, 0, 0, 1, 0]) = −z1z′1 − · · · − znz′n = −[0, 0, 1, 0, 0]z′ .
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Similarly, we have

R∗([1, 0, 0, 0, 0]) = R∗([0, 1, 0, 0, 0]) = 0,

R∗([0, 0, 1, 0, 0]) = −[0, 1, 0, 0, 0]z′ , R∗([0, 0, 0, 1, 0]) = [1, 0, 0, 0, 0]jw′ ,

L∗([1, 0, 0, 0, 0]) = −[0, 1, 0, 0, 0]jw′ , L∗([0, 1, 0, 0, 0]) = [1, 0, 0, 0, 0]z′ ,

L∗([0, 0, 1, 0, 0]) = −[0, 0, 0, 1, 0]z′ , L∗([0, 0, 0, 1, 0]) = [0, 0, 1, 0, 0]jw′ ,

Substituting the above into (14.10) then gives the result.

The action of ∆ on zonal polynomials is similar to the real and complex cases.

Lemma 14.2 The Laplacian maps zonal polynomials Hn → C to zonal polynomials,
i.e.,

1

4
∆([a, b, c, d, r]) = ac[a− 1, b, c− 1, d, r] + bd[a, b− 1, c, d− 1, r]

+ r(k + 2n− 1− r)[a, b, c, d, r − 1]. (14.11)

Proof: Given the correspondence (10.5) between zonal polynomials with poles q′ and
e1, and the fact ∆ commutes with unitary maps, it suffices to prove (14.11) for q′ = e1,
i.e.,

[a, b, c, d, r] = fgr, f := za1w
b
1z1

cw1
d, g :=

∑
j

(zjzj + wjwj).

Differentiation gives

∂2

∂zj∂zj
(fgr) =

∂2f

∂zj∂zj
gr +

∂f

∂zj
rgr−1zj +

∂f

∂zj
rgr−1zj + fr(r − 1)gr−2zjzj + frgr−1.

For j 6= 1, all the terms above are zero except for the last two. Summing these over all
j = 1, . . . , n, together with the analogous terms for wj, we get

r(r − 1)fgr−2g + 2nrfgr−1 = r(r − 1 + 2n)fgr−1 = r(r − 1 + 2n)[a, b, c, d, r − 1],

and the first three terms (for j = 1) give

(ac[a− 1, b, c− 1, d, r] + bd[a, b− 1, c, d− 1, r]) + r((a+ b) + (c+ d))[a, b, c, d, r − 1].

Since a+ b+ c+ d = k − 2r, adding these gives the result.

This result is given in [BN02] (Proposition 4.2), without proof. It implies that:

� The Laplacian maps Hom
(a,b)
k (Hd) to Hom

(a−1,b−1)
k−2 (Hd).

� The Laplacian maps E
(k)
w,w′ of (10.17) to E

(k−2)
w,w′ .

Combining Lemma 6.3 and its counter part for L gives the following.

Lemma 14.3 (Square array) For 0 ≤ j ≤ k
2
, j ≤ a, b ≤ k − j, we have

La−jRb−j(kerL∗ ∩ kerR∗ ∩H(j,j)
k ) = (L∗)k−a−j(R∗)k−b−j(kerL ∩ kerR ∩H(k−j,k−j)

k )

= La−j(R∗)k−b−j(kerL∗ ∩ kerR ∩H(j,k−j)
k )

= (L∗)k−a−jRb−j(kerL ∩ kerR∗ ∩H(k−j,j)
k ),

with

dim(La−jRb−j(kerL∗ ∩ kerR∗ ∩H(j,j)
k )) = dim(kerL∗ ∩ kerR∗ ∩H(j,j)

k ).
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