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Abstract

This paper considers the extension of classical Lagrange interpolation in one real or complex variable to
“polynomials of one quaternionic variable”. To do this, we develop some aspects of the theory of such
polynomials. We then give a number of related multivariate polynomial interpolation schemes for R4 and
C2 with good geometric properties, and some aspects of least interpolation and of Kergin interpolation.

1 Introduction

The quaternions H are a celebrated extension of the field of complex numbers to a noncommutative associative algebra over the
real numbers (a skew-field) with elements

q = q1 + q2i + q3 j + q4k = (q1 + q2i) + (q3 + q4i) j ∈H, q j ∈ R.

and (see [20] for the basic theory of H, which is assumed)

i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, ji = −k, k j = −i, ik = − j.

The Lagrange interpolant L f to a function f at n+ 1 distinct points x0, x1, . . . , xn in R or C is the unique polynomial of degree n
matching the values of f at these points, which can be given explicitly as

L f (x) :=
∑

j

` j(x) f (x j), ` j(x) :=
∏

j 6=k

x − xk

x j − xk
. (1)

Formally, the above formula makes sense for points in H, giving an interpolant. However, due to the noncommutativity of the
quaternions, the Lagrange polynomials depend on the order in which the product is evaluated. This is the first indication that the
quaternionic polynomials of degree n (as a right H-module) might have a dimension greater than n+ 1 (depending on how they
are defined). To resolve this impasse, one could

• Look for an interpolant from a fixed (n+ 1)-dimensional subspace of quaternionic polynomials of degree n, e.g., the left
and right polynomials of degree n of [11].

• Seek a “best” choice of Lagrange polynomials ` j for given interpolation points, which would implicitly define an (n+ 1)-
dimensional subspace of interpolants that is related to the geometry of the points.

The first approach has been considered independently by [2] and [10], which we discuss in the next section. Our approach is
the second. The essential features of each are (respectively):

• Interpolation is not possible for all configurations of points. The condition for unique interpolation and the interpolation
space are not translation invariant. The Lagrange polynomials ` j may have zeros which are not interpolation points. It is
possible to develop a Newton form and notion of divided difference.

• Interpolation is possible for all configurations of points, and the interpolation space depends continuously on the points.
The interpolant is translation invariant. The Lagrange polynomials ` j can be chosen to be zero only at the interpolation
points, and a Newton form can be developed.
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We want polynomials and functions of a quaternionic variable to be an “H-vector space”. To do this, we view such spaces as a
right H-module (and co-opt the language of linear algebra). Linear maps (which are technically H-homomorphisms) then act on
the left, with the usual algebra of matrices then extending in the obvious way (cf. [20]). The Lagrange interpolant, as defined
above, is an H-linear map, since

L( f α+ gβ)(x) =
∑

j

` j(x)( f α+ gβ)(x j) =
∑

j

` j(x)( f (x j)α+ g(x j)β) = L f (x)α+ Lg(x)β .

2 Lagrange interpolation from H[z]
Bolotnikov [2], [3] uses the formal polynomials H[z] in z

f (z) = zn fn + · · ·+ z f1 + f0, f0, . . . , fn ∈H,

on which a left and right evaluation at a ∈H are defined by

f el (a) :=
∑

j

a j f j , f er (a) :=
∑

j

f j a
j .

For H[z] as right vector space, left evaluation is linear but right evaluation is not.
The (left) Lagrange interpolation of [2] is from the (n+ 1)-dimensional subspace of polynomials of degree n in H[z] to left

evaluation at n+ 1 points in H. Let us consider an example, to see the nature of this interpolation.

Example 2.1. There is a unique linear interpolant p(z) = p0 + zp1 to a function f at any distinct points a, b ∈H given by the
Lagrange polynomial formula

p(z) = (z − b)(a− b)−1 f (a) + (z − a)(b− a)−1 f (b)

=
�

b(b− a)−1 f (a)a(a− b)−1 f (b)
�

+ z
�

(a− b)−1 f (a)− a(b− a)−1 f (b)
�

.

Now we consider interpolation at the three points i, j, c ∈H. Up to a scalar, the quadratic Lagrange polynomial from H[z] which
is zero at i and j is

p(z) = 1+ z2,

while those given by the Lagrange polynomial formula are

p1(x) = (x − i)(x − j), p2(x) = (x − j)(x − i).

We note that p is zero at all quaternions q with q2 = −1, equivalently, Re(q) = 0, |q|= 1, e.g., q = k, whereas p1 and p2 are zero
precisely at q = i, j, and they are not the same polynomial since p1(1) 6= p2(1). These are in fact the only types of zeros, and they
are referred to a “spherical” and “isolated” zeros, respectively, in [19]. The theory of [2] is based on the Euclidean algorithm for
the associative multiplication on H[z] given by

�∑

j

z j a j

�

∗
�∑

k

zk bk

�

:=
∑

j,k

z j+ka j bk.

As an example, the “root” z = i of p(z) gives a “linear factor” as follows

(z2 + 1)− ((z − i) ∗ z + (z − i) ∗ i) = 0 =⇒ z2 + 1= (z − i) ∗ (z + i).

Note that f (z) := (z − i) ∗ (z − j) = z2 − z(i + j) + k has z = i as a left root, i.e., f el (i) = 0, but not z = j (which is a right root).

Two quaternions q1 and q2 are said to be similar (the term equivalent is used in [2]) if q2 = aq1a−1 for some nonzero a ∈H.
This is equivalent to Re(q1) = Re(q2) and |q1|= |q2|. Hence i, j, k are similar and 1 and either of j, k are not.

The left point evaluations δa :H[z]→H : f 7→ f el (a), a ∈H, are H-linear functionals on the right vector space H[z]. These
span a left vector space, with linear dependencies given by following:

Lemma 2.1. ([2] Lemma 3.1) For f ∈H[z] and a, b, c ∈H distinct and similar

f el (c) = (c − b)(a− b)−1 f el (a) + (c − a)(b− a)−1 f el (b), (2)

i.e.,
δc = (c − b)(a− b)−1δa + (c − a)(b− a)−1δb. (3)

To see this in play, we consider left quadratic Lagrange interpolation from H[z].
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Example 2.2. We seek a quadratic polynomial p(z) = p0 + zp1 + z2p2 which left Lagrange interpolates a function f at distinct
points a, b, c ∈H, i.e.,

pel (a) = p0 + ap1 + a2p2 = f (a),

pel (b) = p0 + bp1 + b2p2 = f (b),

pel (c) = p0 + cp1 + c2p2 = f (c).

Gauss elimination gives the row echelon form

p0 + ap1 + a2p2 = f (a),

p1 + (b− a)−1(b2 − a2)p2 = (b− a)−1( f (b)− f (a)),

{(c − a)−1(c2 − a2)− (b− a)−1(b2 − a2)}p2 = (c − a)−1( f (c)− f (a))− (b− a)−1( f (b)− f (a)),

and so there is a unique interpolant to every f if and only if

(c − a)−1(c2 − a2)− (b− a)−1(b2 − a2) 6= 0.

It is easily seen that equality above is equivalent to taking f (z) = z2 in (2), i.e.,

c2 = (c − b)(a− b)−1a2 + (c − a)(b− a)−1 b2 ⇐⇒ (c − a)−1(c2 − a2) = (b− a)−1(b2 − a2).

The Gauss elimination argument above shows that a necessary condition for left (or right) Lagrange interpolation by a
polynomial in H[z] of degree n to any f to n+ 1 distinct points in H is that no three of the points are similar. This is in fact
sufficient.

Theorem 2.2. ([2] Theorem 3.3) Left (or right) Lagrange interpolation from the polynomials of degree n in H[z] to n+ 1 points in
H is uniquely possible if and only if the no three of the points are similar, i.e., have the same modulus and real part.

Corollary 2.3. For a set A⊂H the linear functionals {δa}a∈A given by

δa :H[z]→H : f 7→ f el (a),

are H-linearly independent if and only if no three of them are similar.

Proof: If three of the points a, b, c ∈ A are similar, then we have the nontrivial linear dependency (3). Conversely, suppose
that no three points are similar. Take a linear combination

n
∑

j=0

c jδa j
= 0, a j ∈ A, c j ∈H,

and apply both sides of this to the unique Lagrange interpolant to the function which is zero at all the points in {a0, a1, . . . , an},
except a j , to conclude that c j = 0.

These results were developed from the notion of P-independence [12], [13], i.e., the set of n+1 points A is (left) P-independent
(polynomial independent) if the linear functionals {δa}a∈A above are linearly independent, or, equivalently, there is a subspace
of H[z] of dimension n+ 1 from which unique (left) Lagrange interpolation is possible. This has recently been explored in the
multivariate setting [15], [14].

Corollary 2.4. There is a unique quadratic left Lagrange interpolant from H[z] to the distinct points a, b, c ∈H if and only if the
points are not all similar. The condition for the points to be similar can be expressed as

(c − a)−1(c2 − a2) = (b− a)−1(b2 − a2). (4)

A symmetric form of (4) can be obtained by evaluating the symmetrised form of the linear dependence (3) at f (z) = z2.
The condition for unique left Lagrange interpolation is not translation invariant, except for some real translations or

interpolation to less than three points. For example, quadratic interpolation at i, j, k is not possible, but it is possible at
2i, j + i, k+ i (since |2i| = 2 6=

p
2 = | j + i|). In a similar vein, the polynomials of degree n in H[z] when viewed as functions

f :H→H : q 7→ f0 + q f1 + · · ·+ qn fn are not translation invariant, e.g.,

(q+ a)2 = q2 + qa+ aq+ a2 = q2 + qb+ a2, ∀q ∈H,

for some b ∈H, if and only if a is real.
Since there is a unique one-dimensional subspace of polynomials of degree n in H[z] whose left evaluation at n points (with

no three similar) is zero, a Newton form for (left) Lagrange interpolation can be developed.
A generalisation of Bolotnikov’s Theorem 2.2 above was given independently by Ghiloni and Perotti [10] (Theorem 3.1). This

allows for interpolation at multiple points from a similarity class of quaternions. It is based on the seminal work of Gordon and
Motzkin [11] on the zeros of left and right polynomials over a division ring (equivalent to Bolotnikov’s left and right evalution).
The key features of this result are:
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• There is unique interpolation by a left/right polynomial of degree n to a set of n+ 1 points for which each similarity class
contains either one or two points. In particular, if no two interpolation points are similar, then one has Theorem 2.2.

• If three or more of the n + 1 interpolation points are similar, then “quaternionic collinearity” conditions for unique
interpolation to data at the points are given. These have both the points and the given data/values as parameters, and
follow from Gauss elimination as in Example 2.2.

3 Quaternionic polynomials

It is now time to understand the nature of the quaternionic polynomials, viewed as functions H→H, obtained from the formula
(1) for the Lagrange polynomials. These involve sums of polynomials of the form

q 7→ α0qα1qα2 · · ·qαr−1qαr , α j ∈H,

which Sudbery [21] calls a quaternionic monomial of degree r. See the work of [5], [11], [6], [19], [17], [25] and [1] on the
zeros of such sums of monomials, which include the spaces of left and right polynomials.

We define the H-span of the quaternionic monomials above to be Homr(H) the homogeneous polynomials of degree r, and
Poln(H) the polynomials of degree k to be the H-span of the homogeneous polynomials of degrees ≤ n. These definitions extend
to multivariate polynomials Hd →H, where each occurrence of q in the formula for a monomial is replaced by some coordinate
q j .

It is clear from the definitions, that the quaternionic polynomials are a graded ring, i.e., the product of homogeneous
polynomials of degrees j and k is a homogeneous polynomial of degree j + k. To understand the dimensions of these spaces, we
write q ∈H as

q = t + i x + j y + kz, t, x , y, z ∈ R,

and observe (see [21]) that

t =
1
4
(q− iqi − jq j − kqk),

x =
1
4i
(q− iqi + jq j + kqk),

y =
1
4 j
(q+ iqi − jq j + kqk),

z =
1

4k
(q+ iqi + jq j − kqk). (5)

Hence t, x , y, z are homogeneous monomials (in q), as are q and |q|2 = qq, i.e.,

q = t − i x − j y − kz = −
1
2
(q+ iqi + jq j + kqk),

|q|2 = qq = −
1
2
(q2 + (qi)2 + (q j)2 + (qk)2).

Every monomial of degree r can be written as a homogeneous polynomial of degree r in the (real) variables t, x , y, z with
quaternionic coefficients. The monomials in t, x , y, z are linearly independent over H by the usual argument (of taking Taylor
coefficients), and so we have

dimH(Homr(H)) = dimR(Homr(R4)) =
�

r + 3
3

�

, (6)

dimH(Poln(H)) = dimR(Polk(R4)) =
�

n+ 4
4

�

. (7)

In particular, the vector spaces of constant, linear and quadratic polynomials of a single quaternionic variable have dimensions
1, 5 and 15, respectively. This contrasts sharply with the real and complex cases, where the dimensions are 1, 2 and 3.

Example 3.1. In view of (5), a basis for the linear polynomials is given by 1, q, iq, jq, kq. There is a unique linear Lagrange
interpolant to any five points x0, . . . , x5, which are affinely independent as points in R4. An explicit formula for the Lagrange
interpolant p(q) = p0 + qp1 + iqp2 + jqp3 + kqp4 can be obtained by solving the “linear system”

p(x j) = p0 + x j p1 + i x j p2 + x j p3 + kx j p4 = f (x j), 0≤ j ≤ 4,

for p0, . . . , p4 ∈ H in the skew-field H. The corresponding Lagrange polynomials are the barycentric coordinates for the
interpolation points. If the points are taken to be 0,1, i, j, k, then the interpolant can be written as

(1− t − x − y − z) f (0) + t f (1) + x f (i) + y f ( j) + z f (k).

From this a (multivariate) Bernstein interpolant could be developed, if desired.
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As is evident from this example, Lagrange interpolation from Poln(H) is essentially interpolation from Poln(R4), with the
additional feature that formulas can be developed using a single quaternionic variable q, or two complex variables v, w, where

q = v + jw, v = t + i x =
1
2
(q− iqi), w= y − iz =

1
2
(− jq+ kqi). (8)

We now consider interpolation from subspaces of Poln(H) that are a quaternionic analogue of the holomorphic functions. A
function f :H→H is said to be regular if it is in the kernel of the Cauchy-Feuter operator 2∂`, i.e.,

2∂` f :=
∂ f
∂ t
+ i
∂ f
∂ x
+ j
∂ f
∂ y
+ k
∂ f
∂ z
= 0,

and to be harmonic if

∆ f :=
∂ 2 f
∂ t2

+
∂ 2 f
∂ x2

+
∂ 2 f
∂ y2

+
∂ 2 f
∂ z2

= 0.

If f is regular, then it is harmonic. The dimensions of Regn(H) and Harmn(H), the regular and harmonic homogeneous polynomials
of degree n, are

dimH(Regn(H)) =
1
2
(n+ 1)(n+ 2), dimH(Harmn(H)) = (n+ 1)2.

Example 3.2. The harmonic polynomial q = t + i x + j y + kz is not regular, since

∂ q
∂ t
+ i
∂ q
∂ x
+ j
∂ q
∂ y
+ k
∂ f
∂ z
= 1+ i(i) + j( j) + k(k) = −2 6= 0.

A basis for (the right H-vector space) Reg1(H) is given by t + i x , t + j y, t + kz.

An explicit basis {Pn
k` − jPn

k−1,`}0≤k≤`≤1, for Regn(H) is given in [21], where

Pn
k`(v + jw) :=

∑

r

(−1)r v[n−k−`+r]v[r]w[k−r]w[`−r], v, w ∈ C, z[ j] :=

¨

z j

j! , j ≥ 0;

0, j < 0.

Here
q = t + i x + j y = kz = (t + i x) + j(y − iz) = v + jw,

so for n = 1, P1
00(q) = v, P1

01(q) = w, P1
11(q) = −v. But Q1

01(q) = w is not regular. Interchanging k and ` in the formula (presumably
a typo), gives P1

01(q) = w, and the basis

v = t + i x , w= y − iz = (t + j y)(− j) + (t + kz) j,

−v − jw= −(t − i x)− j(y − iz) = (t + i x)− (t + j y)− (t + kz).

The product of regular functions is not (in general) regular, since

2∂`
�

(t + i x)(t + j y)
�

= 2i x , 2∂`
�

(t + j y)(t + i x)
�

= 2 j y.

However, multiplying the basis of Example 3.2 by i, j, k, to get i t − x , j t − y, kt − z, we have

2∂`
�

(i t − x)( j t − y)
�

= 2kt, 2∂`
�

( j t − y)(i t − x)
�

= −2kt,

so that the average 1
2 {(i t − x)( j t − y) + ( j t − y)(i t − x)} is regular. In this way, [21] gives a basis for Regn(H) consisting of

symmetrised products of the linear regular polynomials i t−x , j t− y, kt−z, where the factors occur n1, n2, n3 times, n1+n2+n3 = n.
Though the (Feuter) regular polynomials are a proper subspace of the quaternionic polynomials (which share some aspects of

holomorphic polynomials, but not that power series, since q is not regular), we do not readily see a practical way to interpolate
from them. There has recently been considerable interest in Cullen-regular functions [9], which do have power series expansions
(around 0 or a real centre), and so correspond to the (n+ 1)-dimensional subspace of formal polynomials H[z] in Poln(H), which
we have already discussed.

4 Multivariate Lagrange interpolation

We now consider interpolation methods derived from (1). As already discussed, this is essentially multivariate polynomial
interpolation to functions R4→H.

Example 4.1. The order in which the factors of ` j(x) are calculated is important. For x0 = i, x1 = j, x2 = k, we might take
“`0(x)” to be

p(x) := (x − j)(x − k)(i − j)−1(i − k)−1, p(i) =
1
2
(−1− i − j − k).

This is not 1 at x0, and so care must be taken with the order of multiplication in (1). Natural choices for the multiplication order
are to evaluate each quotient first (with right scalar multiplication), or to take the product of the numerators, and then right
multiply this by the inverse of its value at x j , in concrete terms for `0 for three points either of

(x − x1)(x0 − x1)
−1(x − x2)(x0 − x2)

−1, (x − x1)(x − x2)
�

(x − x1)(x − x2))
�−1

.
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Either of the choices for computing ` j(x) suggested above give

• A unique linear Lagrange interpolation operator to any points x0, . . . , xn ∈ H from the (n + 1)-dimensional subspace
span{` j} of Poln(H), where the Lagrange polynomials have precisely n zeros.

• The operator depends continuously on the interpolation points.

• It could be “symmetrised” to obtain an operator which doesn’t depend on the ordering of the points (though the Lagrange
polynomials might now have additional zeros).

In this vein, we now define a generic polynomial of degree n which is zero at n points. For points x1, . . . , xn ∈H, let

p{x1 ,...,xn}(x) :=
1
n!

∑

σ∈Sn

(x − xσ1)(x − xσ2) · · · (x − xσn),

where Sn is the symmetric group. This polynomial of degree n is zero at the points x1, . . . , xn, and (by construction) does not
depend on their ordering.

We now present two possible choices for the Lagrange polynomials:

` j(x) := p(x)p(x j)
−1, p(x) = p{x0 ,...,xn}\{x j}(x), (9)

provided that p(x j) 6= 0, and

` j(x) :=
1
n!

∑

σ∈Sn+1
σ j= j

∏

k 6= j

(x − xσk)(x j − xσk)
−1, (10)

where the factors above are multiplied in the order k = 0, 1, . . . , n (or any fixed order). Both are independent of the point ordering,
and depend continuously on the points. Let LΘ be the corresponding Lagrange interpolation operator

LΘ f (x) :=
∑

j

` j(x) f (x j),

for the points Θ = {x0, . . . , xn} ⊂H, which does not depend on their ordering. We have

• The interpolation operator LΘ depends continuously on the points Θ.

• The interpolation space ΠΘ := ran(LΘ) depends continuously on the points Θ.

• The interpolation operator is translation invariant, i.e.,

LΘ+a f (x) = LΘ
�

f (·+ a)
�

(x − a).

We compare this Lagrange interpolation with the two most prominent multivariate generalisations of univariate Lagrange
interpolation, where the interpolation points are not in some predetermined geometric configuration.

Kergin interpolation [16] interpolates function values at n+1 points inRd by a polynomial of degree n, with other “mean-value”
interpolation conditions (see [22]) that depend continuously on the points also matched. Here the interpolation space Poln(Rd)
is fixed, and hence depends continuously on the points. Kergin interpolation has also been extended to Cd (see [8]). Using
the identifications H ≈ R4, H ≈ C2 one can defined a Kergin interpolation to functions H→ H from the whole space Poln(H)
(with additional interpolation conditions). The explicit formulas for Kergin interpolation involve derivatives of f (the operator is
defined for Cn-functions), and are not as easily computed as ours.

Least interpolation [4] is a very general method, which seeks an interpolation space ΠΘ of dimension n+1 to the n+1 points
Θ, which has polynomials of lowest (least) degree. It has many nice properties that include the continuity properties listed above,
but there is no explicit formula. It could be applied to functions H→H in the same way that Kergin interpolation can be. It might
even be possible to develop a least interpolation for “polynomials in Hd”, once such a theory is developed. The least interpolation
has the advantage that polynomials of low degree are used. In particular, the Lagrange polynomials are a partition of unity, i.e.,

∑

j

` j = 1.

For the Lagrange polynomials that we have proposed, this may not be the case. Indeed, the set of all possible “nice” Lagrange
polynomials ` j for x j , i.e, those polynomials p = p{x0 ,...,xn} of degree n, with p(xk) = δ jk and p not depending on the order of the
points, form an affine subspace of Poln(H), from which we have suggested two choices. It may be that requiring, in addition, the
partition of unity property, gives a unique choice, but we have not pursued this.

Since our Lagrange interpolation is effectively interpolation to functions R4→H, we can define an interpolation operator to
functions R4→ R in the natural way, i.e.,

L f := Re(LΘ f ) =
∑

j

Re(` j) f (x j), where f :H→ R,
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and Θ is the points viewed as a subset of H. Heuristically, the real Lagrange polynomials ˆ̀
j = Re(` j) are more likely to be “nice”,

e.g., form a partition of unity, have no extra zeros, or coincide for both choices, since there is the “commutativity relation”

Re(ab) = Re(ba), a, b ∈H.

In a similar way, one could define a Lagrange interpolation operator to functions C2 → C, by using the Cayley-Dickson
construction (8).

It is also possible to develop Lagrange interpolants through a Newton form (either for functions H→H or R4→ R), and an
associated theory of divided differences. For example, if Ln−1 f is a Lagrange interpolant at x1, . . . , xn−1 ∈H, then

Ln f (x) := Ln−1 f (x) + pn(x)[x0, . . . , xn] f , where p ∈ Poln(H), p(x j) = δ jn,

gives a Lagrange interpolant Ln f to f at the points x0, . . . , xn, and a “divided difference” [x0, . . . , xn] f ∈H. Choices for p could
include p{x0 ,...,xn−1} or `n (for x0, . . . , xn). The map f 7→ [x0, . . . , xn] f ∈H is an H-linear functional. We have not invesigated its
divided difference type properties any further.

5 Concluding remarks

This work came about when investigating tight frames and spherical designs for Hd (see [24], [23]). It soon became apparent
that the theory of quaternionic polynomials of one and several variables is involved, and not widely known. There is considerable
work in at least two different directions. One is a formal (algebraic) approach dating back to [18], [12], where point evaluation
and multiplication of polynomials are appropriately defined, and the other views the polynomials as functions, with the usual
point evaluation and (pointwise) multiplication.

Here we have shown that

• The space of quaternionic polynomials required for the classical formula (1) for Lagrange interpolation to make sense has
a high dimension (7).

• Lagrange interpolation methods with some geometric properties, e.g., translation invariance, are essentially multivariate
polynomial interpolation methods.

• Many basic questions about quaternionic polynomials of one (and several) variables remain, e.g., the existence of Lagrange
polynomials with no extra zeros which form a partition of unity.

Functions of quaternionic variables have long been used in physics, and geometric design (cf. [7]). We hope this paper gives some
insight into polynomials of one or more quaternionic variables, and their use in interpolation and cubature (spherical designs).
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[25] Dariusz M. Wilczyński. On the fundamental theorem of algebra for polynomial equations over real composition algebras. J. Pure Appl.
Algebra, 218(7):1195–1205, 2014.

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	Lagrange interpolation from H[z]
	Quaternionic polynomials
	Multivariate Lagrange interpolation
	Concluding remarks

