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The decomposition of the polynomials on the quaternionic unit sphere in Hd

into irreducible modules under the action of the quaternionic unitary (symplectic) 
group and quaternionic scalar multiplication has been studied by several authors. 
Typically, these abstract decompositions into ``quaternionic spherical harmonics'' 
specify the irreducible representations involved and their multiplicities.
The elementary constructive approach taken here gives an orthogonal direct sum of 
irreducibles, which can be described by some low-dimensional subspaces, to which 
commuting linear operators L and R are applied. These operators map harmonic 
polynomials to harmonic polynomials, and zonal polynomials to zonal polynomials. 
We give explicit formulas for the relevant ``zonal polynomials'' and describe the 
symmetries, dimensions, and ``complexity'' of the subspaces involved.
Possible applications include the construction and analysis of desirable sets of 
points in quaternionic space, such as equiangular lines, lattices and spherical designs 
(cubature rules).

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are several desirable sets of points that have been, and are, studied in real, complex and quaternionic 
space, which includes equiangular lines [2], [26], spherical designs (cubature rules) [15] and lattices [6]. These 
are usually classfied up to ``unitary equivalence'', and are often constructed as a group orbit of a ``unitary 
action''. These considerations have led to this paper.

We consider the invariant subspaces of harmonic polynomials on quaternionic space Hd under the natural 
action of the quaternionic unitary matrices (the symplectic group) and scalar multiplication by quaternions 
(acting on the other side), and the associated zonal polynomials and reproducing kernels. This question has 
been considered several times, independently, e.g., [23], [6], [4], [9], [3]. The exact answer given depends on 
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the precise definition of the harmonic polynomials, in particular, the field in which they may take values, 
and the precise group and its action. The devil is in the details.

Here we give an elementary examples driven development of this question, motivated by the more well 
known real and complex cases, the only partly trivial case of H1, and our interest in the construction of 
spherical designs for the quaternionic sphere [28], [27]. This proceeds from certain unambiguous definitions 
and well known facts (the details). We hope that this illuminates the above literature as it applies, and our 
results can be used for practical computations. Key aspects of our development include:

• By considering the action of scalar multiplication by quaternions on polynomials Hd → C, we are 
naturally led to the operators L and R. The operator R appears in [5] as ε†, and implicitly in the 
development of the irreducible representations of the multiplicative group H∗ given in [12].

• There is a natural correspondence between results for homogeneous polynomials and for harmonic 
polynomials (given by the Fisher decomposition). Ultimately, we are primarily interested in irreducible 
representations of harmonic polynomials. Sometimes we start with the homogeneous polynomials, as 
these have natural inner products and explicit bases (of monomials).

• We refer to [21], [20] for some technical calculations. We often give explicit examples, e.g., the operator 
R in one dimension, or a zonal polynomial with pole e1 = (1, 0, . . . 0), to convey the basic ideas behind 
the results.

2. The devil is in the details

We assume basic familiarity with the quaternions H, with the basis elements 1, i, j, k. The noncommuta
tive multiplication requires subtle modfications to the associated linear algebra (see [7], [28]). Of particular 
use is the ``commutativity'' formula

jz = zj, z ∈ C. (2.1)

We will consider polynomials on real, complex and quaternionic space Rd, Cd and Hd. With the Euclidean 
inner product

〈v, w〉 := v∗w =
∑
j

vjwj , v, w ∈ Fd, F = R,C,H, (2.2)

where q is the conjugate on H (and hence R and C). In the sum above, j is an index, rather than the 
quaternion j, for which we also use the same symbol (this is commonly done). We will use F and K to stand 
for either of R,C,H, independently (9 cases in all for maps Fd → K). Given our choice (2.2), it is natural 
to then treat Hd as a right H-module, with the H-linear maps L acting on the left, i.e.,

〈vα,wβ〉 = α〈v, w〉β, (Lv)α = L(vα), (2.3)

where v, w ∈ Hd, α, β ∈ H, and in turn, to make the identfication (2.8).
There are natural identfications of Fd with Rmd, where m := dimR(F), given by the Cayley-Dickson 

construction of C and H from R, e.g., with (i1, i2, i3, i4) := (1, i, j, k), we have (the R-linear map) [·]Rmd :
Fd → Rmd given by

[x1 + i2x2 + · · · + imxm]Rmd = (x1, . . . , xm), x1, . . . , xm ∈ Rd. (2.4)

We say f : Fd → R is a polynomial if f([·]−1
Rmd) : Rmd → R is a polynomial (of md real variables). In 

this way, we can dfine homogeneous and (homogeneous) harmonic polynomials f : Fd → R of degree k. 



M. Mohammadpour, S. Waldron / J. Math. Anal. Appl. 547 (2025) 129297 3

These polynomials are real-valued, and naturally form R-vector spaces, which we denote by Homk(Fd,R)
and Harmk(Fd,R).

There is a purely algebraic way to make a finite-dimensional real-vector space into a complex-vector space, 
and into a (left or right) H-vector space (H-module), by formally multiplying by complex and quaternion 
scalars. In this way, we dfine the K-valued K-vector spaces of homogeneous and harmonic polynomials 
Fd → K, which we denote by Homk(Fd,K) and Harmk(Fd,K). Clearly, with r = dimR(K), we have

f = f1 + f2i2 + · · · + frir ∈ Harmk(Fd,K) ⇐⇒ f1, . . . , fr ∈ Harmk(Fd,R),

and similarly for Homk(Fd,K). Such a K-vector spaces can also be viewed as a L-vector spaces, where 
L ∈ {R,C,H} and L ⊂ K. We thereby have (from the real case) the following dimension formulas

dimL(Homk(Fd,K)) =
(
k + md− 1
md− 1 

)
dimL(K),

dimL(Harmk(Fd,K)) =
{(k + md− 1

md− 1 

)
−

(
k + md− 3
md− 1 

)}
dimL(K), md 	= 1

= (2k + md− 2)(k + md− 3)!
(md− 2)!k! dimL(K), k + md− 3 ≥ 0. (2.5)

For polynomials f : Fd → K, we can dfine an action of a group G from its action on Fd via

(g · f)(x) := f(g−1 · x), x ∈ Fd, (2.6)

provided that [g]Rmd : Rmd → Rmd : [x]Rmd �→ [g · x]Rmd is R-linear. Such a group action preserves the 
harmonic polynomials of degree k provided that [g]Rmd is orthogonal. Since we are only interested in the 
invariant polynomial subspaces under such an action, it makes no essential difference if we take a left or 
right action. We say that a nonzero K-subspace V of harmonic polynomials Fd → K is irreducible (under 
the action of G) if its only G-invariant subspaces are V and {0}, i.e., for every nonzero f ∈ V , we have 
spanK{g · f : g ∈ G} = V .

We are primarily concerned with polynomials restricted to the (unit) sphere

S := {x ∈ Fd : ‖[x]Rmd‖ = 1}.

Hence the linear maps [g]Rmd above must be orthogonal, i.e., belong to the orthogonal group O(md) =
O(Rmd). We note that f �→ f |S gives a K-vector space isomorphism between Harmk(Fd,K) and 
Harmk(Fd,K)|S, with terms solid and surface used if it is necessary to distinguish between them. The 
basic principles in play are:

• We mostly consider polynomials Hd → C, since H-valued polynomials do not commute, and there is a 
well developed theory of representations over C.

• Smaller subgroups G of O(md) give smaller irreducible subspaces, which may lead to finer decomposi
tions (more irreducibles).

• Enlarging the field K (to C or H) preserves invariance of subspaces, but may not preserve irreducibility, 
which may lead to finer decompositions (Example 5.1).

• The irreducibles that are involved in a decomposition are of interest. The sum of all subspaces isomorphic 
to a given irreducible is called the homogeneous or isotypic component (for the irreducible), and it is 
unique. As an extreme case, all the irreducibles for the action of the trivial group are the 1-dimensional 
subspaces, and there is a single (uninteresting) homogeneous component.
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• The reproducing kernel K(x, y) for a unitarily invariant polynomial space should depend only on the 
inner product 〈x, y〉.

• We begin with general homogeneous polynomials for which there are natural (monomial) bases and 
useful inner products. We then specialise to those which are harmonic, and then, ultimately, zonal.

To develop explicit formulas, we use the Cayley-Dickson identfications Cd ∼ = R2d of (2.4), and Hd ∼ = C2d

given by

x + iy ∈ Cd ←→ [x + iy]R := [x + iy]R2d = (x, y) ∈ R2d, (2.7)

z + jw ∈ Hd ←→ [z + jw]C := (z, w) ∈ C2d. (2.8)

In particular, the identfication (2.8) ensures that [·]C : Hd → C2d is C-linear, for Hd as a right vector 
space, i.e.,

[(z + jw)α]C = [zα + jwα]C =
(
zα
wα

)
=

(
z
w

)
α = [(z + jw)]C α, α ∈ C.

It is convenient to dfine an identfication Hd ∼ = R4d by

[z + jw]R := [[(z + jw)]C]R = [(z, w)]R = (Re(z),Re(w), Im(z), Im(w)). (2.9)

We note that

[z + jw]R4d = (Re(z), Im(z),Re(w),− Im(w)].

We will use standard multi-index notation for monomials of degree k, e.g.,

zα := zα1
1 zα2

2 · · · zαd

d , |α| := α1 + · · · + αd, α ∈ Zd
+.

By a dimension count, the 
(
k+4d−1
4d−1 

)
monomials

ma : Hd → C : z + jw �→ za1wa2za3wa4 , |a| = k, a = (a1, . . . , a4) ∈ Z4d
+ , (2.10)

are a basis for Homk(Hd,C). We will often write za1wa2za3wa4 for the monomial ma.
For z = x + iy ∈ C, we dfine the Wirtinger derivatives in the usual way, i.e.,

∂

∂z
:= 1

2

( ∂

∂x
− i

∂

∂y

)
, 

∂

∂z
:= 1

2

( ∂

∂x
+ i

∂

∂y

)
. (2.11)

Let Δ be the Laplacian operator on functions Hd → C, which is given by

1
4Δ =

d ∑
j=1 

( ∂2

∂zj∂zj
+ ∂2

∂wj∂wj

)
. (2.12)

By applying this, we see that the monomials

zαwβ , zαwβ , zαwβ , zαwβ ,

are harmonic, i.e., in the kernel of Δ.
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Let U ∈ C4d×4d be the unitary matrix given by

[z + jw]R =

⎛
⎜⎝

Re(z)
Re(w)
Im(z)
Im(w)

⎞
⎟⎠ = U

⎛
⎜⎝

z
w
z
w

⎞
⎟⎠ , z, w ∈ C, U = 1

2

⎛
⎜⎝

1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

⎞
⎟⎠ .

Example 2.1. Right scalar multiplication of Hd by α + jβ ∈ H under these identfications is given by

Hd → Hd : z + jw �→ (z + jw)(α + jβ) = (zα− wβ) + j(zβ + wα),

C2d → C2d :
(
z
w

)
�→

(
zα− wβ
zβ + wα

)
,

R4d → R4d : [z + jw]R �→ Mα+jβ [z + jw]R,

Mα+jβ = U

⎛
⎜⎝
α 0 0 −β
0 α β 0
0 −β α 0
β 0 0 α

⎞
⎟⎠⊗ IU∗ = 1

2

⎛
⎜⎝

Re(α) −Re(β) − Im(α) − Im(β)
Re(β) Re(α) Im(β) − Im(α)
Im(α) − Im(β) Re(α) Re(β)
Im(β) Im(α) −Re(β) Re(α)

⎞
⎟⎠⊗ I,

where I = Id is the d× d identity matrix. Note that this map is only R-linear, and so there are no matrix 
representations for it as a map from Hd → Hd or C2d → C2d.

Example 2.2. Consider left multiplication by a linear map L = A + jB, A,B ∈ Cd×d. By (2.1), we obtain 
the following matrix representations under our identfications

Hd → Hd : z + jw �→ (A + jB)(z + jw) = Az −Bw + j(Bz + Aw),

C2d → C2d :
(
z
w

)
�→

(
A −B
B A

)(
z
w

)
,

R4d → R4d : [z + jw]R �→ MA,B [z + jw]R,

MA,B = U

⎛
⎜⎜⎝

A −B 0 0
B A 0 0
0 0 A −B
0 0 B A

⎞
⎟⎟⎠U∗ = 1

2

⎛
⎜⎝

Re(A) −Re(B) − Im(A) − Im(B)
Re(B) Re(A) − Im(B) Im(A)
Im(A) Im(B) Re(A) −Re(B)
Im(B) − Im(A) Re(B) Re(A)

⎞
⎟⎠ .

Matrix multiplication on the left (which includes left scalar multiplication) commutes with right scalar 
multiplication, by the associative law

(Lv)α = L(vα), v ∈ Hd, α ∈ H. (2.13)

Conversely, those matrices in R4d×R4d which commute with all Mα+jβ (equivalently M1, Mi, Mj and Mk) 
correspond to the matrices L ∈ Hd×d, and are said to be symplectic.

The compact symplectic group Sp(d), quaternionic unitary group U(Hd) or hyperunitary group (see [14] 
§1.2.8) is the group of unitary matrices in Hd×d for the inner product (2.2), or, equivalently, the symplectic 
matrices in R4d×4d which are orthogonal. These may also be viewed as the unitary matrices of the form

C2d → C2d :
(
z
w

)
�→

(
A −B
B A

)(
z
w

)
, A∗A + B∗B = I, ATB −BTA = 0.

In particular, Sp(1) = U(H) is the group of unit quaternions or, the special unitary group
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SU(2) =
{(α −β

β α

)
: |α|2 + |β|2 = 1, α, β ∈ C

}
,

which therefore have the same irreducible representations (see [12] §5.4).

3. The operators R and L

A subspace V of Harmk(Hd,C) is invariant under the right multiplication by

H∗ := H \ {0},

equivalently U(H), if f(z + jw) ∈ V implies f
(
(z + jw)(α+ jβ)

)
∈ V , and similarly for left multiplication. 

The following elementary example shows how we came to the operators R and L.

Example 3.1. Suppose that V ⊂ Harm3(H1,C) is invariant under right multiplication by H∗, and f
(
(z +

jw)
)

= z2w ∈ V , then

f
(
(z + jw)(α + jβ)

)
= (zα− wβ)2(zβ + wα)

= α3z2w + α2β(z2z − 2zww) + αβ2(ww2 − 2zzw) + β3zw2 ∈ V.

By taking different choices for α and β, it is not hard to see that the ``coefficients'' of the monomials 
α3, α2β, αβ2, β3 above are in V , i.e.,

z2w, z2z − 2zww,ww2 − 2zzw, zw2 ∈ V.

Similarly, any partial derivative with respect to α or β will be a linear combination of the above polynomials, 
and hence in V .

This example naturally generalises as follows.

Lemma 3.2. Let f ∈ Homk(Hd,C) be given by f = f(z + jw) = F (z, w, z, w), and Vf be the subspace 
invariant under right multiplication by H∗ generated by f . Then Vf contains

f ((z + jw)(α + jβ)) = F (zα− wβ, zβ + wα, zα− wβ, zβ + wα), α, β ∈ C,

and all its partial derivatives in the variables α, α, β, β, including

Raf := ∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f ((z + jw)(α + jβ))

∣∣∣
α=1,β=0

. (3.1)

Moreover, if f is harmonic, then so are all the polynomials in Vf .

Proof. Clearly, Vf is the subspace of Homk(Hd,C) given by

Vf = spanC{f ((z + jw)q) : q = α + jβ ∈ H∗},

and hence for q = α + jβ nonzero, we have

f ((z + jw)(α + jβ)) = |q|kf((z + jw)(q/|q|)) ∈ Vf .
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Since Vf is a finite-dimensional vector space (and hence is closed for any norm), it follows that the first 
order partials in α, α, β, β, which are limits of Newton quotients in Vf , are in Vf , and therefore so are all 
the partial derivatives.

A calculation shows that if f : Rn → R is harmonic, then so is f ◦ U for U : Rn → Rn orthogonal. Since 
scalar multiplication of Hd by a unit quaternion (left or right) is an orthogonal map R4d → R4d, it follows 
that if f(z + jw) is harmonic, then so is f((z + jw)q), q ∈ H∗, and hence every polynomial in Vf . �

In other words, if a subspace V ⊂ Homk(Hd,C) is invariant under right multiplication by H∗, then 
it is invariant under the action of the operators Ra of (3.1). Since the partial derivatives in (3.1) for 
|a| = a1 + a2 + a3 + a4 = k do not depend on α, β, α, β, they can be ``evaluated'' at α = 0, β = 0, to obtain 
the Taylor formula

f((z + jw)(α + jβ)) =
∑
|a|=k

Ra(f)α
a1βa2αa3β

a4

a1!a2!a3!a4! 
, f ∈ Homk(Hd,C). (3.2)

We therefore have the following converse result.

Proposition 3.3. A subspace V ⊂ Homk(Hd,C) is invariant under right multiplication by H∗ if and only if 
it is invariant under the operators Ra, |a| = k.

Proof. As already observed, the forward implication follows from Lemma 3.2.
Conversely, suppose that V is invariant under right multiplication by H∗, and f ∈ V . Since the monomials 

in α, β, α, β in the Taylor formula (3.2) are linearly independent, it follows that

Vf = spanC{Raf : |a| = k} ⊂ V,

and so V is invariant under right multiplication by the operators Ra, |a| = k. �

There is an obvious parallel development for the left multiplication by H∗ where the role of Ra is played 
by La, where

f ((α + jβ)(z + jw)) = F (αz − βw, αw + βz, αz − βw, αw + βz),

Laf := ∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f ((α + jβ)(z + jw))

∣∣∣
α=1,β=0

. (3.3)

Example 3.4. For the Example 3.1, i.e., f = z2w, the nonzero terms in (3.2) are

R3,0,0,0f = 6z2w, R2,1,0,0f = 2z2z − 4zww, R1,2,0,0f = 2ww2 − 4zzw, R0,3,0,0f = 6zw2.

The nonzero polynomials Raf are not a basis for Vf in general, e.g., for f = zw one has

R1,0,1,0f = zw, R0,1,0,1f = −zw, R1,0,0,1f = z2, R0,1,1,0f = −w2.

There are too many operators Ra for a practicable theory, and so we seek a smaller subset of ``generators''. 
By the same argument of Lemma 3.2, from

f ((z + jw)(1 + (α + jβ)t))

= F
(
z(1 + αt) − wβt, zβt + w(1 + αt), z(1 + αt) − wβt, zβt + w(1 + α)

)
, t ∈ R,
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we can dfine first order linear differential operators Rα, Rβ , Rα, Rβ by

d 
dt

f
(
(z + jw)(1 + (α + jβ)t)

)∣∣∣
t=0

= αRαf + βRβf + αRαf + βRβf. (3.4)

For these, Rαf , Rβf , Rαf and Rβf belong to Vf (the subspace generated by f which is invariant under 
right multiplication by H∗). The subscripts of R are symbolic, i.e., the operators do not depend on α+ jβ, 
e.g.,

Rβ = −w
∂

∂z
+ z

∂

∂w
(d = 1), Rβ =

d ∑
j=1 

(
−wj

∂

∂zj
+ zj

∂

∂wj

)
. (3.5)

It is the case that

Rαf = R1,0,0,0f = ∂

∂α
f
(
(z + jw)(α + jβ)

)∣∣∣
α=1,β=0

, Rβf = R0,1,0,0f,

etc. The analogous operators Lα, Lβ , Lα, Lβ for left multiplication by H∗ are dfined by

d 
dt

f
(
(z + jw)(1 + (α + jβ)t)

)∣∣∣
t=0

= αLαf + βLβf + αLαf + βLβf. (3.6)

All of these first order operators T satisfy the product rule

T (fg) = T (f)g + fT (g). (3.7)

For readability, we will often present them and do calculations in the d = 1 case, with the general case 
following by replacing z by zj , etc, and summing over j, as in (3.5). The operators are (for d = 1)

Rβ = −w
∂

∂z
+ z

∂

∂w
, Rβ = −w

∂

∂z
+ z

∂

∂w
, (3.8)

Rα = z
∂

∂z
+ w

∂

∂w
, Rα = z

∂

∂z
+ w

∂

∂w
, (3.9)

Lβ = z
∂

∂w
− w

∂

∂z
, Lβ = z

∂

∂w
− w

∂

∂z
, (3.10)

Lα = z
∂

∂z
+ w

∂

∂w
, Lα = w

∂

∂w
+ z

∂

∂z
. (3.11)

Of particular interest, are the operators

R := −Rβ , R∗ := Rβ , L := −Lβ , L∗ := Lβ , (3.12)

which in the 1-dimensional case have the form

R = w
∂

∂z
− z

∂

∂w
, R∗ = −w

∂

∂z
+ z

∂

∂w
, (3.13)

L = w
∂

∂z
− z

∂

∂w
, L∗ = z

∂

∂w
− w

∂

∂z
. (3.14)

For a general d, we have

R =
d ∑

j=1 

(
wj

∂

∂zj
− zj

∂

∂wj

)
, R∗ =

d ∑
j=1 

(
−wj

∂

∂zj
+ zj

∂

∂wj

)
. (3.15)
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The notation R∗ and L∗ is used, as we will see (Lemma 4.1) that they are the adjoints of R and L, 
respectively, for two natural inner products. The operators R and R∗ (but not L and L∗) appear in the 
work of [4], [5] as ε = R∗ and ε† = R. Operators of this type (for d = 1) also appear in the construction of 
irreducible representations of SU(2) ⊂ H∗ on the homogeneous polynomials in z and w of degree k given in 
[12].

Elementary calculations [20] give the following:

Proposition 3.5. We have the commutativity relations

RβRβ −RβRβ = Rα −Rα, RαRα = RαRα, (3.16)

RβRα −RαRβ = Rβ , RαRβ −RβRα = Rβ , (3.17)

RαRβ −RβRα = Rβ , RβRα −RαRβ = Rβ . (3.18)

Furthermore, on Homk(Hd,C) we have

Rα + Rα = kI, (3.19)

and hence

Rα = 1
2(R∗R−RR∗ + kI), Rα = 1

2(RR∗ −R∗R + kI). (3.20)

It was hoped use these formulas to show that on Homk(Hd,C) each Ra, |a| = k, in (3.2) could be written 
as a polynomial in the noncommuting variables R and R∗, so that invariance under right multiplication by 
H∗ is equivalent to invariance under R and R∗. However, a completely general formula for Raf could not 
be obtained. A direct, but more abstract, route to this conclusion comes from Lie theory, which we now 
discuss.

The group G = Sp(1) is a compact simply connected real Lie group, and its Lie algebra g is the quaternions 
with q + q = 0, i.e., zero real part, which are often called ``vectors'' because of the identfication of q = v =
ai+ bj + ck with (a, b, c) ∈ R3, where the Lie bracket becomes the cross product of vectors. Moreover, G is 
matrix Lie group, i.e., is a closed subgroup of GL2(C), and so the following general result applies.

Proposition 3.6. ([14]) Let G be a matrix Lie group with Lie algebra g, and Π be a finite-dimensional real or 
complex representation of G acting on a vector space V . Then there is a unique (Lie algebra) representation 
π of g acting on V such that

Π(eX) = eπ(X), ∀X ∈ g,

which is given by

π(X) = d 
dt

Π(etX)
∣∣∣
t=0

. (3.21)

When G is connected, there is a 1--1 correspondence between irreducibles.

Proposition 3.7. ([14]) Let G be a connected matrix Lie group with Lie algebra g. Then

1. A representation Π of G is irreducible if and only if the associated representation π of g is irreducible.
2. Two representations Π1 and Π2 of G are isomorphic if and only if the associated representations π1 and 

π2 of g are isomorphic.
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Let G = Sp(1), V = Homk(Hd,C) and Π : G → GL(V ) be the representation of G induced by right 
multiplication of Hd by H∗, i.e.,

(α + jβ) · f(z + jw) := f
(
(z + jw)(α + jβ)

)
.

This is a right action (so, technically speaking, G should be given the multiplication of the opposite groups 
so that Π is a homomorphism, but this just complicates the formulas and their derivation), which for f ∈ V

given by f = f(z + jw) = F (z, w, z, w) is

Π(α + jβ)f(z + jw) = F (zα− wβ, zβ + wα, zα− wβ, zβ + wα), α, β ∈ C.

For a ``vector'' X = v = ai + bj + ck ∈ g, we have (see [19]) that

etv = et(ai+bj+ck) = cos(t|v|) + ai + bj + ck

|v| sin(t|v|) = αt + jβt, αt, βt ∈ C, (3.22)

where

αt := cos(t|v|) + ai 
|v| sin(t|v|), βt := b− ci

|v| sin(t|v|).

Since

α0 = 1, β0 = 0, d 
dt

αt

∣∣∣
t=0

= ai, 
d 
dt

βt

∣∣∣
t=0

= b− ci,

we calculate (3.21) for d = 1

π(v)f(z + jw) = d 
dt

F (zαt − wβt, zβt + wαt, zαt − wβt, zβt + wαt)
∣∣∣
t=0

= (zai− w(b− ci))∂f
∂z

+ (z(b− ci) + wai) ∂f
∂w

+ (zai− w(b− ci))∂f
∂z

+ (z(b− ci) + wai) ∂f
∂w

= ai
(
z
∂

∂z
+ w

∂

∂w
− z

∂

∂z
− w

∂

∂w

)
+ b

(
−w

∂

∂z
+ z

∂

∂w
− w

∂

∂z
+ z

∂

∂w

)
f

+ ci
(
w

∂

∂z
− z

∂

∂w
− w

∂

∂z
+ z

∂

∂w

)
f,

i.e.,

π(ai + bj + ck)f(z + jw) = ai(Rα −Rα)f + b(Rβ + Rβ)f + ci(−Rβ + Rβ)f, (3.23)

which holds for all d, by the same argument. From this we obtain the desired result.

Lemma 3.8. (Lie correspondence) A subspace of Homk(Hd,C) is invariant under the action of right multi
plication by H∗, equivalently by Sp(1), if and only if it is invariant under the action of R and R∗. Moreover, 
the irreducibles for these actions are the same.

Proof. It follows from Proposition 3.7, that a subspace of Homk(Hd,C) is invariant under right multiplica
tion by Sp(1) (and hence H∗) if and only if it is invariant under the action of π given by (3.23), i.e., it is 
invariant under the span of the operators
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Rα −Rα, Rβ + Rβ , −Rβ + Rβ .

Since

R = −Rβ = −1
2

(
(Rβ + Rβ) − (−Rβ + Rβ)

)
, R∗ = Rβ = 1

2

(
(Rβ + Rβ) + (−Rβ + Rβ)

)
,

and, by (3.20), we have

Rα −Rα = R∗R−RR∗,

this is equivalent to invariance under the action of R and R∗. �

The analogous statement holds for left multiplication and the action of L and L∗.
The Lie representation π : g → GL(V ) preserves the Lie bracket [·, ·], which is the commutator

[A,B] = AB −BA,

in each case. In particular, since [j, k] = jk − kj = 2i, we have

2π(i) = [π(j), π(k)] ⇐⇒ 2i(Rα −Rα) = [Rβ + Rβ , i(−Rβ + Rβ)],

which gives (3.16), i.e.,

Rα −Rα = 1
2[Rβ + Rβ ,−Rβ + Rβ ] = RβRβ −RβRβ = [Rβ , Rβ ].

We now investigate the formula for the action of G on V in terms of R and R∗. For α + jβ ∈ Sp(1), 
(3.22) gives

ev = α + jβ, v = ai + bj + ck,

where

α = cos(|v|) + ai 
|v| sin(|v|), β := b− ci

|v| sin(|v|),

i.e.,

cos |v| = α + α

2 
=⇒ |v| = cos−1 α + α

2 
, (3.24)

a 
|v| sin |v| = α− α

2i , 
b 
|v| sin |v| = β + β

2 
, − c 

|v| sin |v| = β − β

2i . (3.25)

If Re(α) = α+α
2 	= ±1, then sin |v| 	= 0, and (3.23) and (3.25) give

π(v)f(z + jw) = |v| 
sin |v|

(α− α

2i i(Rα −Rα)f + β + β

2 
(Rβ + Rβ)f − β − β

2i i(−Rβ + Rβ)f
)
,

where |v| is the function of α and α given by (3.24). Thus, we have

π(v) = |v| 
2 sin |v|

(
(α− α)(R∗R−RR∗) + (β + β)(−R + R∗) − (β − β)(R + R∗)

)
, (3.26)
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and

f
(
(z + jw)(α + jβ)

)
= eπ(v)f. (3.27)

4. Inner products on the quaternionic sphere

There are two natural (unitarily invariant) inner products dfined on polynomials from Hd → C that we 
consider. Let

S = S(Fd) := {x ∈ Fd : ‖x‖ = 1} = {x ∈ Rmd : ‖x‖ = 1}

be the unit sphere in Fd, and σ be the surface area measure on S, normalised so that σ(S) = 1. We note 
that surface area measure is invariant under unitary maps on Fd, i.e., for U unitary

∫
S(Fd)

f(Ux) dσ(x) =
∫

S(Fd)

f(x) dσ(x), ∀f.

The first inner product we consider is dfined on complex-valued functions restricted to the quaternionic 
sphere S = S(Hd) by

〈f, g〉 = 〈f, g〉S :=
∫

S(Hd)

f(x)g(x) dσ(x). (4.1)

This can be calculated from the well known integrals of the monomials in z, w, z, w ∈ Cd (polynomials in 
2d complex variables)

∫
S(Hd)

zα1wβ1zα2wβ2 dσ =
∫

S(C2d)

zα1wβ1zα2wβ2 dσ(z, w),

which are zero for (α1, β1) 	= (α2, β2), and otherwise
∫

S(Hd)

zα1wβ1zα2wβ2 dσ = (2d− 1)!α1!β1! 
(2d− 1 + |α1| + |β1|)!

= α1!β1! 
(2d)|α1|+|β1|

, (α1, β1) = (α2, β2). (4.2)

Here (x)n := x(x + 1) · · · (x + n− 1) is the Pochhammer symbol.
For a polynomial f =

∑
α fαz

α1wα2zα3wα4 mapping Hd → C, let f̃ be the polynomial obtained by 
replacing the coefficient fα ∈ C by its conjugate fα, and f(∂) be the differential operator obtained replacing 
z by ∂

∂z , etc, i.e.,

f̃ =
∑
α 

fαz
α1wα2zα3wα4 , f(∂) =

∑
α 

fα
∂α1+a2+α3+α4f

∂zα1∂wα2∂zα3∂wα4
.

The second inner product is given by

〈f, g〉∂ := f̃(∂)g(0) =
∑
α 

α!fαgα. (4.3)

The inner products (4.1) and (4.3) are both prominent in the theory of spherical harmonics. The first is 
natural for Fourier expansions on the sphere, and the second, which is variously known as the apolar [25],
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Bombieri [29] or Fischer inner product [4], is also widely used. Not withstanding the fact that they are 
dfined on different spaces, these inner products are different, since the monomials are orthogonal in the 
second, but not in the first in general, e.g.,

〈z1z1, w1w1〉 =
∫

S(Hd)

|z1w1|2 dσ = 1 
2d(2d + 1) 	= 0, 〈z1z1, w1w1〉∂ = 0.

Nevertheless, these inner product are scalar multiples of each other in the following sense

〈f, g〉∂ = (2d)k〈f, g〉, f ∈ Harmk(Hd,C), g ∈ Homk(Hd,C),

which follows from [10] (Theorem 1.1.8) as presented in [9] (Lemma 2).
The homogeneous polynomials of different degrees are orthogonal to each other for both inner products, 

giving the orthogonal direct sums
⊕
k≥0 

Homk(Hd,C)
∣∣∣
S(Hd)

, 
⊕
k≥0 

Homk(Hd,C),

respectively. For simplicity, we will primarily consider the further decomposition of Harmk(Hd,C), with it 
being understood that this leads to a corresponding rfinement of the direct sums

⊕
k≥0 

Homk(Hd,C) =
⊕
k≥0 

⊕
0≤j≤ k

2 

‖ · ‖2j Harmk−2j(Hd,C), (4.4)

Homk(Hd,C)
∣∣
S

=
⊕

0≤j≤ k
2 

Harmk−2j(Hd,C), (4.5)

of the polynomials Hd → C into irreducibles for the action of a subgroup of O(4d). The direct sum (4.4) is 
sometimes referred to as the Fischer decomposition [4].

The adjoints of R and L are the same for both of these inner products.

Lemma 4.1. The operators R∗ and L∗ are the adjoints of R and L with respect to both the inner products 
(4.1) and (4.3) dfined on Homk(Hd,C).

This result for R was given in [4] Lemma 5 for the inner product (4.3).
The adjoint can also be calculated using the following property.

Example 4.2. An elementary calculation shows the identities

Rf = −R∗(f), Lf = −L∗(f), (4.6)

and so, on subspaces V , we have

RαV = (R∗)αV , kerR∗|V = kerR|V . (4.7)

The next result follows from the fact that scalar multiplication by H∗ is in O(R4d), and hence maps 
harmonic polynomials to harmonic polynomials.

Lemma 4.3. The operators R,R∗, L and L∗ commute with the Laplacian Δ, and so map harmonic functions 
to harmonic functions.
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It follows from (2.13) that the action of R and R∗ commutes with that of U ∈ U(Hd). In this regard, 
recall from (2.6) and (3.1) that

(U · f)(z + jw) = f(U−1(z + jw)).

Lemma 4.4. The operators R and R∗ commute with the action of U(Hd).

Proof. We will show, more generally, that the operators Ra of (3.1) commute with the action of U(Hd). Let 
U ∈ U(Hd). Then for f = f(z + jw), we have

(U ·Raf) = ∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 f

(
U−1(z + jw)(α + jβ)

) ∣∣∣
α=1,β=0

= ∂a1+a2+a3+a4

∂αa1∂βa2∂αa3∂β
a4 (U · f) ((z + jw)(α + jβ))

∣∣∣
α=1,β=0

= Ra(U · f).

i.e., Ra commutes with the action of U(Hd). �

We note that, by the same reasoning, the operators L and L∗ do not commute with the (left) action of 
U(Hd).

5. The action of R and L on polynomials

Using (3.13) to apply R to a univariate monomial f = za1wa2za3wa4 gives

Rf = w
∂

∂z
(za1wa2za3wa4) − z

∂

∂w
(za1wa2za3wa4)

= a1z
a1−1wa2za3wa4+1 − a2z

a1wa2−1za3+1wa4 ,

which is a sum of monomials in which the degree in z and w has decreased by 1, whilst the degree in z
and w has increased by 1. This type of phenomenon occurs for all of the operators R,R∗, L, L∗ (in every 
dimension), and we now make definitions which allow us to account for these changes in degrees. With 
standard multi-index notation, we have

HomH(p, q) := span{zα1wα2zα3wα4 : |α1| + |α2| = p, |α3| + |α4| = q},
HomK(p, q) := span{zα1wα2zα3wα4 : |α1| + |α4| = p, |α2| + |α3| = q},

Hom(a,b)
k (Hd) := HomK(k − a, a) ∩ HomH(k − b, b)

= span{zα1wα2zα3wα4 : |α1| + |α4| = k − a, |α2| + |α3| = a,

|α1| + |α2| = k − b, |α3| + |α4| = b}.

We observe that

HomH(p, q) = HomH(q, p), HomK(p, q) = HomK(q, p).

Δ HomH(a, b) = HomH(a− 1, b− 1), Δ HomK(a, b) = HomK(a− 1, b− 1).

The subspaces of harmonic polynomials contained in these are denoted
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H(p, q) := Harmk(Hd,C) ∩ HomH(p, q), p + q = k,

K(p, q) := Harmk(Hd,C) ∩ HomK(p, q), p + q = k,

H
(a,b)
k (Hd) := Harmk(Hd,C) ∩ Hom(a,b)

k (Hd)

= K(k − a, a) ∩H(k − b, b).

When either p or q above is negative, then we have, by definition, the zero subspace. The subspaces H(p, q)
are the irreducible subspaces of Harmk(C2d,C) ∼ = Harmk(Hd,C) under the action of (left) multiplication 
by U(C2d), e.g., see [22], from where we borrow the notation H(p, q). Since U(Hd) is a subgroup of U(C2d), 
the decomposition of Harmk(Hd,C) into U(Hd)-irreducibles is obtained by decomposing each H(p, q).

The following dimensions are easily calculated

dimC(HomH(p, q)) = dimC(HomK(p, q)) =
(
p + 2d− 1

2d− 1 

)(
q + 2d− 1

2d− 1 

)
, (5.1)

dimC(H(p, q)) = dimC(K(p, q)) = (p + q + 2d− 1)(p + 2d− 2)!(q + 2d− 2)!
p!q!(2d− 1)!(2d− 2)! , (5.2)

whilst those of Hom(a,b)
k (Hd) and H(a,b)

k (Hd) are more complicated (Lemmas 7.1 and 7.4).

Example 5.1. Let H(p, q)R be H(p, q) ⊂ Harmk(C2d,C) viewed as a real vector space, which is invariant 
under the action of U(C2d). Complexifying this space gives

CH(p, q)R = H(p, q) ⊕H(q, p).

Thus we observe that enlarging the field, which preserves the invariance of subspaces, does not always 
preserve irreducibility.

Lemma 5.2. For all integers a and b, we have

RHomH(a, b) ⊂ HomH(a− 1, b + 1), R∗ HomH(a, b) ⊂ HomH(a + 1, b− 1),

LHomK(a, b) ⊂ HomK(a− 1, b + 1), L∗ HomK(a, b) ⊂ HomK(a + 1, b− 1),

and HomK(a, b) is invariant under right multiplication by H∗, HomH(a, b) is invariant under left multipli
cation by H∗, and more generally by U(Hd), which gives

RHomK(a, b) ⊂ HomK(a, b), R∗ HomK(a, b) ⊂ HomK(a, b),

LHomH(a, b) ⊂ HomH(a, b), L∗ HomH(a, b) ⊂ HomH(a, b).

In particular, for α, β ≥ 0, we have

LαRβ Hom(a,b)
k (Hd,C) ⊂ Hom(a+α,b+β)

k (Hd,C), (5.3)

(L∗)α(R∗)β Hom(a,b)
k (Hd,C) ⊂ Hom(a−α,b−β)

k (Hd,C). (5.4)

Moreover, for the inner products (4.1) and (4.3) we have the orthogonal direct sums

HomH(k − a, a) = (HomH(k − a, a) ∩ kerR∗) ⊕RHomH(k − a + 1, a− 1), (5.5)

HomH(k − a, a) = (HomH(k − a, a) ∩ kerR) ⊕R∗ HomH(k − a− 1, a + 1). (5.6)
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Proof. The inclusions follow by (elementary) direct calculations.
Let f ∈ HomH(k − a, a). Since R∗f ∈ HomH(k − a + 1, a− 1), we have

f ∈ kerR∗ ⇐⇒ R∗f = 0 ⇐⇒ 〈R∗f, g〉 = 0, ∀g ∈ HomH(k − a + 1, a− 1)

⇐⇒ 〈f,Rg〉 = 0, ∀g ∈ HomH(k − a + 1, a− 1)

⇐⇒ f ∈ (RHomH(k − a + 1, a− 1))⊥,

so that

HomH(k − a, a) = (RHomH(k − a + 1, a− 1))⊥ ⊕RHomH(k − a + 1, a− 1)

= (HomH(k − a, a) ∩ kerR∗) ⊕RHomH(k − a + 1, a− 1),

which gives (5.5). The proof of (5.6) is similar. �

By restricting (5.3), (5.4), (5.5), and (5.6) to the harmonic polynomials, we have

LαRβH
(a,b)
k (Hd,C) ⊂ H

(a+α,b+β)
k (Hd,C), (5.7)

(L∗)α(R∗)βH(a,b)
k (Hd,C) ⊂ H

(a−α,b−β)
k (Hd,C), (5.8)

H(k − a, a) = (H(k − a, a) ∩ kerR∗) ⊕RH(k − a + 1, a− 1), (5.9)

H(k − a, a) = (H(k − a, a) ∩ kerR) ⊕R∗H(k − a− 1, a + 1). (5.10)

Henceforth, all ``orthogonal'' direct sum decompositions will hold for both the inner products (4.1) and 
(4.3), unless stated otherwise.

We now give some technical results, related to the commutativity relation (3.16).

Lemma 5.3. The operators L and L∗ commute with R and R∗, and we have

[R∗, R] = R∗R−RR∗ =
∑
j

(
zj

∂

∂zj
+ wj

∂

∂wj
− zj

∂

∂zj
− wj

∂

∂wj

)
, (5.11)

[L∗, L] = L∗L− LL∗ =
∑
j

(
zj

∂

∂zj
− wj

∂

∂wj
− zj

∂

∂zj
+ wj

∂

∂wj

)
. (5.12)

Clearly, the right hand side of (5.11) and of (5.12) maps the monomial ma of (2.10) to a scalar multiple 
of itself, and so we obtain

R∗Rf = RR∗f + (a− b)f, f ∈ HomH(a, b), (5.13)

L∗Lf = LL∗f + (a− b)f, f ∈ HomK(a, b). (5.14)

We can iterate these to obtain formulas which interchange R and R∗, and L and L∗.

Lemma 5.4. We have

R∗Rβf = RβR∗f + β(a− b− β + 1)Rβ−1f, f ∈ HomH(a, b), (5.15)

L∗Lβf = LβL∗f + β(a− b− β + 1)Lβ−1f, f ∈ HomK(a, b), (5.16)

which also holds for β = 0 (in the obvious way).
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Here are the most general formulas, which we will use (see [21] for a verfication).

Lemma 5.5. For all choices of α and β, we have

(R∗)αRβf =
α ∑

c=0 

(
α

c 

)
(−β)c(b− a + β − α)cRβ−c(R∗)α−cf, f ∈ HomH(a, b), (5.17)

Rα(R∗)βf =
α ∑

c=0 

(
α

c 

)
(−β)c(a− b + β − α)c(R∗)β−cRα−cf, f ∈ HomH(a, b), (5.18)

(L∗)αLβf =
α ∑

c=0 

(
α

c 

)
(−β)c(b− a + β − α)cLβ−c(L∗)α−cf, f ∈ HomK(a, b), (5.19)

Lα(L∗)βf =
α ∑

c=0 

(
α

c 

)
(−β)c(a− b + β − α)c(L∗)β−cLα−cf, f ∈ HomK(a, b). (5.20)

Here the terms involving a negative power of an operator have a zero coefficient.

6. U(Hd)-invariant subspaces

It follows from Lemma 5.5 that R and R∗ inverses of each other in some sense.

Lemma 6.1. For α ≤ β, and β > α + a− b or β ≤ a− b, we have

(R∗)αRβ(kerR∗ ∩ HomH(a, b)) = Rβ−α(kerR∗ ∩ HomH(a, b)), (6.1)

Rα(R∗)β(kerR ∩ HomH(b, a)) = (R∗)β−α(kerR ∩ HomH(b, a)), (6.2)

otherwise

(R∗)αRβ(kerR∗ ∩ HomH(a, b)) = 0, Rα(R∗)β(kerR ∩ HomH(b, a)) = 0. (6.3)

Proof. For f ∈ kerR∗ ∩ HomH(a, b), R∗f = 0, and so (5.17) reduces to

(R∗)αRβf = (−β)α(b− a + β − α)αRβ−αf.

The condition for the constant above to be nonzero is α ≤ β, and the α factors

b− a + β − α, b− a + β − α + 1, . . . b− a + β − 1

of (b− a + β − α)α are not zero, i.e., b− a + β − α > 0 or b− a + β − 1 < 0. This gives the first case, with 
the other following by the same argument. �

By repeated applications of (5.5) and (5.6), we obtain the following.

Lemma 6.2. We have the orthogonal direct sums

HomH(k − b, b) =
b ⊕

j=0 
Rb−j

(
kerR∗ ∩ HomH(k − j, j)

)
, b ≤ k − b, (6.4)

HomH(k − b, b) =
k−b ⊕
j=0 

(R∗)k−b−j
(
kerR ∩ HomH(j, k − j)

)
, k − b ≤ b. (6.5)
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Further

(i) For a > b, R is 1-1 on HomH(a, b).
(ii) For a ≤ b, R maps HomH(a, b) onto HomH(a− 1, b + 1).

Proof. Apply (5.5) and (5.6) repeatedly. For b ≤ k − b, we have

HomH(k − b, b) = (kerR∗ ∩ HomH(k − b, b)) ⊕RHomH(k − b + 1, b− 1)

= (kerR∗ ∩ HomH(k − b, b))

⊕R{(kerR∗ ∩ HomH(k − b + 1, b− 1)) ⊕RHomH(k − b + 2, b− 2)}
= (kerR∗ ∩ HomH(k − b, b)) ⊕R(kerR∗ ∩ HomH(k − b + 1, b− 1))

⊕R2(kerR∗ ∩ HomH(k − b + 2, b− 2)) ⊕ · · · ⊕Rb(kerR∗ ∩ HomH(k, 0)).

Similarly, for k − b ≤ b, we have

HomH(k − b, b) = (kerR ∩ HomH(k − b, b)) ⊕R∗(kerR ∩ HomH(k − b− 1, b + 1))

⊕ (R∗)2(kerR ∩ HomH(k − b− 2, b + 2)) ⊕ · · ·
· · · ⊕ (R∗)k−b(kerR ∩ HomH(0, k)),

which gives (6.4) and (6.5).
To show the injectivity of (i), it suffices to show that for k − b > b, i.e., b + 1 ≤ k − b, R is 1-1 on each 

summand in (6.4), i.e.,

Rb−j
(
kerR∗ ∩ HomH(k − j, j)

)
, 0 ≤ j ≤ b.

This follows from

R∗RRb−j
(
kerR∗ ∩ HomH(k − j, j)

)
= Rb−j

(
kerR∗ ∩ HomH(k − j, j)

)
,

which is (6.1) of Lemma 6.1 for α = 1, β = b− j + 1, a = k − j, b = j, since

b + 1 ≤ k − b, j ≤ b =⇒ b + j + 1 ≤ k, i.e., the condition β ≤ a− b holds.

For a ≤ b, a similar argument shows that R∗ is 1-1 on HomH(a− 1, b+ 1). Here, when a = 0, HomH(a−
1, b + 1) = 0. Therefore, (R∗|HomH(a−1,b+1))∗ = R|HomH(a,b) is onto, and we have (ii). �

The following result says that the j-terms in the expansions of Lemma 6.2 (only one of which holds for 
a given b, 2b 	= k) are in fact equal. This then allows for a single expansion for both cases (Lemma 6.5).

Lemma 6.3. (Row movements) For 0 ≤ j ≤ k
2 , we have

Rk−2j+1(kerR∗ ∩ HomH(k − j, j)) = 0, (6.6)

(R∗)k−2j+1(kerR ∩ HomH(j, k − j)) = 0, (6.7)

and for j ≤ a ≤ k − j, we have

Ra−j(kerR∗ ∩ HomH(k − j, j)) = (R∗)k−a−j(kerR ∩ HomH(j, k − j)). (6.8)

Furthermore, all of the results above hold with HomH(p, q) replaced by H(p, q).
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Proof. The equations (6.6) and (6.7) follow from Lemma 6.1 for the choice α = 0, β = k−2j+1, a = k− j, 
b = j. These give the inclusions

Rk−2j(kerR∗ ∩ HomH(k − j, j)) ⊂ kerR ∩ HomH(j, k − j),

(R∗)k−2j(kerR ∩ HomH(j, k − j)) ⊂ kerR∗ ∩ HomH(k − j, j).

We now prove the cases a = k − j and a = j in (6.8), i.e.,

Rk−2j(kerR∗ ∩ HomH(k − j, j)) = kerR ∩ HomH(j, k − j), (6.9)

(R∗)k−2j(kerR ∩ HomH(j, k − j)) = kerR∗ ∩ HomH(k − j, j). (6.10)

Taking α = β = k − 2j in Lemma 6.1 gives

(R∗)k−2jRk−2j(kerR∗ ∩ HomH(k − j, j)) = kerR∗ ∩ HomH(k − j, j), (6.11)

Rk−2j(R∗)k−2j(kerR ∩ HomH(j, k − j)) = kerR ∩ HomH(j, k − j).

Thus we have

kerR ∩ HomH(j, k − j) = Rk−2j(R∗)k−2j(kerR ∩ HomH(j, k − j))

⊂ Rk−2j(kerR∗ ∩ HomH(k − j, j))

⊂ kerR ∩ HomH(j, k − j),

which gives (6.9), with (6.10) following similarly. Now (6.11) and (6.9) give

Ra−j(kerR∗ ∩ HomH(k − j, j)) = Ra−j(R∗)k−2jRk−2j(kerR∗ ∩ HomH(k − j, j))

= Ra−j(R∗)k−2j(kerR ∩ HomH(j, k − j)). (6.12)

Taking α = a− j, β = k − 2j in Lemma 6.1 gives

Ra−j(R∗)k−2j(kerR ∩ HomH(j, k − j)) = (R∗)k−j−a(kerR ∩ HomH(j, k − j)),

which together with (6.12) gives (6.8). �

Combining Lemma 6.3 and its counter part for L gives the following.

Lemma 6.4. (Square array) For 0 ≤ j ≤ k
2 , j ≤ a, b ≤ k − j, we have

La−jRb−j(kerL∗ ∩ kerR∗ ∩H
(j,j)
k ) = (L∗)k−a−j(R∗)k−b−j(kerL ∩ kerR ∩H

(k−j,k−j)
k )

= La−j(R∗)k−b−j(kerL∗ ∩ kerR ∩H
(j,k−j)
k )

= (L∗)k−a−jRb−j(kerL ∩ kerR∗ ∩H
(k−j,j)
k ),

with

dim(La−jRb−j(kerL∗ ∩ kerR∗ ∩H
(j,j)
k )) = dim(kerL∗ ∩ kerR∗ ∩H

(j,j)
k ).

We now present a key technical result.



20 M. Mohammadpour, S. Waldron / J. Math. Anal. Appl. 547 (2025) 129297 

Lemma 6.5. We have the orthogonal direct sum decompositions

Homk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

HomH(k − b, b)k−2j , (6.13)

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

H(k − b, b)k−2j , (6.14)

into U(Hd)-invariant subspaces, where

HomH(k − b, b)k−2j := Rb−j
(
kerR∗ ∩ HomH(k − j, j)

)
= (R∗)k−b−j

(
kerR ∩ HomH(j, k − j)

)
⊂ HomH(k − b, b), (6.15)

H(k − b, b)k−2j := Rb−j
(
kerR∗ ∩H(k − j, j)

)
= (R∗)k−b−j

(
kerR ∩H(j, k − j)

)
⊂ H(k − b, b). (6.16)

Proof. Since the Laplacian operator Δ commutes with R and R∗ (Lemma 4.3), the decomposition (6.14) 
follows from (6.13) by taking the intersection with the harmonic polynomials. We therefore consider just 
the decomposition of HomH(k − b, b).

Since HomH(k − b, b) and H(k − b, b) are invariant under U(C2d), they are invariant under U(Hd). 
Moreover, the action of U(Hd) commutes with R and R∗ (Lemma 4.4), and so the summands in (6.13) and 
(6.14) are U(Hd)-invariant. As an indicative calculation, let U ∈ U(Hd), then

f ∈ kerR∗ ⇐⇒ U · (R∗f) = 0 ⇐⇒ R∗(U · f) = 0 ⇐⇒ U · f ∈ kerR∗,

and so

U ·H(k − b, b)k−2j = U ·Rb−j
(
kerR∗ ∩H(k − j, j)

)
= Rb−j

(
U · kerR∗ ∩ U ·H(k − j, j)

)
= Rb−j

(
kerR∗ ∩H(k − j, j)

)
= H(k − b, b)k−2j .

Since

j ≤ b ≤ k − j ⇐⇒ j ≤ b, j ≤ k − b ⇐⇒ j ≤ min{b, k − b},

the direct sum (6.13) can be rearranged as

Homk(Hd,C) =
⊕

0≤b≤k

min{b,k−b}⊕
j=0 

HomH(k − b, b)k−2j .

By Lemma 6.3,

Rb−j
(
kerR∗ ∩ HomH(k − j, j)

)
= (R∗)k−b−j

(
kerR ∩ HomH(j, k − j)

)
,

which gives the equalities in (6.15) and (6.16), and so it suffices to show the orthogonal direct sums
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HomH(k − b, b) =
b ⊕

j=0 
Rb−j

(
kerR∗ ∩ HomH(k − j, j)

)
, b ≤ k − b,

HomH(k − b, b) =
k−b ⊕
j=0 

(R∗)k−b−j
(
kerR ∩ HomH(j, k − j)

)
, k − b ≤ b.

These are given by Lemma 6.2. �

To calculate the dimensions of various irreducibles, we will need the following.

Lemma 6.6. Let 0 ≤ j ≤ k
2 . For d = 1, we have the following dimensions

dim
(
kerR∗ ∩ HomH(k − j, j)

)
= k − 2j + 1, dim

(
kerR∗ ∩H(k − j, j)

)
=

{
1, j = 0;
0, j 	= 0.

For d ≥ 2, we have

dim
(
kerR∗ ∩ HomH(k − j, j)

)
= (k − 2j + 1) (k − j + 2d− 1)!(j + 2d− 2)! 

(k − j + 1)!j!(2d− 1)!(2d− 2)! , (6.17)

dim
(
kerR∗ ∩H(k − j, j)

)
= (k − 2j + 1)(k + 2d− 1) (k − j + 2d− 2)!(j + 2d− 3)! 

(k − j + 1)!j!(2d− 1)!(2d− 3)! . (6.18)

Proof. From (5.5), and the fact R is 1-1 on HomH(k − j + 1, j − 1) (Lemma 6.2), we have

dim(HomH(k − j, j) ∩ kerR∗) = dim (HomH(k − j, j)) − dim (RHomH(k − j + 1, j − 1))

= dim (HomH(k − j, j)) − dim (HomH(k − j + 1, j − 1)) .

Using this and (5.1), with p = k − j, q = j, we calculate (6.17) for d ≥ 1

dim(kerR∗ ∩ HomH(k − j, j))

= 1 
(2d− 1)!2

{ (p + 2d− 1)!(q + 2d− 1)!
p!q! − (p + 2d)!(q + 2d− 2)!

(p + 1)!(q − 1)! 

}

= (p + 2d− 1)!(q + 2d− 2)!
(p + 1)!q!(2d− 1)!2 {(q + 2d− 1)(p + 1) − (p + 2d)q}

= (p + 2d− 1)!(q + 2d− 2)!
(p + 1)!q!(2d− 1)!2 (p− q + 1)(2d− 1).

The other formula follows in a similar way, from

dim(kerR∗ ∩H(k − j, j)) = dim(H(k − j, j)) − dim(H(k − j + 1, j − 1))

=
(
k − j + 2d− 1

2d− 1 

)(
j + 2d− 1

2d− 1 

)
−
(
k − j + 2d

2d− 1 

)(
j + 2d− 2

2d− 1 

)
,

with the d = 1 case calculated separately, which completes the proof. �

Example 6.7. For j = 0, (6.18) reduces to

dim
(
kerR∗ ∩H(k, 0)

)
= (k + 2d− 1)!

k!(2d− 1)! = dim
(
H(k, 0)

)
,
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so that kerR∗ ∩H(k, 0) is the holomorphic polynomials, i.e.,

kerR∗ ∩H(k, 0) = H(k, 0) =
⊕

|α+β|=k

span{zαwβ} (orthogonal direct sum).

We also observe, from the proof of Lemma 6.6, that for 0 ≤ j ≤ k
2 , we have

kerR∗ ∩H(k − j, j) = {f ∈ H(k − j, j) : f ⊥
⊕

0≤a<j

H(k − a, a)},

so the by applying Gram-Schmidt to a spanning sequence ordered so that its elements are in H(k, 0), H(k−
1, 1), . . . H(k − j, j), successively, the corresponding elements are an orthonormal basis for kerR∗ ∩
H(k, 0), . . . , kerR∗ ∩H(k − j, j).

The results of this section can found or deduced from those of the work of [4]. Their variables z1, . . . , z2p
correspond to ours via

z1, . . . , z2p ←→ z1, w1, . . . , zp, wp,

and they dfine operators

ε = R∗, ε† = R.

The decomposition (6.14) for H(k−b, b) of Lemma 6.5 is presented as the two cases in Lemma 6.2 (Theorems 
5.1 and 5.2 of §5 [4]).

7. Visualising the action of L and R on subspaces

The action of L and R given in Lemma 5.2 leads to the following orthogonal direct sums.

Lemma 7.1. We have the orthogonal direct sum decomposition into (k + 1)2 subspaces

Homk(Hd,C) =
⊕

0≤a,b≤k

Hom(a,b)
k (Hd). (7.1)

For 0 ≤ a, b ≤ k, let ma = m
(k)
a := min{a, k − a}, mb = m

(k)
b := min{b, k − b}, and

m = m
(k)
a,b := min{ma,mb}, M = M

(k)
a,b := max{ma,mb}, c := min{a, b}. (7.2)

Then

Hom(a,b)
k (Hd) = span{zα1wα2zα3wα4}(α1,α2,α3,α4)∈A, (7.3)

where A = Aa,b,k is given by

A := {α : |α1| = k − (a + b− c) − j, |α2| = a− c + j, |α3| = c− j, |α4| = b− c + j, 0 ≤ j ≤ m}.

In particular, we have
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dim
(
Hom(a,b)

k (Hd,C)
)

=
m ∑
j=0 

(
k −M − j + d− 1

d− 1 

)(
j + d− 1
d− 1 

)

×
(
m− j + d− 1

d− 1 

)(
M −m + j + d− 1

d− 1 

)
. (7.4)

Proof. To establish (7.1), it suffices to show that the direct sums

Homk(Hd,C) =
⊕

a+b=k

HomH(a, b) =
⊕

p+q=k

HomK(p, q),

are orthogonal, which follows immediately since the monomials are orthogonal for (4.3).
We now consider (7.3). Let f = zα1wα2zα3wα4 ∈ Hom(a,b)

k (Hd,C), i.e.,

|α1| + |α4| = k − a, |α2| + |α3| = a, |α1| + |α2| = k − b, |α3| + |α4| = b.

The above equations imply that once an allowable value of |α1|, |α2|, |α3|, |α4| is specfied, then the others 
are uniquely determined. The allowable values are determined by an equation where the right hand side is 
m = min{a, k−a, b, k−b}, and so we must treat (four) cases. First consider the case a ≤ b, i.e., m = a, k−b, 
for which we have

0 ≤ j = |α2| ≤ m ∈ {a, k − b}, |α3| = a− j, |α1| = k − b− j, |α4| = j + b− a,

and hence

Hom(a,b)
k (Hd,C) = span{zα1wα2zα3wα4 : |α1| = k − b− j, |α2| = j, |α3| = a− j,

|α4| = j + b− a, 0 ≤ j ≤ m}.

The corresponding condition for the case a ≥ b is

0 ≤ j = |α4| ≤ m ∈ {b, k − a}, |α1| = k − a− j, |α2| = a− b + j, |α3| = b− j,

and so we obtain (7.3).
It follows from symmetries of the space Hom(a,b)

k (Hd,C), or by direct calculation, that its dimension, the 
cardinality of A, depends only on m,M (and k). Therefore, by the case m = a = c, M = b, and the fact 
α1, . . . , α4 ∈ Zd

+, we obtain (7.4). �

Example 7.2. For d = 1, we have

dim(Hom(a,b)
k (H)) = m + 1, m := min{a, k − a, b, k − b}. (7.5)

Example 7.3. For k = 1, we have

Hom(0,0)
1 (Hd) = span{z1, . . . , zd}, Hom(0,1)

1 (Hd) = span{w1, . . . , wd},

Hom(1,0)
1 (Hd) = span{w1, . . . , wd}, Hom(1,1)

1 (Hd) = span{z1, . . . , zd}.

The corresponding result for harmonic polynomials is the following (see [21]).
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Lemma 7.4. We have the orthogonal direct sum decomposition into (k + 1)2 subspaces

Harmk(Hd,C) =
⊕

0≤a,b≤k

H
(a,b)
k (Hd), (7.6)

where

dim(H(a,b)
k (Hd)) = dim(Hom(a,b)

k (Hd)) − dim(Hom(a−1,b−1)
k−2 (Hd)). (7.7)

In particular, for d = 1, we have

dim(H(a,b)
k (H)) = 1, 0 ≤ a, b ≤ k, (7.8)

and for d > 1, with m and M given by (7.2), we have

dim(H(a,b)
k (Hd,C)) = F (k,m,M, d), 0 ≤ a, b ≤ k, (7.9)

where

F (k,m,M, d) :=
m ∑
j=0 

(
j + d− 1
d− 1 

)(
M −m + j + d− 1

d− 1 

)
(7.10)

× (m− j + 1)d−2(k −M − j + 1)d−2

(d− 1)!(d− 2)! (k −M + m− 2j + d− 1).

Example 7.5. For k = 2, we have three cases (m,M) = (0, 0), (0, 1), (1, 1), giving

dim(H(a,b)
2 (Hd)) = F (2, 0, 0, d) = 1

2d(d + 1), (a, b) ∈ {(0, 0), (2, 0), (0, 2), (2, 2)},

dim(H(a,b)
2 (Hd)) = F (2, 0, 1, d) = d2, (a, b) ∈ {(1, 0), (0, 1), (1, 2), (2, 1)},

dim(H(a,b)
2 (Hd)) = F (2, 1, 1, d) = 2d2 − 1, (a, b) ∈ {(1, 1)}.

These formulas also hold for d = 1. We also have

dim(H(a,b)
k (Hd)) =

(
k + d− 1
d− 1 

)
= dim(Hom(a,b)

k (Hd)), (a, b) ∈ {(0, 0), (k, 0), (0, k), (k, k)},

with the corresponding spaces given by A = Aa,b,k of Lemma 7.1, e.g.,

H
(0,0)
k (Hd) =

⊕
|α|=k

span{zα}, (orthogonal direct sum).

The results of this section for Harmk(Hd,C) can be summarised as follows.

Schematic 7.6. The orthogonal decomposition (7.6) of Harmk(Hd,C) can be displayed as a square matrix/ar
ray/table

K(k, 0)
K(k − 1, 1)

...
K(0, k)

H(k, 0) H(k − 1, 1) · · · H(0, k)⎡
⎢⎢⎢⎢⎣
H

(0,0)
k (Hd) H

(0,1)
k (Hd) · · · H

(0,k)
k (Hd)

H
(1,0)
k (Hd) H

(1,1)
k (Hd) · · · H

(1,k)
k (Hd)

...
...

...
H

(k,0)
k (Hd) H

(k,1)
k (Hd) · · · H

(k,k)
k (Hd)

⎤
⎥⎥⎥⎥⎦

L∗↑

R∗
←− R−→

L↓

(7.11)
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where the rows are indexed by K(k − a, a) and the columns by H(k − b, b). Here

• Harmk(Hd,C) is the orthogonal direct sum of the (k + 1)2 entries of the matrix.
• The subspace in the K(k − a, a) row and H(k − b, b) column is

H
(a,b)
k (Hd) = K(k − a, a) ∩H(k − b, b).

• H(k − a, b) is the orthogonal direct sum of the entries of its column.
• K(k − a, a) is the orthogonal direct sum of the entries of its row.
• Multiplication by L moves down the columns, and L∗ up them.
• Multiplication by R moves right along the rows, and R∗ to the left of them. Further, multiplication by 

R is 1-1 on the left hand side (half) of the table, and is onto on the right hand side.
• Left multiplication by H∗ (and more generally by U(Hd)) moves within the columns.
• Right multiplication by H∗ moves within the rows.
• Multiplication by Lα, Lα, Rα and Rα does not move the entries of the matrix.

There is a similar ``square'' for the decomposition (7.1) of Homk(Hd,C).
There are also ``symmetries'' which permute the entries of the square, such as

H
(a,b)
k (Hd) = H

(k−a,k−b)
k (Hd).

It is convenient to imagine zero subspaces outside of the square matrix, which then encodes properties such 
as

Rk+1 Harmk(Hd,C) = 0, R∗H(k, 0) = 0, L2K(1, k − 1) = 0.

8. The one variable case

We now consider the d = 1 case in great detail. Though this is somewhat degenerate, and usually not 
considered, it provides motivation and illustrates the main features of the general case.

By Lemma 7.4, dim(Harmk(H,C)) = (k + 1)2, and the square matrix/table (7.11) for Harmk(H,C)
consists of the one-dimensional subspaces {H(a,b)

k (H)}0≤a,b≤k. Since the polynomial zk is holomorphic, it is 
harmonic, and so

H
(0,0)
k (H) = spanC{zk}.

We consider what are the other harmonic monomials in Homk(H,C).

Example 8.1. The monomial zα1wα2zα3wα4 , |α| = k, is harmonic if and only if
(

∂2

∂z∂z
+ ∂2

∂w∂w

)
zα1wα2zα3wα4 = α1α3z

α1−1wα2zα3−1wα4 + α2α4z
α1wα2−1zα3wα4−1 = 0,

i.e., α1α3 = α2α4 = 0. This gives 4k harmonic monomials of degree k.

The harmonic monomials of degree k lie on the four ``edges'' (of length k + 1) of the square table, which 
are given by α2 = α3 = 0 (top edge), α3 = α4 = 0 (left edge), α1 = α2 = 0 (right edge), α1 = α4 = 0
(bottom edge), with

H
(α2+α3,α3+α4)
k (H) = spanC{zα1wα2zα3wα4}, |α| = k, α1α3 = α2α4 = 0.
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An elementary calculation shows that

LkRk(zk) = (−1)kk!2zk, (8.1)

and so it follows from the Schematic 7.6, that by applying L and R to the upper left corner zk ∈ H
(0,0)
k (H), 

that we can ``fill out the table'' with nonzero polynomials in the subspaces, which (in this case) gives a basis 
for them, e.g., for k = 2, we have

z2 R−→
L↓

K(2, 0)
K(1, 1)
K(0, 2)

H(2, 0) H(1, 1) H(0, 2)⎡
⎣ z2 2zw 2w2

2zw 2ww − 2zz −4zw
2w2 −4zw 4z2

⎤
⎦ . (8.2)

Since L and R commute, it makes no difference how one fills out the table by applying L and R, e.g., the 
middle entry can be obtained as either of

RL(z2) = R(2zw) = 2ww − 2zz, LR(z2) = L(2zw) = 2ww − 2zz.

Even in this simple example, one can observe the following features of the general case:

• The harmonic functions on the edges of the square have the simplest description, with the formulas 
becoming more complicated as one moves towards the centre.

• There are symmetries of the polynomials given by certain permutations of z, w, z, w.
• One can move around the square table by applying L and L∗ (down and up) and R and R∗ (across and 

back).

We now show that LaRb(zk) has an increasingly complicated formula as one moves towards the centre 
of the table.

Lemma 8.2. The unique harmonic polynomial p(a,b)
k in H(a,b)

k (H) is given by

p
(a,b)
k =

m ∑
j=0 

(−1)j

j! 
(−c)j(a + b− c− k)j

(|b− a| + 1)j
zk−(a+b−c)−jwa−c+jzc−jwb−c+j

= (k − a− b + c)!
k!(c− a− b)c

LaRb(zk), (8.3)

where

m = min{a, b, k − a, k − b}, c = min{a, b} = 1
2(a + b− |b− a|).

Proof. We consider the case a ≤ b, i.e., m = min{a, k − b}, the other being similar.
By Lemma 7.4, there is a unique (up to a scalar multiple) harmonic polynomial in Hom(a,b)

k (H,C), which 
by (7.3) has the form

f =
m ∑
j=0 

cjz
k−b−jwjza−jwb−a+j .

The condition that f be harmonic, i.e., ∇f = 0, gives
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m−1∑
j=0 

cj(k − b− j)(a− j)zk−b−j−1wjza−j−1wb−a+j

+
m−1∑
j=0 

cj+1(j + 1)(b− a + j + 1)zk−b−j−1wjza−j−1wb−a+j = 0,

and equating coefficients of the monomials gives

cj(k − b− j)(a− j) + cj+1(j + 1)(b− a + j + 1) = 0, 0 ≤ j ≤ m− 1,

so that

cj+1 = −cj
(k − b− j)(a− j) 

(j + 1)(b− a + j + 1) =⇒ cj = (−1)j

j! 
(k − b + 1 − j)j(a + 1 − j)j

(b− a + 1)j
c0,

which gives the desired formula. �

The indices {(a, b)}0≤a,b≤k for the polynomials p(a,b)
k ∈ H

(a,b)
k (H) in the square table can be partitioned 

into nested squares

Sm := {(a, b) : min{a, b, k − a, k − b} = m}, 0 ≤ m ≤ k

2 
, (8.4)

with S0 giving the ``edges of the table''. These have size

|Sm| =
{

4(k − 2m), 0 ≤ m < k
2 ;

1, m = k
2 .

(8.5)

Here is an illustration for the case k = 4

0 0 0 0 0
0 1 1 1 0
0 1 2 1 0
0 1 1 1 0
0 0 0 0 0

, S0 = { 0 }, S1 = { 1 }, S2 = { 2 }.

From the formula (8.3), we have the first instance of a general phenomenon:

• The polynomials p(a,b)
k , (a, b) ∈ Sm, have m + 1 terms, i.e., the complexity of the formula for p(a,b)

k

increases as one gets closer to the centre of the square array.

We now consider the decomposition of Harmk(Hd,C) into irreducibles.
The irreducible representations of the simply connected compact nonabelian Lie group Sp(1) = U(H) =

SU(2) are well known [14]. For now, we need only that there is precisely one irreducible representation Wk

of dimension k + 1, for each k ≥ 0.

Theorem 8.3. For left multiplication by H∗, equivalently Sp(1), we have the following orthogonal direct sum 
of irreducibles

Harmk(H,C) =
⊕

0≤a≤k

H(k − a, a) ∼ = (k + 1)Wk,
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and for right multiplication by H∗, we have the direct sum of irreducibles

Harmk(H,C) =
⊕

0≤b≤k

K(k − b, b) ∼ = (k + 1)Wk.

Proof. From the Schematic 7.6 for Harmk(H,C), it follows that by taking columns (respectively rows) of 
the table gives an orthogonal direct sum of invariant subspaces for action given by left (respectively right) 
multiplication by H∗ (Lemma 3.8), and so it remains only to show that these (k+1)-dimensional subspaces 
are irreducible.

We now show K(k − a, a) is irreducible for the action given by right multiplication. The other case is 
similar, and can be found in [12] Theorem 5.37. We have

K(k − a, a) = spanC{p
(a,b)
k }0≤b≤k = span{Rbp

(a,0)
k }0≤b≤k.

Consider a nonzero polynomial

f =
∑

0≤b≤b∗

cbp
(a,b)
k ∈ K(k − a, a), cb∗ 	= 0.

Let V be an invariant subspace of K(k − a, a) containing f . Since R∗ maps nonzero polynomials left 
across the table, we have that (R∗)b∗f is a nonzero multiple of p(a,0)

k . Thus, V contains p(a,0)
k , and hence 

Rp
(a,0)
k , . . . , Rkp

(a,0)
k , giving V = K(k − a, a), i.e., V is irreducible. �

In both cases, there is a single homogeneous component corresponding to Wk.

Example 8.4. For left multiplication by H∗, i.e., the action given by

(α + jβ)(z + jw) = (αz − βw) + j(αw + βz),

we have the irreducible representation

H(k, 0) = spanC{zk, zk−1w, zk−2w2, . . . , wk},

which is given by Folland [12] for the action of SU(2) ⊂ H∗ given by
(
α −β
β α

)(
z
w

)
=

(
αz − βw
αw + βz

)
.

Here L and L∗ reduce to L = w ∂
∂z and L∗ = z ∂

∂w .

We now consider the combined action given by both left and right multiplication by H∗, i.e., the action 
of Sp(1) × Sp(1), equivalently H∗ ×H∗, given by

(
(q1, q2) · f

)
(q) := f(q1qq2).

The invariant subspaces for this action are invariant under both L and R (and their adjoints). This leads 
to the following.

Theorem 8.5. The action of Sp(1) × Sp(1) given by left and right multiplication by H∗ is irreducible on 
Harmk(H,C), i.e., for all nonzero f ∈ Harmk(H,C), we have

spanC{q �→ f(q1qq2) : q1, q2 ∈ H∗} = Harmk(H,C). (8.6)
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We consider the special case of the linear polynomials (k = 1).

Example 8.6. The linear polynomial

f(q) := q = x1 + ix2 + jx3 + kx4, x1, x2, x3, x4 ∈ R,

is in Harm1(H,H) = Hom1(H,H), as are the coordinate maps q �→ x�, which are also in Harm1(H,R) =
Hom1(H,R). These can be written explicitly in the form (8.6) as follows

x1 = 1
4(q − iqi− jqj − kqk), x2 = 1 

4i (q − iqi + jqj + kqk),

x3 = 1 
4j (q + iqi− jqj + kqk), x4 = 1 

4k (q + iqi + jqj − kqk). (8.7)

The formula (8.7) is used by [24] to show that the ``polynomials of degree k in q'', i.e., sums of the ``mono
mials''

q �→ a0qa1qa2 · · · qak−1qak, a0, a1, . . . , ak ∈ H,

is precisely Homk(H,H) as we have dfined it, or, equivalently, the H-linear combinations of the monomials 
in real variables x1, x2, x3, x4.

9. The irreducible representations of Harmk(Hd,C)

We now consider the irreducible representations of Harmk(Hd,C) for d ≥ 2 (the case usually considered 
in the literature). Here, there is more than just the one irreducible Wk involved. Our method is to construct 
rectangular arrays, like that in Schematic 7.6, corresponding to a given irreducible Wk,Wk−2,Wk−4, . . .. We 
will say that these are commuting arrays if we can move over them using L,R,L∗, R∗, as in the d = 1 case. 
They can be visualised as the ``layers on (square) wedding cake''.

We follow the development of Bachoc and Nebe [6]. For the action given by right multiplication by H∗, 
let I(Wp)(k) be the homogeneous component of Harmk(Hd,C) corresponding to the irreducible Wp (of 
dimension p + 1), which gives the orthogonal decomposition

Harmk(Hd,C) =
⊕
p≥0 

I(Wp)(k).

The values of p involved in this sum are p = k − 2j, 0 ≤ j ≤ k
2 , which is observed in [6], and follows from 

our explicit decomposition (Theorem 9.1).
There is also the well known decomposition [17], [22] (Chapter 12, §12.2) into irreducibles for the action 

of left multiplication by U(C2d)

Harmk(Hd,C) =
⊕

a+b=k

H(a, b).

Since U(Hd) is the subgroup of U(C2d) ⊂ O(R4d) characterised as those elements of U(C2d) which commute 
with right multiplication by H∗ (in the group O(R4d)), we have the orthogonal direct sum of invariant 
U(Hd)-modules

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

H(k − b, b) ∩ I(Wk−2j)(k). (9.1)
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This is in fact an orthogonal direct sum of U(Hd)-irreducibles

R
(k)
k−2j

∼ = H(k − b, b) ∩ I(Wk−2j)(k), (9.2)

(see [16] §1.2, [6] Theorem 4.1, for k even).
We now give the irreducibles for right multiplication by H∗. For d = 1, these were obtained by taking a 

row of the square array (7.11), i.e., by choosing a (particular) nonzero element f ∈ H(k, 0) = H(k, 0)∩kerR∗, 
and applying R to it k times. Since R∗ moves back in the opposite direction to R, it followed that

spanC{f,Rf,R2f, . . . , Rkf} ∼ = Wk (9.3)

was an irreducible. Exactly the same argument holds for d ≥ 2, i.e., for a nonzero f ∈ H(k, 0) = H(k, 0) ∩
kerR∗ the subspace (9.3) is irreducible. These are all the irreducibles for Wk, and for d = 1 this is the end of 
the story (Theorem 8.3). For d ≥ 2, there are other irreducibles, constructed in a similar way: starting with 
a nonzero f in the second column, which does not give the irreducible Wk, i.e., f ∈ H(k − 1, 1) ∩ kerR∗, 
one obtains the irreducible subspaces

spanC{f,Rf,R2f, . . . , Rk−2f} ∼ = Wk−2,

and so forth.

Theorem 9.1. For the action on Harmk(Hd,C) given by right multiplication by H∗, the homogeneous com
ponent corresponding to the irreducible Wk−2j, 0 ≤ j ≤ k

2 , is

I(Wk−2j)(k) =
∑

f∈H(k−j,j)∩kerR∗

spanC{f,Rf, . . . , Rk−2jf} (sum of irreducibles),

=
⊕

j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗) (orthogonal direct sum).

Moreover, these are the only irreducibles that appear, i.e., we have

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

I(Wk−2j)(k) (orthogonal direct sum),

where the summands above are all nonzero for d ≥ 2, and Harmk(H,C) = I(Wk)(k).

Proof. From Lemma 6.5, we have the orthogonal direct sum decomposition

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗),

and so it suffices to show that every nontrivial irreducible subspace

V ⊂
⊕

0≤a≤k−2j

Ra(H(k − j, j) ∩ kerR∗) =
⊕

j≤b≤k−j

Rb−j(H(k − j, j) ∩ kerR∗)

has the form

V = spanC{f,Rf, . . . , Rk−2jf}, f ∈ H(k − j, j) ∩ kerR∗,
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so that V ∼ = Wk−2j .
Choose a nonzero g ∈ V , and write

g =
∑

0≤a≤k−2j

Rafa, fa ∈ H(k − j, j) ∩ kerR∗.

Let a∗ be the largest value of a for which fa 	= 0. Then, by (5.17) of Lemma 5.5,

f := (R∗)a
∗
g = (R∗)a

∗
Ra∗

fa∗ = (−a∗)a∗(2j − k)a∗fa∗ ,

which is a nonzero scalar multiple of fa∗ (for 2j − k = 0, a∗ = 0), and

W = spanC{f,Rf, . . . , Rk−2jf} ⊂ V, Rk−2jf 	= 0.

Hence dim(V ) ≥ dim(W ) = k− 2j + 1. By construction, W is invariant under the action of R and R∗, and 
hence under right multiplication by H∗ (Lemma 3.8). �

We will call a sequence

f,Rf, . . . , Rk−2jf, 0 ≤ j ≤ k

2 
,

or any nonzero scalar multiples of it, an R-orbit (for Wk−2j) if

f ∈ HomH(k − j, j), R∗f = 0.

It follows from Theorem 9.1 that Rk−2jf 	= 0, and

R{f} := spanC{f,Rf, . . . , Rk−2jf}, (9.4)

is an irreducible subspace (of dimension k + 1 − 2j) for right multiplication by H∗.
We can now give an explicit form for the U(Hd)-irreducibles.

Theorem 9.2. Let d ≥ 2. For the action on Harmk(Hd,C) given by U(Hd) = Sp(d), we have the following 
orthogonal direct sum of irreducibles

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

H(k − b, b)k−2j

∼ = 
⊕

0≤j≤ k
2 

(k − 2j + 1)R(k)
k−2j , (9.5)

where

H(k − b, b)k−2j := Rb−j
(
kerR∗ ∩H(k − j, j)

)
= (R∗)k−b−j

(
kerR ∩H(j, k − j)

)
= H(k − b, b) ∩ I(Wk−2j)(k)

∼ = R(k)
k−2j := kerR∗ ∩H(k − j, j), (9.6)

and

dim(R(k)
k−2j) = (k − 2j + 1)(k + 2d− 1) (k − j + 2d− 2)!(j + 2d− 3)! 

(k − j + 1)!j!(2d− 1)!(2d− 3)! . (9.7)
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Proof. By Lemma 6.5, we already have that (9.5) is an orthogonal direct sum of U(Hd)-invariant subspaces, 
with H(k − b, b)k−2j ⊂ H(k − b, b), given by the first two formulas in (9.6). We therefore need only show 
that they are U(Hd)-irreducible, i.e., given by the formula (9.1), i.e., the third formula, with (9.2) holding 
(the fourth formula). By Theorem 9.1, we have

I(Wk−2j)(k) =
⊕

j≤a≤k−j

Ra(H(k − j, j) ∩ kerR∗).

Since Ra(H(k−j, j)∩kerR∗) ⊂ H(k−j−a, j+a), the only contribution to the intersection with H(k−b, b)
is when b = j + a, which gives the third formula, i.e.,

H(k − b, b) ∩ I(Wk−2j)(k) = Rb−j
(
kerR∗ ∩H(k − j, j)

)
.

We now show, that for j fixed, the H(k−b, b)k−2j are isomorphic U(Hd)-irreducibles. Taking α = β = b−j

in Lemma 6.1 gives

(R∗)b−jH(k − b, b)k−2j = (R∗)b−jRb−j
(
kerR∗ ∩H(k − j, j)

)
= kerR∗ ∩H(k − j, j).

This implies the subspaces have the same dimension as kerR∗ ∩ H(k − j, j), which is given by equation 
(6.18) of Lemma 6.6. Finally, since the action of U(Hd) commutes with the action of R (and its powers), 
these subspaces are all U(Hd)-isomorphic to R(k)

k−2j := kerR∗ ∩H(k − j, j). �

This decomposition is given in [6] Theorem 4.1 (for k even, the summands not given explicitly), and in 
[4] (Theorems 1 and 2). The presentation of [4] involves two separate cases for the decomposition of H(a, b), 
namely

H(k − b, b)k−2j =
{
Rb−j(H(k − j, j) ∩ kerR∗), k − b ≥ b;
(R∗)k−b−j(H(j, k − j) ∩ kerR), k − b ≤ b.

We now consider the irreducibles for the action on Harmk(Hd,C) given by both left multiplication by 
U ∈ U(Hd) and right multiplication by q∗ ∈ H∗, i.e.,

((U, q∗) · f)(q) := f(Uqq∗).

Theorem 9.3. For the action on Harmk(Hd,C) given by U(Hd)×H∗, d ≥ 2, we have the following orthogonal 
direct sum of irreducibles

Harmk(Hd,C) =
⊕

0≤j≤ k
2 

Q
(k)
k−2j , (9.8)

where

Q
(k)
k−2j :=

⊕
j≤b≤k−j

H(k − b, b)k−2j

=
⊕

j≤b≤k−j

Rb−j
(
kerR∗ ∩H(k − j, j)

)
= I(Wk−2j)(k), (9.9)

and

dim(Q(k)
k−2j) = (k − 2j + 1)2(k + 2d− 1) (k − j + 2d− 2)!(j + 2d− 3)! 

(k − j + 1)!j!(2d− 1)!(2d− 3)! . (9.10)
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Proof. The subspace Q(k)
k−2j is invariant under the actions of U(Hd) and H∗, as it is a sum of irreducibles 

for each of these actions. We now show that it is irreducible.
Suppose V ⊂ Q

(k)
k−2j is irreducible under the action of U(Hd) ×H∗. By Theorem 9.1, V ⊂ I(Wk−2j)(k), 

and V contains an irreducible for the action of H∗ of the form

spanC{f,Rf, . . . , Rk−2jf}, 0 	= Rb−jf ∈ H(k − b, b)k−2j , j ≤ b ≤ k − j.

Since each H(k − b, b)k−2j is U(Hd)-irreducible, we have that H(k − b, b)k−2j ⊂ V , and hence V = Q
(k)
k−2j

is irreducible. �

In other words, the Sp(d)×Sp(1)-irreducibles Q(k)
k−2j are precisely the homogeneous components I(Wk−2j)

for right multiplication by H∗.
The decomposition (9.8) of Harmk(Hd,C) into Sp(d) × Sp(1)-irreducibles is given in [23] Theorem 2.4, 

and [3] Proposition 2.1 (as the joint eigenfunctions of operators ΔS and Γ), where the following notations 
are used (respectively)

Q
(k)
k−2j =

{
Hj, k2 −j , (k even);
H̃j, k−1

2 −j , (k odd),
Q

(k)
k−2j = Hk,j .

Both observe that Q(k)
k−2j is invariant under conjugation, and so has a basis of real-valued polynomials, and 

a real-valued zonal function (a function invariant under the subgroup of Sp(d) × Sp(1) that fixes a point). 
The structural form of this zonal is given in [23] Proposition 2.8, and it is given explicitly in [3] Proposition 
3.1.

The invariance of Q(k)
k−2j under conjugation follows directly from (4.7), i.e.,

H(k − b, b)k−2j = Rb−j
(
kerR∗ ∩ HomH(k − j, j)

)
= (R∗)b−j

(
kerR∗ ∩ HomH(k − j, j)

)
= (R∗)b−j

(
kerR ∩ HomH(j, k − j)

)
= H(b, k − b)k−2j . (9.11)

Schematic 9.4. (Wedding cake) The orthogonal decomposition (9.5) of Harmk(Hd,C) into U(Hd)-irreducibles 
can be displayed as layers of a ``wedding cake''

H(k, 0) H(k − 1, 1) H(k − 2, 2) · · · H(2, k − 2) H(1, k − 1) H(0, k)

R∗
←−

...
R−→

R
(k)
k−4 : H(k − 2, 2)k−4 · · · H(2, k − 2)k−4

R
(k)
k−2 : H(k − 1, 1)k−2 H(k − 2, 2)k−2 · · · H(2, k − 2)k−2 H(1, k − 1)k−2

R
(k)
k : H(k, 0)k H(k − 1, 1)k H(k − 2, 2)k · · · H(2, k − 2)k H(1, k − 1)k H(0, k)k

where the layers (rows) correspond to the irreducible R(k)
k−2j (the bottom layer is R(k)

k ), and the slices 
(columns) correspond to the decomposition of a given H(k − b, b) into min{b, k − b} + 1 different irre
ducibles. One can move along the layers using R and R∗, as indicated. Therefore, the left most irreducibles 
(shaded in grey), i.e.,

H(k − j, j)k = H(k − j, j) ∩ kerR∗, 0 ≤ j ≤ k

2 
,

are a distinguished copy of each irreducible, from which the other summands in the layer can be obtained 
by applying R. Further, in view of the symmetries (9.11), i.e., that conjugation rflects the cake around its 
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centre, only half of these summands need be calculated, in practice. Similarly, the right most entries are 
distinguished, and give the other summands by applying R∗.

Example 9.5. We consider Harm2(Hd,C), for which (2.5) gives

dim(Harm2(Hd,C)) = 2d(4d + 1) − 1 = (2d + 1)(4d− 1).

For d = 2, we have the following table, where each line is an R-orbit, as in (9.4).

H(2, 0) H(1, 1) H(0, 2)

K(2, 0)
{ z2

1 z1w1 w1
2

z2
2 z2w2 w2

2

z1z2 z1w2 + z2w1 w1w2

z1w2 − z2w1

K(1, 1)
{

z1w1 z1z1 − w1w1 z1w1
z1w2 w1w2 − z1z2 w1z2
z2w1 w2w1 − z2z1 w2z1
z2w2 z2z2 − w2w2 z2w2

z1z2 + w1w2
z1z2 + w1w2

z2z2 + w2w2 − z1z1 − w1w1

K(0, 2)
{ w2

1 z1w1 z1
2

w2
2 z2w2 z2

2

w1w2 z1w2 + z2w1 z1z2

z1w2 − z2w1

For example, we have the decomposition into irreducibles for right multiplication by H∗

K(2, 0) = (R{z2
1} ⊕R{z2

2} ⊕R{z1z2}) ⊕R{z1w2 − z2w1} ∼ = 3W2 ⊕W0,

where

R{z2
1} = span{z2

1 , z1w1, w1
2} ∼ = W2, R{z1w2 − z2w1} = span{z1w2 − z2w1} ∼ = W0,

etc. This calculation was done for Hom2(H2), which has a dimension 1 higher. Apart from applying R
to fill out the rows, the only other calculation done was solving Rf = 0 or R∗f for f ∈ H

(1,1)
2 (H2) =

K(1, 1) ∩H(1, 1) gives a 4-dimensional space spanned by

z1z1 + w1w1, z2z2 + w2w2, z1z2 + w1w2, z1z2 + w1w2.

The first two have nonzero constant Laplacian, so their difference is harmonic, and the second two are 
harmonic. Similar calculations give the general decomposition

K(2, 0) =
(⊕
|α|=2

R{zα}
)
⊕
( ⊕

1≤j<k≤d

R{zjwk − zkwj}
)
∼ = 

1
2d(d + 1)W2 ⊕

1
2d(d− 1)W0,
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K(1, 1) =
( ⊕

1≤j,k≤d

R{zjwk}
)
⊕
(⊕
j 
=k

R{zjzk + wjwk} ⊕
⊕

2≤j≤d

R{zjzj + wjwj − z1z1 − w1w1}
)

∼ = d2W2 ⊕ (d2 − 1)W0,

K(0, 2) =
(⊕
|α|=2

R{wα}
)
⊕
( ⊕

1≤j<k≤d

R{zjwk − zkwj}
)
∼ = 

1
2d(d + 1)W2 ⊕

1
2d(d− 1)W0,

into irreducibles (sums of R-orbits). In particular, the homogeneous components, i.e., the Sp(d) × Sp(1)
irreducibles, are

Harm2(Hd) = Q
(k)
2 ⊕Q

(k)
0 = I(W2)(2) ⊕ I(W0)(2) ∼ = d(2d + 1)W3 ⊕ (d− 1)(2d + 1)W0.

Example 9.6. Since H(k, 0) ∩ kerR∗ = H(k, 0), we have

I(Wk)(k) =
⊕

|α+β|=k

R{zαwβ} ∼ = 

(
k + 2d− 1

k

)
Wk (orthogonal direct sum).

10. Zonal polynomials

Here we consider the ``zonal polynomials'' for our irreducible representations of the groups G =
U(Hd), U(Hd) ×H∗ on Harmk(Hd,C). There are two common notions of zonal functions:

• The functions fixed by the action of the subgroup Gq′ which fixes a point q′.
• The Riesz representer of point evaluation at a point q′ (the reproducing kernel).

When Gq′ is a maximal compact subgroup of G these are equivalent. We will consider the first notion. For 
a group G acting on Hd, we dfine the stabiliser (or isotrophy) subgroup of q′ ∈ Hd to be those elements 
which fix q′, i.e.,

Gq′ := {g ∈ G : g · q′ = q′}.

A function Hd → C which is fixed by the action of Gq′ is said to zonal (with pole q′). We denote the 
subspace of zonal functions in a space V of polynomials by

V Gq′ := {f ∈ V : g · f = f,∀g ∈ Gq′}.

We now consider the zonal polynomials for the group G = U(Hd).
Recall 〈v, w〉 = v∗w is the Euclidean inner product (2.2). For vectors q = z + jw, q′ = z′ + jw′ in Hd, we 

dfine two inner products

〈q′, q〉Hd := 〈q′, q〉 ∈ H, 〈q′, q〉C2d := 〈
(
z′

w′

)
,

(
z
w

)
〉 ∈ C. (10.1)

Lemma 10.1. For q, q′ ∈ Hd, we have

〈q′, q〉Hd = 〈q′, q〉C2d + j〈q′j, q〉C2d . (10.2)

For the action of U(Hd) the following are zonal polynomials Hd → C with pole q′

q �→ 〈q′, q〉C2d = z′1z1 + · · · + z′dzd + w′
1w1 + · · · + w′

dwd,
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q �→ 〈q′j, q〉C2d = z′1w1 + · · · + z′dwd − w′
1z1 − · · · − w′

dzd.

When q′ = e1, the zonal polynomials above are

z + jw �→ z1, z + jw �→ w1.

Proof. Using (2.1), we calculate

q′j = (z′ + jw′)j = z′j + jw′j = −w′ + jz′,

and so

〈q′, q〉Hd = (z′ + jw′)∗(z + jw) = ((z′)∗ − (w′)∗j)(z + jw)

= (z′)∗z + (w′)∗w + j(z′)∗w − j(w′)∗z

= 〈
(
z′

w′

)
,

(
z
w

)
〉 + j〈

(
−w′

z′

)
,

(
z
w

)
〉 = 〈q′, q〉C2d + j〈q′j, q〉C2d ,

which is (10.2). Let U ∈ U(Hd) with Uq′ = q′, then we have

〈q′, q〉Hd = 〈Uq′, Uq〉Hd = 〈q′, Uq〉Hd = 〈q′, Uq〉C2d + j〈q′j, Uq〉C2d ,

so that

〈q′, Uq〉C2d = 〈q′, q〉C2d , 〈q′j, Uq〉C2d = 〈q′j, q〉C2d ,

which shows that the linear polynomials given are zonal. �

We note that z1 and w1 are zonal polynomials in the U(Hd)-irreducible subspace

H(1, 0)1 = span{z1, . . . , zd, w1, . . . wd},

and so the space of zonal polynomials in a given U(Hd)-irreducible is not 1-dimensional, as it is in the real 
and complex cases.

Example 10.2. The quadratic polynomial q �→ ‖q‖2 = 〈q, q〉Hd is zonal (for any q′). By folk law (the real 
and complex cases), the zonal polynomials should be a function of this and the quaternionic inner product 
q �→ 〈q′, q〉Hd = (q′)∗q. Using (8.7), we have the explicit formulas:

〈q′, q〉C2d = 1
2(〈q′, q〉Hd − i〈q′, q〉Hdi), 〈q′j, q〉C2d = 1 

2j (〈q′, q〉Hd + i〈q′, q〉Hdi).

Using the zonal polynomials above, which commute, since they are complex-valued, [6] dfine zonal 
polynomials in Homk(Hd,C) by

[α1, α2, α3, α4, r]q′(q) := 〈q′, q〉α1
C2d〈q′j, q〉α2

C2d〈q′, q〉
α3

C2d〈q′j, q〉
α4

C2d‖q‖2r, (10.3)

where α1+α2+α3+α4+2r = k. These span and hence are a basis for the zonal polynomials in Homk(Hd,C)
(Proposition 4.2, [6]).
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Example 10.3. For a general q′, we have

[α1, α2, α3, α4, r]q′ ∈ HomH(α1 + α2 + r, α3 + α4 + r),

and for q′ = e1, we have

[α1, α2, α3, α4, r]e1 = zα1
1 wα2

1 z1
α3w1

α4‖z + jw‖2r, α1 + α2 + α3 + α4 + 2r = k, (10.4)

so that

[α1, α2, α3, α4, r]e1 ∈ Hom(α2+α3+r,α3+α4+r)
k (Hd).

We can take advantage of (10.4) to simplify the proof and presentation of results, since if U is unitary 
with Uq′ = e1, then we have the following correspondence between zonal polynomials with poles q′ and e1

[a1, a2, a3, a4, r]q′ = [a1, a2, a3, a4, r]e1(V ·).

This follows from the calculation

〈q′, q〉Hd = 〈Uq′, Uq〉Hd = 〈e1, Uq〉Hd ,

and the fact that such a U can always be constructed, since U(Hd) is transitive on the quaternionic sphere. 
In effect, a zonal polynomial for q′ can be obtained from one with pole e1 by making the substitution

z1 �→ 〈q′, q〉C2d , w1 �→ 〈q′j, q〉C2d . (10.5)

We now show that R and L map the space of zonal polynomials for q′ = e1 to itself. This was assumed 
to be true for a general q′, but calculations show otherwise (for L).

Lemma 10.4. R and R∗ map zonal polynomials to zonal polynomials, i.e.,

R([a, b, c, d, r]) = a[a− 1, b, c, d + 1, r] − b[a, b− 1, c + 1, d, r], (10.6)

R∗([a, b, c, d, r]) = −c[a, b + 1, c− 1, d, r] + d[a + 1, b, c, d− 1, r], (10.7)

and L and L∗ map zonal polynomials for q′ = z′ + jw′ as follows

L([a, b, c, d, r]) = a[a− 1, b, c, d, r][0, 1, 0, 0, 0]z′ − d[a, b, c, d− 1, r][0, 0, 1, 0, 0]z′

− b[a, b− 1, c, d, r][1, 0, 0, 0, 0]jw′ + c[a, b, c− 1, d, r][0, 0, 0, 1, 0]jw′ , (10.8)

L∗([a, b, c, d, r]) = b[a, b− 1, c, d, r][1, 0, 0, 0, 0]z′ − c[a, b, c− 1, d, r][0, 0, 0, 1, 0]z′

− a[a− 1, b, c, d, r][0, 1, 0, 0, 0]jw′ + d[a, b, c, d− 1, r][0, 0, 1, 0, 0]jw′ . (10.9)

For q′ = z′ ∈ Rn, L and L∗ map zonal polynomials to zonal polynomials, i.e.,

L([a, b, c, d, r]) = a[a− 1, b + 1, c, d, r] − d[a, b, c + 1, d− 1, r], (10.10)

L∗([a, b, c, d, r]) = b[a + 1, b− 1, c, d, r] − c[a, b, c− 1, d + 1, r]. (10.11)

The action of Δ on zonal polynomials is similar to the real and complex cases.
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Lemma 10.5. The Laplacian maps zonal polynomials Hn → C to zonal polynomials, i.e.,

1
4Δ([a, b, c, d, r]) = ac[a− 1, b, c− 1, d, r] + bd[a, b− 1, c, d− 1, r]

+ r(k + 2n− 1 − r)[a, b, c, d, r − 1]. (10.12)

The number of zonal functions given by (10.3) is independent of the dimension d. For d = 1, these zonal 
polynomials have linear dependencies, e.g.,

[1, 0, 1, 0, 0] + [0, 1, 0, 1, 0] = z1z1 + w1w1 = [0, 0, 0, 0, 1],

and for d > 1 they are linearly dependent. Thus we obtain the following dimensions.

Lemma 10.6. For Z := U(Hd)q′ , d ≥ 2, the zonal polynomials have dimensions

dim(Homk(Hd,C)Z) =
∑

0≤j≤ k
2 

(
k − 2j + 3

3 

)
, (10.13)

dim(Harmk(Hd,C)Z) =
(
k + 3

3 

)
=

∑
0≤j≤ k

2 

(k − 2j + 1)2. (10.14)

Further, if q′ = z′ ∈ Cd, e.g., q′ = e1, then

dim(Hom(a,b)
k (Hd)Z) = 1

2(m + 1)(m + 2), (10.15)

dim(H(a,b)
k (Hd)Z) = m + 1, (10.16)

where

m := min{a, k − a, b, k − b}.

Proof. Since the zonal polynomials in (10.4) are clearly linearly independent and span Homk(Hd,C)Z (see 
[6] Proposition 4.2), it suffices to count them, which gives

dim(Homk(Hd,C)Z) =
∑

0≤r≤ k
2 

dim(Homk−2r(H,C)) =
∑

0≤r≤ k
2 

(
k − 2r + 3

3 

)
.

When q′ = z′ (w′ = 0), each of these zonal polynomials is in some Hom(a,b)
k (Hd), so that

Hom(a,b)
k (Hd)Z =

⊕
m≤r≤ k

2 

spanC
{
[α1, α2, α3, α4, r] : α1 + α4 = k − a− r, α2 + α3 = a− r

α1 + α2 = k − b− r, α3 + α4 = b− r

}
, (10.17)

and counting again, using (7.4) and m(k−2r)
a−r,b−r = m + 1 − r, gives

dim(Hom(a,b)
k (Hd)Z) =

∑
m≤r≤ k

2 

dim(Hom(a−r,b−r)
k−2r (H))

= 1 + 2 + · · · + m + (m + 1) = 1
2(m + 1)(m + 2).
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Since the Laplacian maps Hom(a,b)
k (Hd) onto Hom(a−1,b−1)

k−1 (Hd) and zonal polynomials to zonal polynomials 
(Lemma 10.5), we have

dim(Harmk(Hd,C)Z) = dim(Homk(Hd,C)Z) − dim(Homk−2(Hd,C)Z) =
(
k + 3

3 

)
,

dim(H(a,b)
k (Hd)Z) = dim(Hom(a,b)

k (Hd)Z) − dim(Hom(a−1,b−1)
k−2 (Hd)Z)

= 1
2(m + 1)(m + 2) − 1

2(m− 1 + 1)(m− 1 + 2) = m + 1,

which completes the proof. �

We will give a simple example first, which motivates the general and constructive result to follow.

Example 10.7. For q′ = e1, the unique zonal polynomial in H(0,0)
k (Hd) is

[k, 0, 0, 0, 0] = zk1 .

We may apply L (down) and R (right) to this, as in the univariate case (Schematic 7.6 and Lemma 8.2), to 
obtain (k + 1)2 zonal polynomials in I(Wk)(k).

zk1 kzk−1
1 w1 · · · k!w1

k

kzk−1
1 w1 k(k − 1)zk−2

1 w1w1 − kzk−1
1 z1 · · · −k!kz1w1

k−1

k(k − 1)zk−2
1 w2

1 k(k − 1){(k − 2)zk−3
1 w2

1w1 − 2zk−2
1 w1z1} · · · k!k(k − 1)z1

2w1
k−2

...
...

...
k!z1w

k−1
1 k!wk−1

1 w1 − k!(k − 1)z1w
k−2
1 z1 · · · (−1)k−1k!2z1

k−1w1
k!wk

1 −k!kwk−1
1 z1 · · · (−1)kk!2z1

k

Theorem 10.8. Let q′ = e1. For d ≥ 2, there is a unique harmonic zonal polynomial

P
(k)
k−2j = P

(k)
k−2j,d ∈ kerL∗ ∩ kerR∗ ∩H

(j,j)
k (Hd), 0 ≤ j ≤ k

2 
,

given by

P
(k)
k−2j :=

∑
b+c+r=j

(−1)r

b!c!r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

[k − j − b− r, b, c, b, r], (10.18)

which has 1
2(j + 1)(j + 2) terms. Let

P
(k)
k−2j,a,b := La−jRb−jP

(k)
k−2j , j ≤ a, b ≤ k − j. (10.19)

Then the zonal polynomials (with pole e1) in Harmk(Hd,C) have the following orthogonal direct sum de
composition into one-dimensional subspaces

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2 

⊕
j≤a,b≤k−j

span{P (k)
k−2j,a,b}. (10.20)

Proof. By (10.17), a general zonal polynomial in Hom(j,j)
k (Hd) has the form

f :=
∑

b+c+r=j

Cbcr[k − j − b− r, b, c, b, r], Cbcr ∈ C,
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which involves 1
2 (j + 1)(j + 2) terms. By Lemma 10.5, the condition for f to be harmonic is

1
4Δf =

∑
b+c+r=j

Cbcr

{
(k − j − b− r)c[k − j − b− r − 1, b, c− 1, b, r]

+ b2[k − j − b− r, b− 1, c, b− 1, r]

+ r(k + 2d− 1 − r)[k − j − b− r, b, c, b, r − 1]
}

= 0,

which gives 1
2j(j + 1) equations, and hence j + 1 = dim((H(j,j)

k )Z) free parameters. Hand calculations 
indicated that Δf = 0 together with the conditions R∗f = 0 and L∗f = 0 leads to a unique (one parameter) 
solution f . From these special cases, we ``guessed'' the formula (10.18). We will now verify directly that f
dfined by (10.18) has the desired properties, and then conclude that it is unique (by a cardinality argument).

By Lemma 10.5 and Lemma 10.4, we have

Δ([k − j − b− r, b, c, b, r]) = (k − j − b− r)c[k − j − b− r − 1, b, c− 1, b, r]

+ b2[k − j − b− r, b− 1, c, b− 1, r]

+ r(k + 2d− 1 − r)[k − j − b− r, b, c, b, r − 1],

R∗([k − j − b− r, b, c, b, r]) = −c[k − j − b− r, b + 1, c− 1, b, r]

+ b[k − j − b− r + 1, b, c, b− 1, r],

L∗([k − j − b− r, b, c, b, r]) = b[k − j − b− r + 1, b− 1, c, b, r]

− c[k − j − b− r, b, c− 1, b + 1, r].

Hence, the [k − j − b′ − r′ − 1, b′, c′, b′, r′] coefficient of Δf is

(−1)r′

(b′)!(c′)!
(k + 2 − j − r′)r′
(k + 2d− 1 − r′)r′

{ 1 
c′ + 1(k − j − b′ − r′)(c′ + 1)

+ 1 
b′ + 1(b′ + 1)2 − 1 

r′ + 1
(k + 2 − j − r′ − 1) 
(k + 2d− 1 − r′ − 1)(r′ + 1)(k + 2d− 1 − r′ − 1)

}
= 0,

the [k − j − b′ − r + 1, b′, c′, b′ − 1, r], b′ 	= 0, coefficient of R∗f is

(−1)r

r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

( 1 
(b′ − 1)!(c′ + 1)!(−(c′ + 1)) + 1 

(b′)!(c′)!b
′
)

= 0,

and the [k − j − b′ − r + 1, b′ − 1, c′, b′, r], b′ 	= 0, coefficient of L∗f is

(−1)r

r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

{ 1 
(b′)!(c′)! (b

′) − 1 
(b′ − 1)!(c′ + 1)! (c

′ + 1)
}

= 0,

so that f = P
(k)
k−2j ∈ ker(L∗) ∩ ker(R∗) ∩ H

(j,j)
k (Hd)Z . Since P (k)

k−2j ∈ H
(j,j)
k (Hd), by Lemma 6.4 and 

Lemma 10.4, we have the orthogonal direct sum decomposition
⊕

0≤j≤ k
2 

⊕
j≤a,b≤k−j

span{La−jRb−jP
(k)
k−2j} ⊂ Harmk(Hd,C)Z ,

and by a dimension count using (10.14), we obtain (10.20), and hence the uniqueness of P (k)
k−2j up to a scalar 

multiple. �
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It follows from Theorem 10.8 (also see [6]) the zonal functions satisfy

dim((I(Wk−2j)(k))Z) = (k − 2j + 1)2,

dim(H(k − b, b)Zk−2j) = k − 2j + 1, j ≤ b ≤ k − j,

and for q′ = e1, we have

dim(H(k − b, b)k−2j ∩H
(a,b)
k (Hd)Z) =

{
1, j ≤ a, b ≤ k − j;
0, otherwise.

(10.21)

Let Z(k)
k−2j,a,b be the zonal polynomial with pole q′ obtained from P (k)

k−2j,a,b by making the substitution 
(10.5).

Corollary 10.9. The zonal polynomials in Harmk(Hd,C) have the following orthogonal direct sum decompo
sition into one-dimensional subspaces

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2 

⊕
j≤a,b≤k−j

span{Z(k)
k−2j,a,b}. (10.22)

Proof. Apply the substitution (10.5) to the orthogonal direct sum (10.20). �

The existence of the zonal polynomials Z(k)
k−2j,a,b in (10.20) is proved inductively in [6], where they are 

denoted by Z(k)
p,w,w′ . We now outline how the two are related. Here p = k− 2j, and the ``weight'' parameters 

w,w′ are related to (a, b), as follows

a = k − w′

2 
, b = k − w

2 
, w′ = k − 2a, w = k − 2b, (10.23)

which gives the correspondence between indices

(a, b) ∈ {0, 1, . . . , k}2 ⇐⇒ (w,w′) ∈ {−k,−k + 2, . . . , k − 2, k}2.

We note that for k even (the case considered in [6]) the weights w and w′ are even, and for k odd, they are 
odd. They dfine the space of zonal polynomials

E
(k)
w,w′ := span{[α1, α2, α3, α4, r]q′ : α1 + α2 + α3 + α4 + 2r = k,

α1 + α2 − α3 − α4 = w,α1 − α2 − α3 + α4 = w′}, (10.24)

which satifies

E
(k)
w,w′ = Hom(a,b)

k (Hd)Z , for q′ = z′ ∈ Cd,

and the space

V (k)
w = H

(k + w

2 
,
k − w

2 

)
= H(k − b, b).

In [6] (Proposition 4.5), the zonal polynomials Z(k)
p,w,w′ are characterised by the following properties:

• Zp,w,w′ ∈ E
(k)
w,w′ , i.e., Z(k)

k−2j,a,b has the structural form given by (10.18) and (10.19).
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• {Zp,w,w′}w′∈{−p,...,p−2,p} is a basis of (the zonal polynomials in) I(Wp)(k)∩V (k)
w , i.e., {Z(k)

k−2j,a,b}j≤a≤k−j

is a basis of the zonal polynomials in I(Wk−2j)(k) ∩H(k − b, b).
• {Zp,w,w′}w∈{−p,...,p−2,p} is a basis of zonal polynomials for an irreducible subspace for right multiplica

tion by H∗, (which is isomorphic to Wp), i.e., {Z(k)
k−2j,a,b}j≤b≤k−j is an R-orbit for a Wk−2j .

These follow from our construction, and the observation (by Lemma 10.4) that

Z
(k)
k−2j,a,b = Rb−jZ

(k)
k−2j,a,0, j ≤ b ≤ k − j.

Example 10.10. The first three polynomials Z(k)
k−2j = Z

(k)
k−2j,0,0 given by (10.18) are

Z
(k)
k = [k, 0, 0, 0, 0],

Z
(k)
k−2 = [k − 2, 1, 0, 1, 0] + [k − 1, 0, 1, 0, 0] − k

k + 2d− 2 [k − 2, 0, 0, 0, 1],

Z
(k)
k−4 = [k − 4, 2, 0, 2, 0] + [k − 2, 0, 2, 0, 0] + 2[k − 3, 1, 1, 1, 0] − 2(k − 1) 

k + 2d− 2 [k − 4, 1, 0, 1, 1]

− 2(k − 1) 
k + 2d− 2 [k − 3, 0, 1, 0, 1] + (k − 1)(k − 2) 

(k + 2d− 2)(k + 2d− 3) [k − 4, 0, 0, 0, 2].

We observe that, except for the first, these depend on the dimension d.

Example 10.11. For k = 1, the zonal polynomials in (10.22) are

Z
(1)
1 := [1, 0, 0, 0, 0] = z1, RZ

(1)
1 = [0, 0, 0, 1, 0] = w1,

LZ
(1)
1 = [0, 1, 0, 0, 0] = w1, −LRZ

(1)
1 = [0, 0, 1, 0, 0] = z1,

and for k = 2, they are given by the schematic

H(1, 1)0
K(1, 1) [1, 0, 1, 0, 0] + [0, 1, 0, 1, 0] − 1 

d [0, 0, 0, 0, 1]
H(2, 0)2 H(1, 1)2 H(0, 2)2

K(2, 0) [2, 0, 0, 0, 0] [1, 0, 0, 1, 0] [0, 0, 0, 2, 0]
K(1, 1) [1, 1, 0, 0, 0] [0, 1, 0, 1, 0] − [1, 0, 1, 0, 0] [0, 0, 1, 1, 0]
K(0, 2) [0, 2, 0, 0, 0] [0, 1, 1, 0, 0] [0, 0, 2, 0, 0]

with the indexing of rows and columns as before.

Similarly to the Schematic 9.4, the summands {Zk−2j,a,b}j≤a,b≤k−j , 0 ≤ j ≤ k
2 , in (10.22) can be arranged 

as the layers of a ``wedding cake'' (see Fig. 1).
We now seek an explicit formula for the zonal polynomial LαRβP

(k)
k−2j of Theorem 10.8. We first determine 

its structural form. The Lemma 10.12, below, says that the complexity of the formula depends on how far 
the index (α, β) is from the edges of the array of indices A = {0, 1, . . . , k − 2j}2. Partition A into ``nested 
squares'', as in (8.4),

Sk,j,m := {(α, β) : min{j + α, j + β, k − j − α, k − j − β} = m}, j ≤ m ≤ k

2 
. (10.25)

Lemma 10.12. Let 0 ≤ α, β ≤ k − 2j, 0 ≤ j ≤ k
2 , and

m := min{j + α, k − j − β, j + β, k − j − α} i.e., (α, β) ∈ Sk,j,m.
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H(2, 2)0
K(2, 2) P0 = P

(4)
000

H(3, 1)2 H(2, 2)2 H(1, 3)2
K(3, 1) P2 = P

(4)
200 RP2 R2P2

K(2, 2) LP2 LRP2 LR2P2

K(1, 3) L2P2 L2RP2 L2R2P2

H(4, 0)4 H(3, 1)4 H(2, 2)4 H(1, 3)4 H(0, 4)4
K(4, 0) P4 = P

(4)
400 RP4 R2P4 R3P4 R4P4

K(3, 1) LP4 LRP4 LR2P4 LR3P4 LR4P4

K(2, 2) L2P4 L2RP4 L2R2P4 L2R3P4 L2R4P4

K(1, 3) L3P4 L3RP4 L3R2P4 L3R3P4 L3R4P4

K(0, 4) L4P4 L4RP4 L4R2P4 L4R3P4 L4R4P4

Fig. 1. Schematic of the 12 + 32 + 52 zonal functions for Harm4(Hd,C) given by (10.19). 

Then LαRβP
(k)
k−2j ∈ K(k − j − α, j + α) ∩H(k − j − β, j + β) has the form

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k − j − β − b− r, b, α + j − r − b, β − α + b, r], α ≤ β,

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br ‘[k − j − α− b− r, α− β + b, j + β − b− r, b, r], α ≥ β,

which involves 1
2 (j + 1)(2m + 2 − j) terms.

Proof. A general zonal polynomial of degree k has the form

f =
∑

a+b+c+d+2r=k

Cabcdr[a, b, c, d, r].

By Lemma 10.4, L and R applied to [a, b, c, d, r] preserves the value of r, so that

f = LαRβP
(k)
k−2j

has the same restriction on r as P (k)
k−2j does, i.e., 0 ≤ r ≤ j.

The condition that f = LαRβP
(k)
k−2j ∈ K(k − j − α, j + α) ∩H(k − j − β, j + β) gives

a + b + r = k − j − β, c + d + r = j + β,

a + d + r = k − j − α, b + c + r = j + α.
(10.26)

First consider the case α ≤ β, i.e., m = j + α or m = k − j − β. If m = j + α, then (10.26) gives

b + c = m− r, a = k − j − β − b− r, d = j + β − c− r,

so that

LαRβP
(k)
k−2j =

∑
0≤r≤j

b+c=m−r

Cbcr[k − j − β − b− r, b, c, j + β − c− r, r], m = j + α.

Using b + c + r = j + α to eliminate c above, gives

LαRβP
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

Cbr[k − j − β − b− r, b, j + α− r − b, β − α + b, r]. (10.27)
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Now consider m = k − j − β. Then (10.26) gives

a + b = m− r, a = k − j − β − b− r, c = j + α− r − b, d = β − α + b,

so that (10.27) holds for m = j + α and m = k − j − β, i.e., α ≤ β.
For the case α ≥ β, i.e., m = j + β or m = k − j − α, we have, respectively

c + d = m− r, a = k − j − α− d− r, b = α− β + d, c = j + β − d− r,

a + d = m− r, a = k − j − α− d− r, b = α− β + d, c = j + β − d− r,

which (replacing d by b) gives the second formula.
In the sum, we can have r = 0, 1, . . . , j (j + 1 choices), with m + 1 − r choices for b, and so the number 

of terms is

(m + 1) + m + (m− 1) + · · · + (m + 1 − j) = 1
2(j + 1)(2m + 2 − j). �

An explicit formula for LαRβP
(k)
k−2j can by found by applying (10.6) and (10.10). This gives very compli

cated coefficients. Instead, we used Lemma 8.2 and numerous symbolic calculations for low values of α and 
β, such as Lemma 10.13 below, to conjecture the formulas of Theorems 10.14 and 10.16, which were then 
proved for a general (α, β).

Lemma 10.13. For 0 ≤ β ≤ k − 2j, 0 ≤ j ≤ k
2 , we have

RβZ
(k)
k−2j =

∑
b+c+r=j

(−1)r

b!c!r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

(k − 2j − β + 1)β [k − 2j − β + c, b, c, b + β, r].

Proof. Use induction on 0 ≤ β ≤ k − 2j, see [21] for details. �

Theorem 10.14. For 0 ≤ α ≤ β ≤ k − 2j, 0 ≤ j ≤ k
2 , we have

LαRβZ
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k − j − β − b− r, b, j + α− r − b, β − α + b, r],

where m = min{j + α, k − j − β} and C(α,β)
br = A

(α,β)
br B

(α,β)
br , with

A
(α,β)
br := (−1)r

b!(j + α− b− r)!r!
(k + 2 − j − r)r
(k + 2d− 1 − r)r

(k − 2j − β + 1)β , (10.28)

B
(α,β)
br : =

∑
u+v=α

α! 
u!v! (k − 2j − α + 1)u(b− u + 1)u(j − r + 1)v(−β)v

= (1 + j − r)α(−β)α 3F2

(−α,−b, k − 2j − α + 1
r − j − α, β + 1 − α

; 1
)
. (10.29)

The constant B(α,β)
br can also be calculated from B(0,β)

br := 1 and the recurrence

B
(α,β)
br = (k − j − β − b + 1 − r)bB(α−1,β)

b−1,r − (β − α + 1 + b)(j + α− b− r)B(α−1,β)
br . (10.30)
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Proof. We first prove the result for B(α,β)
br given by the recurrence relation (10.30), by using induction on 

α. This is true for α = 0 and all β by Lemma 10.13 (where m = j). Let A(α,β)
−1,r and B(α,β)

−1,r take some value 
(it matters not which). Then we have

A
(α−1,β)
b−1,r = bA

(α,β)
br , A

(α−1,β)
br = (j + α− b− r)A(α,β)

br , α > 0. (10.31)

Suppose that α > 0, then by the inductive hypothesis, we have

Lα−1RβZ
(k)
k−2j =

∑
0≤r≤j

0≤b′≤m−r

C
(α−1,β)
b′r [k − j − β − b′ − r, b′, j + α− 1 − r − b′, β − α + 1 + b′, r].

We apply L to this, using (10.10), i.e.,

L([k − j − β − b′ − r, b′, j + α− 1 − r − b′, β − α + 1 + b′, r])

= (k − j − β − b′ − r)[k − j − β − b′ − r − 1, b′ + 1, j + α− 1 − r − b′, β − α + 1 + b′, r]

− (β − α + 1 + b′)[k − j − β − b′ − r, b′, j + α− r − b′, β − α + b′, r]

and (10.31), to obtain

C
(α,β)
br = (k − j − β − (b− 1) − r)C(α−1,β)

b−1,r − (β − α + 1 + b)C(α−1,β)
br

= (k − j − β − b + 1 − r)bA(α,β)
br B

(α,β)
b−1,r − (β − α + 1 + b)(j + α− b− r)A(α,β)

br B
(α−1,β)
br .

Since A(α,β)
br 	= 0, we may divide the above by it, to obtain

B
(α,β)
br = (k − j − β − b + 1 − r)bB(α−1,β)

b−1,r − (β − α + 1 + b)(j + α− b− r)B(α−1,β)
br ,

i.e., (10.30), which completes the induction.
Finally, we show that the formula (10.29) for B(α,β)

br involving a 3F2 hypergeometric series holds, i.e., it 
satifies the recurrence. This we do by induction on α. The case α = 0 is immediate, and the inductive step 
follows from the contiguous relation

(de) 3F2

(−n, a, c
d, e

; 1
)

= (a + c− d− e + 1 − n)(−a) 3F2

(1 − n, a + 1, c + 1
d + 1, e + 1 ; 1

)

− (e− a)(a− d) 3F2

(1 − n, a, c + 1
d + 1, e + 1 ; 1

)
,

for hypergeometric functions, for the choice

n = α, a = −b, c = k − 2j − α + 1, d = r − j − α, e = β + 1 − α. �

The recurrence relation (10.30) was determined first. It suggests that (b, β) �→ Bα,β
br is a polynomial of 

degree 2α, where in fact it has degree α, as is indicated by (10.29). We could not prove formula (10.29) 
directly, without recourse to the contiguous relation. To indicate the complexity of such a calculation, we 
give the inductive step for α = 1, 2

B
(1,β)
br = (k − j − β − b + 1 − r)b− (β + b)(j + 1 − b− r) = (k − 2j)b− (j − r + 1)β,

B
(2,β)
br = (k − j − β − b + 1 − r)b{(k − 2j)(b− 1) − (j − r + 1)β}
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− (β − 1 + b)(j + 2 − b− r){(k − 2j)b− (j − r + 1)β}
= (j − r + 1)2(−β)2 + 2(k − 2j − 1)b(j − r + 1)(−β) + (k − 2j − 2)2(b− 1)2.

Example 10.15. For r = j, the hypergeometric series in (10.29) can be summed using the generalised binomial 
theorem, or Gauss’s summation for the resulting 2F1, to obtain

B
(α,β)
bj =

b ∑
u=0

α! 
u!v! (k − 2j − α + 1)u

b! 
(b− u)!v!(−β)α−b(−β + α− b)b−u

= α!(−β)α
(β − k + 2j)b
(β + 1 − α)b

,

C
(α,β)
bj = (−1)j

j! 
(k + 2 − 2j)j

(k + 2d− 1 − j)j
(k − 2j − β + 1)β(−β)α

(−1)b

b! 
(−α)b(β − k + 2j)b

(β + 1 − α)b
.

For the case j = 0, this further reduces to

C
(α,β)
b0 = (k − β + 1)β(−β)α

(−1)b

b! 
(−α)b(β − k)b
(β + 1 − α)b

,

and we recover the Lemma 8.2 as the particular case j = 0 and d = 1.

The case α ≥ β can easily be obtained in a similar way to Theorem 10.14.

Theorem 10.16. For 0 ≤ α, β ≤ k − 2j, 0 ≤ j ≤ k
2 , let

m := min{j + α, k − j − β, j + β, k − j − α}, c := min{α, β}.

Then we have

LαRβZ
(k)
k−2j =

∑
0≤r≤j

0≤b≤m−r

C
(α,β)
br [k − j + c− α− β − b− r, α− c + b, j + c− b− r, β − c + b, r], (10.32)

where and C(α,β)
br := A

(α,β)
br B

(α,β)
br is given by (10.28) and (10.29) for α ≤ β, and by

A
(α,β)
br := A

(β,α)
br , B

(α,β)
br := B

(β,α)
br , α ≥ β.

For β ≥ α, the constant B(α,β)
br can be calculated from B(α,0)

br := 1 and the recurrence

B
(α,β)
br = (k − j − α− b + 1 − r)bB(α,β−1)

b−1,r − (α− β + 1 + b)(j + β − b− r)B(α,β−1)
br . (10.33)

Proof. In light of Theorem 10.14, we need only consider the case α ≥ β. It follows from (10.30) that 
B

(α,β)
br := B

(β,α)
br , α ≥ β, satifies (10.33). The formula (10.32) can be proved as in Theorem 10.14, using 

induction on β and by applying R to B(α,β−1)
br . �

We now consider an alternative formula for the zonal polynomial of (10.18), i.e.,

P
(k)
k−2j :=

∑
b+c+r=j

(−1)r

b!c!r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

[k − j − b− r, b, c, b, r],

where
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[k − j − b− r, b, c, b, r] = zk−j−b−r
1 wb

1z1
cw1

b‖z + jw‖2r = zk−2j
1 |z1|2c|w1|2b‖z + jw‖2r.

By the binomial identity, we have

P
(k)
k−2j =

j∑
r=0 

(−1)r

r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

zk−2j
1 ‖z + jw‖2r 1 

(j − r)!
∑

b+c=j−r

(b + c)!
b!c! |z1|2c|w1|2b

= zk−2j
1

j∑
r=0 

(−1)r

r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

‖z + jw‖2r 1 
(j − r)! (|z1|2 + |w1|2)j−r.

This has the structural form

P
(k)
k−2j = zk−2j

1 F (‖z + jw‖2, |z1|2 + |w1|2), (10.34)

where F is a homogeneous polynomial of degree j with real coefficients. An elementary calculation shows 
that the polynomial

|〈z + jw, e1〉|2 = |z1|2 + |w1|2 = z1z1 + w1w1

is in the kernel of R, R∗, L and L∗, e.g.,

R(z1z1 + w1w1) = w1z1 − z1w1 = 0.

Hence, by (3.7), all polynomials of the form

g = G(z1z1 + w1w1, · · · , zdzd + wdwd), (10.35)

which include ‖z + jw‖2 and |z1|2 + |w1|2, are in the kernel of R, R∗, L and L∗, and hence

T (fg) = T (f)g + fT (g) = T (f)g, T = R,R∗, L, L∗. (10.36)

Applying this to (10.34) gives the following.

Theorem 10.17. Let q′ = e1. For d ≥ 2, 0 ≤ j ≤ k
2 , the zonal polynomials of Theorem 10.8 are given by

LαRβP
(k)
k−2j = LαRβ(zk−2j

1 )F, 0 ≤ α, β ≤ k − 2j, (10.37)

where F = F (‖z + jw‖2, |z1|2 + |w1|2) does not depend on α and β, and is given by

F = (−1)j(k − 2j + 2)j
(k + 2d− 1 − j)jj!

j∑
s=0 

(−j)s
(k − 2j + 2d− 1 + j)s

(k − 2j + 2)s
1 
s!‖z + jw‖2(j−s)(|z1|2 + |w1|2

)s

= (−1)j

(k + 2d− 1 − j)j
‖z + jw‖2jP

(k−2j+1,2d−3)
j

(
1 − 2 |z1|2 + |w1|2

‖z + jw‖2

)
, (10.38)

with P (k−2j+1,2d−3)
j a Jacobi polynomial.

Proof. Since the function F of (10.34) is of the form (10.35), we may apply (10.36) repeatedly, to obtain

LαRβP
(k)
k−2j = LαRβ

(
zk−2j
1

)
F (‖z + jw‖2, |z1|2 + |w1|2),
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where F does not depend on α and β, and is given by

F =
P

(k)
k−2j

zk−2j
1

=
j∑

r=0 

(−1)r

r! 
(k + 2 − j − r)r
(k + 2d− 1 − r)r

‖z + jw‖2r 1 
(j − r)! (|z1|2 + |w1|2)j−r.

By making the change of variables s = j − r, we obtain

F = (−1)j(k − 2j + 2)j
(k + 2d− 1 − j)jj!

j∑
s=0 

(−j)s
(k − 2j + 2d− 1 + j)s

(k − 2j + 2)s
1 
s!‖z + jw‖2(j−s)(|z1|2 + |w1|2

)s

= (−1)j(k − 2j + 2)j
(k + 2d− 1 − j)jj!

‖z + jw‖2j
j∑

s=0 
(−j)s

(k − 2j + 2d− 1 + j)s
(k − 2j + 2)s

1 
s!

( |z1|2 + |w1|2
‖z + jw‖2

)s

,

so that F can be expressed in terms of a Jacobi polynomial, i.e.

F = (−1)j

(k + 2d− 1 − j)j
zk−2j
1 ‖z + jw‖2jP

(k−2j+1,2d−3)
j

(
1 − 2 |z1|2 + |w1|2

‖z + jw‖2

)
. �

The formula (10.38) for the zonal polynomial (reproducing kernel) P (k)
k−2j = zk−2j

1 F , involving the Jacobi 
polynomial, appears in [9] (Theorem 8). An explicit formula for the factor LαRβ(zk−2j

1 ) is given by the 
formula (8.3) for the univariate case (replace z by z1, etc).

By writing the zonal polynomials in the form (10.37), the squares in the table/schematic for the zonal 
polynomials (see Fig. 1) become essentially those for the univariate cases Harmk−2j(H,C), as depicted in 
(8.2).

11. Symmetries

The polynomials LαRβP
(k)
k−2j and the spaces H(α,β)

k (Hd) have certain natural symmetries that correspond 
to the symmetries of the square (see the array in Example 10.7).

Let the permutation group Sym(4) act on functions of four variables in the natural way, i.e.,

σ · f(x1, x2, x3, x4) = f(xσ1, xσ2, xσ3, xσ4),

and hence on functions f(z, w, z, w) ∈ Homk(Hd,C). There is a subgroup G of Sym(4) which maps 
Harmk(Hd,C) to itself, which is generated by the permutations

σ := (24), τ := (14)(23). (11.1)

This group is the dihedral group of symmetries of the square

D4 = 〈a, b|a4 = b2 = (ba)2 = 1〉, a = στ, b = σ,

and hence has order eight. By considering the action on monomials, one obtains

σ ·H(α,β)
k (Hd,C) = H

(β,α)
k (Hd,C), τ ·H(α,β)

k (Hd,C) = H
(α,k−β)
k (Hd,C), (11.2)

and so G permutes the subspaces H(a,b)
k (Hd,C), where

(a, b) ∈ {(α, β), (α, k − β), (k − α, β), (k − α, k − β), (β, α), (β, k − α− k), (k − β, α), (k − β, k − α)},
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via the action on the indices given by

σ · (α, β) := (β, α), τ · (α, β) := (α, k − β).

It clear from Lemma 7.4 that these subspaces do indeed have the same dimension. The number of subspaces 
above can be 1, 2, 4, 8, depending on the position of the index (α, β) in the square array {0, 1, . . . , k}2. The 
corresponding symmetries of the zonal polynomials

LαRβP
(k)
k−2j ∈ H

(α+j,β+j)
k (Hd,C), 0 ≤ α, β,≤ k − 2j, (11.3)

are as follows.

Lemma 11.1. (Eight symmetries) The zonal polynomials (LαRβP
(k)
k−2j)0≤α,β,≤k−2j have the following basic 

symmetries corresponding to the σ and τ of (11.1)

LαRβP
(k)
k−2j(z, w, z, w) = LβRαP

(k)
k−2j(z, w, z, w) (σ)

= cα,βL
αRk−2j−βP

(k)
k−2j(w, z, w, z) (τ), (11.4)

where cα,β is a constant. The identities for the remaining nontrivial elements of G are

LαRβP
(k)
k−2j(z, w, z, w)

= cα,βL
k−2j−βRαP

(k)
k−2j(w, z, w, z) (στ)

= cβ,αL
βRk−2j−αP

(k)
k−2j(w, z, w, z) (τσ)

= cβ,αL
k−2j−αRβP

(k)
k−2j(w, z, w, z) (στσ)

= cα,βck−2j−β,αL
k−2j−βRk−2j−αP

(k)
k−2j(z, w, z, w) (τστ)

= cα,βck−2j−β,αL
k−2j−αRk−2j−βZ

(k)
k−2j(z, w, z, w) (στστ). (11.5)

Proof. The permutations σ and τ map zonal polynomials to zonal polynomials, and so, in light of (11.2) 
and (11.3), we obtain (11.4). This could also be established, with values of the constants, from the formulas 
for LαRβP

(k)
k−2j given in Theorem 10.14, or by using identities such as

σ · (Rf) = Lf, σ · (Lf) = Rf, τ · (Rf) = R∗f, τ · (Lf) = −Lf,

together with Lemma 5.5. �

The formulas in Lemma 11.1 for P (k)
k−2j,a,b = La−jRb−jP

(k)
k−2j , α = a− j, β = b− j, do not have a simple 

formula for the constants, as the normalisation of LαRβP
(k)
k−2j is biased towards the (starting) polynomial 

P
(k)
k−2j ∈ H

(j,j)
k (Hd,C), which corresponds to a corner of the array of indices. For k even, one could start 

with the ``centre'' polynomial

C
(k)
k−2j = P

(k)
k−2j, k2 , k2 

= L
k
2 −jR

k
2 −jP

(k)
k−2j ∈ H

( k
2 , k2 )

k (Hd,C),

to obtain zonal polynomials

Lmax{α, k2 −j}(L∗)max{ k
2 −j−α,0}Rmax{β, k2 −j}(R∗)max{ k

2 −j−β,0}C
(k)
k−2j .
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By using Lemma 5.5, these can be written as

P
(α,β)
k,k−2j := Mα!

α! 
Mβ !
β! R

αLβP
(k)
k−2j ,

where

Mα := max{α, k − 2j − α}, Mβ := max{β, k − 2j − α}.

The σ and τ symmetries of Lemma 11.1 then become

P
(α,β)
k,k−2j(z, w, z, w) = P

(β,α)
k,k−2j(z, w, z, w) (σ)

= (−1)αP (α,k−2j−β)
k,k−2j (w, z, w, z) (τ). (11.6)

12. The fine scale decomposition for left and right multiplication by H∗

By taking the intersection of the decomposition into irreducibles for right multiplication by H∗ (Theo
rem 9.1) with the corresponding one for left multiplication, we obtain the following decomposition into low 
dimensional subspaces. All of our decompositions, and others, can be built up from this.

Theorem 12.1. (Fine scale decomposition) Let

V
(j1,j2)
k (Hd) := kerL∗ ∩ kerR∗ ∩H

(j1,j2)
k (Hd), 0 ≤ j1, j2 ≤ k

2 
.

Then for d ≥ 2, we have the orthogonal direct sum

Homk(Hd,C) =
⊕

0≤j1,j2≤ k
2 

⊕
j1≤a≤k−j1
j2≤b≤k−j2

min{j1,j2}⊕
i=0 

‖ · ‖2iLa−j1Rb−j2V
(j1−i,j2−i)
k−2i (Hd), (12.1)

and in particular

Harmk(Hd,C) =
⊕

0≤j1,j2≤ k
2 

⊕
j1≤a≤k−j1
j2≤b≤k−j2

La−j1Rb−j2V
(j1,j2)
k (Hd), (12.2)

where

dim(La−j1Rb−j2V
(j1,j2)
k (Hd)) = dim(V (j1,j2)

k (Hd)).

Proof. We note that for j ≤ k
2 , j ≤ k − j, so that min{j, k − j} = j, and

HomH(k − j, j) =
j⊕

i=0 
‖ · ‖2iH(k − j − i, j − i). (12.3)

We observe that Lemma 10.4 implies multiplication of polynomials by ‖ · ‖2 commutes with the action of 
R,L,R∗, L∗. Thus from (12.3), we obtain
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HomH(k − j, j)k−2j := kerR∗ ∩ HomH(k − j, j)

=
j⊕

i=0 
‖ · ‖2i(kerR∗ ∩H(k − j − i, j − i)),

so that Lemma 6.5 gives the orthogonal direct sum decomposition

Homk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤b≤k−j

j⊕
i=0 

‖ · ‖2iRb−j(kerR∗ ∩H(k − j − i, j − i)).

Similarly, we obtain the orthogonal direct sum decomposition

Homk(Hd,C) =
⊕

0≤j≤ k
2 

⊕
j≤a≤k−j

j⊕
i=0 

‖ · ‖2iLa−j(kerL∗ ∩K(k − j − i, j − i)).

Thus Homk(Hd,C) is an orthogonal direct sum of subspaces

‖ · ‖2i1La−j1(kerL∗ ∩K(k − j1 − i1, j1 − i1)) ∩ ‖ · ‖2i2Rb−j2(kerR∗ ∩H(k − j2 − i2, j2 − i2)).

In view of the uniqueness of the Fischer decomposition, these can be nonzero only if i1 = i2 = i ≤ min{j1, j2}. 
Since L,R and ‖ · ‖2 commute, the intersection above can be written

‖ · ‖iLa−j1Rb−j2(kerL∗ ∩ kerR∗ ∩K(k − j1 − i1, j1 − i1)) ∩H(k − j2 − i2, j2 − i2)),

which gives (12.1), with the i = 0 terms giving (12.2). The dimension formula follows from Lemma 6.4 �

Theorem 12.1 also holds for d = 1, in a degenerate way, with

V
(j1,j2)
k (H) = 0, (j1, j2) 	= (0, 0).

Corollary 12.2. The decomposition of zonal polynomials for Z = U(Hd)q′ , q′ = z′ ∈ Cd, corresponding to 
(12.2) is

Harmk(Hd,C)Z =
⊕

0≤j≤ k
2 

⊕
j≤a,b≤k−j

(
La−jRb−jV

(j,j)
k (Hd)

)Z
, (12.4)

where

dim(La−jRb−jV
(j,j)
k (Hd)Z) = 1.

Moreover, we have

H
(a,b)
k (Hd) =

⊕
0≤j1≤m(k)

a

0≤j2≤m
(k)
b

La−j1Rb−j2V
(j1,j2)
k (Hd). (12.5)

Proof. The decomposition (12.4) is given in Theorem 10.8, and the decomposition (12.5) follows from (12.2) 
by grouping the terms La−j1Rb−j2V

(j1,j2)
k (Hd) ∈ H

(a,b)
k (Hd). �

The dimension of V (a,b)
k (Hd) is as follows (see [21]).
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Lemma 12.3. For 0 ≤ a, b ≤ k
2 , we have that

dim(V (a,b)
k (Hd)) = F (k,m,M, d) + F (k,m− 1,M − 1, d)

− F (k,m− 1,M, d) − F (k,m,M − 1, d), (12.6)

where F is given by (7.10), and m = min{a, b}, M = max{a, b}. In particular,

dim(V (a,b)
k (H2)) = (m + 1)(k − 2M + 1).

The zonal polynomials in V (a,b)
k (Hd)Uq is given by

dim(V (a,b)
k (Hd)Uq ) =

{
1, a = b;
0, a 	= b.

For d ≥ 2, it follows from Lemma 12.3 that all the summands in (12.1) and (12.2) are nontrivial.

Example 12.4. We have

V
(0,0)
k (Hd) = H

(0,0)
k (Hd) = span{zα : |α| = k}, dim(V (0,0)

k (Hd)) =
(
k + d− 1
d− 1 

)
.

For k = 2, d = 2, V (0,0)
2 (H2) = span{z2

1 , z1z2, z
2
2}, and

V
(0,1)
2 (H2) = span{z1w2 − z2w1}, V

(1,0)
2 (H2) = span{z1w2 − z2w1},

V
(1,1)
2 (H2) = span{z1z1 + w1w1 − z2z2 − w2w2, z1z2 + z1z2 + w1w2 + w1w2}.

Here we can see explicitly, that the zonal polynomials for Z = U(H2)e1 are given by

V
(0,0)
2 (H2)Z = span{z2

1}, V
(0,1)
2 (H2)Z = 0, V

(1,0)
2 (H2)Z = 0,

V
(1,1)
2 (H2)Z = span{2(z1z1 + w1w1) − ‖(z, w)‖2}.

The decomposition of (12.4) involves subspaces of dimensions 3 (nine), 2 (one) and 1 (six), with

dim(Harm2(H2)) = 9 · 3 + 1 · 2 + 6 · 1 = 35.

13. Conclusion

The fine scale decomposition of Theorem 12.1 rfines all the decompositions of the harmonic polynomials 
Harmk(Hd,C) under the action of a group G ⊂ U(R4d) that we have given or described. These can be 
summarised as follows:
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U(R4d)
|

U(C2d)
|

U(Hd) × U(H)
|

U(Hd)
|

U(H)
|
1

(a single irreducible) [1]

(the spaces H(k − b, b)) [18], [11], [22], [8]

(Theorem 9.3) [23], [3]

(Theorem 9.2) [6], [4]

(Theorem 9.1) [6]

(a single homogeneous component).

Here the action of U(Hd) × U(H) = Sp(d) × Sp(1), and similar products, is not faithful, since the real 
unitary scalar matrix −I belongs to U(Hd) and U(H), where it has the same action. One can naturally 
obtain irreducible decompositions by applying the given group to components of the fine scale decomposition. 
For example, we have the following.

Corollary 13.1. Let d ≥ 2. For the action given by left and right multiplication by H∗ = Sp(1), i.e., the 
group G = Sp(1) × Sp(1), we have the following orthogonal direct sum of homogeneous components

Harmk(Hd,C) =
⊕

0≤j1,j2≤ k
2 

{ ⊕
j1≤a≤k−j1
j2≤b≤k−j2

La−j1Rb−j2V
(j1,j2)
k (Hd)

}
=

⊕
0≤j1,j2≤ k

2 

I(Wk−2j1,k−2j2)(k)

∼ = 
⊕

0≤j1,j2≤ k
2 

dim(V (j1,j2)
k (Hd)) ·Wk−2j1,k−2j2 , (13.1)

for the irreducibles

Wk−2j1,k−2j2
∼ = spanC{La−j1Rb−j2f} j1≤a≤k−j1

j2≤b≤k−j2

, f 	= 0, f ∈ V
(j1,j2)
k (Hd). (13.2)

Proof. The orthogonal direct sums in (13.1) are immediate, and the I(Wk−2j1,k−2j2)(k) dfined is a sum of 
the subspaces in (13.2). It is easily seen from Theorem 9.1, and its analogue for L, that these subspaces, 
i.e.,

spanC{LαRβf}0≤α≤k−2j1
0≤β≤k−2j2

, f 	= 0, f ∈ V
(j1,j2)
k (Hd),

are invariant under left and right multiplication by H∗, that the action is irreducible, and they are isomorphic 
CG-modules. �

There has be recent work on the H-valued slice regular functions on Hd, e.g., [13], but it is not clear 
whether our results could be adapted here, as their definition is involved and the theory of H-modules is 
far less developed that of C-modules.

Finally, we observe that the central idea underlying our development is the Lie correspondence of 
Lemma 3.8, which allows us to replace invariance under the continuous group H∗ (or Sp(1)) by invari
ance under the finite set of operators {R,R∗}. The same development can be applied directly to (a left 
action) of the simply connected matrix Lie group Sp(n) = U(Hd), see, e.g., [4].
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