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Abstract The prototypical example of a tight frame: theercedes—Benz frantan
be obtained as the orbit of a single vector under the actighefjroup generated
by rotation by%", or the dihedral group of symmetries of the triangle. Mamyrfes
used in applications are constructed in this way, often @sthit of a single vector
(akin to a mother wavelet). Most notable are tlmonic framegfinite abelian
groups) used in signal analysis, and the equiangdkisenberg framesor SIC-
POVMs (discrete Heisenberg group) used in quantum informati@orny. Other
examples include tight frames of multivariate orthogoraypomials sharing sym-
metries of the weight function, and théhly symmetric tight frameshich can be
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ory of suchgroup framesand some of the constructions that have been found so far.
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1 The symmetries of a frame (its dual and complement)

Thesymmetrie®f the Mercedes—Benz frame

are those rotations and reflections (unitary maps) whicimpg its vectors. We now
formalise this idea, with the key features of ttyammetry grougsee [19] for full
proofs) being:

e Itis defined forall finite frames as a group of permutations on the index set.

e Itis simple to calculate from the Gramian of the canoniggthtiframe.

e The symmetry groups of similar frames are equal. In padica frame, its dual
frame and canonical tight frame have the same symmetry group

e The symmetry group of various combinations of frames, ssdie@sor products
and direct sums, are related to those of the constitueneama natural way.

e The symmetry group of a frame and its complementary frameaual.

Let Sy be the (symmetric group of) permutationsfh2,...,M}, and GL(.»¢)
be the (general linear group of) linear mags — 7.

Definition 1. Thesymmetry group of a finite frame® = (¢;)}"; for /2 = FN is
Sym @) :={o € Su: 3Ly € GL(Z) with Lo @j = ¢gj, j =1,...,M}.

Let ®°@ denote the canonical tight frani@ ®*)~1/2® of @.

Theorem 1.1f @ and ¥ are similar frames, i.e.® = Q¥, Q € GL(5¢), or are
complementary frames, i.e. gan+ Gyean = 1d, then

Symw) = Sym @),

In particular, a frame, its dual frame and its canonical tighame have the same
symmetry group.

Proof. It suffices to show one inclusion. Supposes Sym(®), i.e.,Ls9; = ¢gj,
Vj. Sincep; = Qj, this givesQ L,Qyj = Yoj, Vj, i.e.,0 € SymW¥). O
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Example 1Let @ be the Mercedes—Benz frame. Since its vectors add to zero,
W =([1],[1],[1]) is the complementary frame f&. Clearly, Syni¥’) = S;, and so
Sym(®) = S; (which is isomorphic to the dihedral group of triangular syetries).

Since a finite frame is determined up to similarity b§gcan, the Gramian of the
canonical tight frame, it is possible to compute ¢ from Ggcan. This is most
easily done as follows:

Proposition 1. Let @ be a finite frame. Then
oc Syl’T'( (D) <~ P;chcanpa = Ggean,
where B is the permutation matrix given by B = eg;j.

Since Syni®) is a subgroup 08y, it follows there areanaximally symmetric
frames ofM vectors inFV, i.e., those with the largest possible symmetry groups.

Example 2The M equally spaced vectors iR? have the dihedral group of order
2M as symmetries. This is not always the most symmetric framd oEctors in
C?, e.g., ifM is even, the (harmonic) tight frame given by Medistinct vectors

(0)-(9)(D) () () (S0 (D)) et

has a symmetry group of ordéM2 (see [10] for details).

Example 3The most symmetric tight frames of 5 vectorsiif are as follows

Fig. 1 The most symmetric tight frames of five distinct nonzero vectoi@3nThe vertices of the
trigonal bipyramid (12 symmetries), five equally spaced vectéexli(10 symmetries), and four
equally spaced vectors and one orthogonal (8 symmetries).

The symmetry group of a combination of frames behaves as on&lvexpect:

Proposition 2. The symmetry groups of a finite frame satisfy
1. Sym(@®) x SymW) C Sym(®@uU W) (union of frames)
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2. Sym(@) x Sym¥) C Sym(® @ ¥) (tensor product)
3.Sym(@)NSym¥) C Sym @ @ W) (direct sum)

Here

a>uw::(<%j>,<£k)), PoW = (§ @ ),

Py = ((:f}:()), wherey ;(f,¢;)y; =0,Vf.

Since linear maps are determined by their action on a spgseinit follows that
if 0 € Sym(®), then there is a unique; € GL(.2) with L, f; = fgj, Vj. Further,

Sym(®) — GL(H#): 0 Lo (1)

is a group homomorphism, i.e. representatiorof G = Sym(®). If the symmetry
group acts transitively o under this action, i.e@ is the orbit of any one vector,
e.g., the Mercedes—Benz frame, then we have what is caedrame

2 Representations ands—frames

The Mercedes—Benz frame is the orbit under its symmetrymoda single vector.
Formally, the symmetry group is a group of permutations (@stract group) which
acts as unitary transformations. This is a fundamentabnati abstract algebra:

Definition 2. A representationof a finite groupG is a group homomorphism
p:G— GL(57),

i.e., alinear action o6 on.7# = FN, usually abbreviatedv= p(g)v, v € 7.

Representations are a convenient way to study groups wipiskaa as linear
transformations, whilst being able to appeal to abstramtigtheory (cf. [12]).

Example 4If @ is a frame, then we have already observed that the action of
Sym(®) on s given by (1) is a representation. ¢ is tight, then this action is
unitary. We will build this into our definition of @roup frame

Definition 3. Let G be finite group. Agroup frame or G—frame for J# is a frame
® = (¢g)gec for which there exists a unitary representatpnG — % () with

9¢n = p(Q)¢h=¢gn,  Vg,heG.
This definition implies that &—frame® is the orbit of a single vectore J7, i.e.,

® = (gV)geGs

and so is arequal-nornframe.
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Example 5An early example of group frames is the vertices of iégular M—gon
or theplatonic solids These were some of the first examples of frames considered
(see [3]). Thehighly symmetric tight framesee§?7) are a variation on this theme.

LEHRBE

Fig. 2 The vertices of the platonic solids are examples of group frames.

In the remaining sections, we outline the basic propertiesa@nstructions for
G—frames. In particular, we will see:

e There is dinite number ofG—frames ofM vectors inFN for abelian groups.
These are known dsarmonic framegseess)

e There is arinfinite number ofG—frames ofM vectors inFN for nonabeliarG.
Most notably, theHeisenberg framegsee§9) of M = N? vectors inCN, which
provide equiangular tight frames with the maximal numbeveaftors.

3 Group matrices and the Gramian of aG—frame

Since the representation definin@aframe is unitary, i.e.,
p(@) =p@ t=p(@?"), sothaglv=gy,
the Gramian of &—frame® = (¢g)gec = (9V)gec has a special form:
(bg, #n) = (Quhv) = (v g'hv) = (wg *hv) =n(g~*h),  wheren:G —F.

Thus the Gramian of &—frame is agroup matrix or G—matrix, i.e., a matrixA,
with entries indexed by elements of a grd@pwhich has the form

A= [n(g ')]ghec.

One important consequence of the fact the Gramian@#tfaame is a group matrix
is that it has a small number of angl€s)(g) : g € G}, which makes them good
candidates for equiangular tight frames (88 We have the characterisation ([18]):

Theorem 2.Let G be a finite group. The® = (¢g)gcc is a G—frame (for its span
) if and only if its Gramian G is a G—matrix.
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Proof. If @ is aG—frame, then we observed that its Gramian G-anatrix.
_ Conversely, suppose that the Gramian of a fragnéor 7’ is a G-matrix. Let
® = (@y)gec be the dual frame, so that

f= §<f7@>%, Ve 2)

ge

For eaclg € G, define a linear operatbly : 77 — J# by

Ug(f):: Z <f7(’hﬁ1>%h17 Ve

h1€G
Since Grami®) = [(¢h, @&)]ghec iS aG—matrix, we have

(@yhy> Borp) = V((9he) " ghn) = v(hy thy) = (@, ) (3)

It follows from (2) and (3) thatlg is unitary by the calculation

Ug(f).Ug(f2)) = (S (F1, ) Borys S {F2. o) )

h]_EG h2€G
= 1. @) (T2, @) (o - @)
hlgGhzéG< 1 1>< 25 Gh, <(ﬂgh1 ®yhy
= (1, ny) (2, ) (. )
hlgehge L2 Fhe /A e
- <th<fl’(h‘l>%17hze<f2a(k12>(ﬂ12> = <f1, f2>
1€ <

Similarly, we have

Ugth= 3 (0h. ) = 3 (@ o) B, = e

1€G h€G
This impliesp : G — % (7€) : g — Uy is a group homomorphism, since
Ugigo ¢h = @ugoh = Ugy @ph = UgyUg, @, 7 = Spar{¢h}hee.
Thusp is a representation @ with
P(@)h=q@h  VgheG,

i.e., ®is aG-frame for”. 0O
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4 The characterisation of all tight G—frames

A complete characterisation of whi€k-frames are tight, i.e., which orbitgv)gcc
under a unitary action db give a tight frame, was given in [17]. Before stating the
general theorem, we give a special case with an instructivefp

Theorem 3.Letp : G — % () be a unitary representation, which is irreducible,
ie.,
spafgv:ge G} = .7, Ye ,v#0.

Then every orbitb = (gV)gea, V# 0 is a tight frame.

Proof. Letv # 0, so that® = (gv)gcc is a frame. Recall the frame operaf®s is
positive definite, so there is an eigenvalue- 0 with corresponding eigenvectat
Since the action is unitary, we calculate

So(gw) = hz {gwhv)hv= ghz (w,g™thv)g~*hv=gSp(w) = A (gw),
cG cG

so thatSy = A(Id) on spafgw: g€ G} = 7, i.e.,, ®istight. O

Example 6 The symmetry groups of the five platonic solids actingiras unitary
transformations give irreducible representations, asidathedral groups acting on
R2. Thus the vertices of the platonic solids and Mequally spaced vectors &?
are tightG—frames.

For a given representation, if there exis-drame® = (gV)ycg, i.€., spafgv:
g € G} = 7, then the canonical tight frame is a tightframe. To describe all such
tight G—frames, we need a little more terminology.

Definition 4. Let G be a finite group. We say#’ is an[FG—module if there is a
unitary action(g,v) — gvof Gon .7, i.e., a representatid®@ — % ().

Alinear mapo :Vj — Vj betweerfG-modules is said to be &G-homomorphism
if 0g=go, Vg€ G, and anfG—isomorphismif o is a bijection. AnNFG—module is
irreducible if the corresponding representation is, and #lisolutely irreducible
if it is irreducible when thought of as@G—module in the natural way.

We can now generalise Theorem 3.

Theorem 4.Let G be a finite group which acts o#” as unitary transformations,
and
H =N1OV2® - O Vn

be an orthogonal direct sum of irreduciblBG—modules for which repeated sum-
mands are absolutely irreducible. Thén= (gV)geg, V=V1+---+Vm, Vj €Vjisa
tight G—frame if and only if

v > _ dim(V})
Ivilz - dim(Vi)’

v,k
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and (ovj, V) = 0 when \ is FG—isomorphic to ¥ via o : V; — V. By Schur’s
Lemma there is at most ometo check.

This result is readily applied, indeed if there@sframe, then there is a tight one:

Proposition 3. Let G be a finite group which acts o’ as unitary transformations.
If there is a ve 2 for which (gv)gcc is frame, i.e., spans?’, then the associated
canonical tight frame is a tight G—frame fo?”.

This can be used as an alternative way to construct Ggifitames, but requires
calculation of the square root of the frame operator.

Example 70ne situation where Theorem 4 applies is to orthogonal molyals
of several variables for a weight function with some symiest@, e.g., the inner
product on bivariate polynomials given by integration oadriangle. By analogy
with the univariate orthogonal polynomials, the orthodg@lynomials of degree
kin N variables are those polynomials of degke&hich are orthogonal to all the
polynomials of degreec k. It is natural to seek &—invariant tight frame for this
space of dimensioﬁkﬁl’\jl). Using Theorem 4G—invariant tight frames with one
orbit, i.e., G—frames, can be constructed, e.g., [17] gives an orthorldrasis for
the quadratic orthogonal polynomials on the triangle (withstant weight), which
is invariant under the action of the dihedral group of symiastof the triangle.

Example 8For G abelian, all irreducible representations are one dimeasi@and
it follows that there are only finitely many tigki—frames which can be constructed
from these so called “characters”. We discuss the resufiimmonic framesext.

5 Harmonic frames

TheM x M Fourier matrix

1 1 1 1
1 w > - oMt
1 _ .
1 o Wt ... 2M-D e el @

W::: S

in—l wz(M-1) w(M—:I:)(M—l)

is a unitary matrix, and so its columns (or rows) form an onttvmal basis foCM.
Since the projection of an orthonormal basis is a tight fraare equal norm
tight frame forCM can be obtained as the columns of any submatrix obtained by
taking N rows of the Fourier transform matrix. Tight frames of thipdyare the
most commonly used in applications, due to their simplicfyconstruction and
flexibility (various choices for the rows can be made). Thatecack at least to [9],
early applications include [8], [11], and have been catiadmonicor geometrically
uniform tight framesThey provide a nice example of unit-norm tight frames:
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Proposition 4. Equal-norm tight frames of M N vectors inCN exist. Indeed, har-
monic ones can be constructed by taking any N rows of the €onratrix (4).

For G an abelian group, the irreducible representations arenieftiional, and
are usually calledlihear) characters : G — C. If G = Zy, the cyclic group of
orderM, then theM characters are

& ki (wh, | € Zn,

i.e.. the rows (or columns) of the Fourier matrix (4). Thufitows from Theorem
4, that allZy—frames forCN are obtained by takingyl rows (or columns) of the
Fourier transform matrix. We now present the general formhisfresult.

Let G be a finite abelian group of ord&t, andG be thecharacter group, i.e.,
the set ofM characters oG which forms a group under pointwise multiplication.
The groupsG andG are isomorphic, which is easily seen B8r= Zy, though not
in a canonical way. Theharacter table of G is the table with rows given by the
characters o6. Thus the Fourier matrix is, up to a normalising factor, tharacter
table of Zy, and takingN rows corresponds to taking characters, or takingy
columns corresponds to restricting the charactei$ édlements ofZy,.

Definition 5. Let G be a finite abelian group of ord&t. We call theG—frame for
CN obtained by takindN rows or columns of the character table@fi.e.,

@ = ((EJ (g)))’j\lzl)QEGv Ela ceey EN S é,
or ®=((£(9)) L )ees: Gu,---,ONEG,
aharmonic frame.

It is easy to verify that the frames given in this definitior & and G frames,
respectively. We now characterise tBeframes forG abelian (see [17] for details).

Theorem 5.Let @ be an equal-norm finite tight frame f&N. Then the following
are equivalent:

1. @ is a G-frame, where G is an abelian group.
2. @ is harmonic (obtained from the character table of G).

Since there is &inite number of abelian groups of ordkt, we conclude:

Corollary 1. Fix M > N. There is a finite number of tight frames of M vectors for
CN (up to unitary equivalence) which are given by the orbit ofsdelian group of
N x N matrices, namely the harmonic frames.

Example 9Taking the second and last rows of (4) gives the followingraric

frame forC? . , -
o- (LS )

This is unitarily equivalent to thil equally spaced unit vectors R?, via
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111 1 [ cos?l .
Ui=—|".: —U || = n. vj.
Al le] -] v
By taking rows in complex conjugate pairs, as in the exampte, and the row
of 1's whenN is odd, we get:

Corollary 2. There exists a real harmonic frame of MN vectors forRN.

Example 10The smallest noncyclic abelian groupZs x Z,. Its character table
can be calculated as ti@onecker producof that forZ, with itself, giving

11 1 1
11] 1] [1-11-1
[1—1]@’{1—1} 11 -1-1

1-1-1 1

Taking any pair of the last three rows gives the harmonic &am

(5] D

of four equally spaced vectors &?, which is also given by, (see Ex. 9). Taking
the first row and any other gives two copies of an orthogonsikba

Thus, harmonic frames may be given by the character tablédfefent abelian
groups; frames which arise from cyclic groups are catlgdic harmonic frames.
There exist harmonic frames df vectors which areot cyclic. These seem to be
common (see Table 1 for when noncyclic abelian groups ofrdvtiexist).

Table 1 The numbers of inequivalenbrcyclic, cydic harmonic frames ol < 35 distinct vectors
for CN, N = 2,3,4 when a nonabelian group of orddrexists.

N=2 N=3 N=4
M non cyc total M non cyc totd] M non cyc totd
4 0 3 3 4 0 3 3 4 0 1 1
8 1 7 8 8 5 16 21 8 8 21 29
9 1 6 7 9 3 15 18 9 5 23 28
12 2 13 15 12 11 57 68 12 30 141 171
16 4 13 17 16 28 74 102 16 139 228 367
18 2 18 20 18 19 121 140 18 80 494 574
20 3 19 22 20 29 137 166 20 154 622 776
24 6 27 33 24 89 241 330 24 604 1349 1953
25 1 15 16 25 8 115 123 25 37 636 673
27 3 18 21 27 33 159 192 27 202 973 1175
28 4 25 29 28 57 255 312 28 443 1697 2140
32 9 25 34 32 158 278 436 32 1379 2152 3531

The calculations in Table 1 come from [10]. Even more efficedgorithms for
calculating the numbers of harmonic frames (up to unitannedence) can be based
on the following result (see [5] for full details).
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Definition 6. We say that subsetbandK of a finite groupG are multiplicatively
equivalentif there is an automorphism : G — G for whichK = o(J).

Definition 7. We say that twdG—frames® and¥ areunitarily equivalent via an
automorphism if
¢g:CUWJg7 vgE G7

wherec > 0,U is unitary, ando : G — G is an automorphism.
Theorem 6.Let G be a finite abelian group, K c G. The following are equivalent

1. The subsets J and K are multiplicatively equivalent.
2. The harmonic frames given by J, K are unitarily equivaleéa&an automorphism.

To make effective use of this result, it is convenient to have

Theorem 7.([5]) Let G be an abelian group of order M, an@® = ®; = (§[3)¢ g
be the harmonic frame of M vectors 6/ given by JC G, where|J| = N. Then

e @ has distinct vectors if and only if J generates G.
e @ isareal frame if and only if J is closed under taking inverses
e @is alifted frame if and only if the identity is an element of J.

Example 11. Seven vectors. For G = Z7, the seven multiplicative equivalence
classes of subsets of size three have representatives

{1,2.6}, {1,2,3}, {0,1,2}, {0,1,3}, {1,2,5} (class size 6)
{0,1,6} (classsize3) {1,2,4} (class size 2)
Each gives an harmonic frame of distinct vectors (nonzeemehts generatg).

None of these are unitarily equivalent since their anglediferent (see Fig. 3).

Example 12For G = Zg there are 17 multiplicative equivalence classes of subsets
of 3 elements. Only two of these give frames with the sameesnglamely

{{1,2,5},{3,6,7}},  {{1,5,6},{2,3,7}}.
The common angle multiset is
{=1,i,i,—i,—i,—2i—1,2i —1}.
These frames are unitarily equivalent, but not via an autpirism.

Due to examples such as this, there is not a complete desaorgdtall harmonic
frames up to unitary equivalence. There is ongoing work assify the cyclic har-
monic frames. These are the building blocks for all harmémimes, since abelian
groups are products of cyclic groups, and we have the foligsee [19]):
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> <

Fig. 3 The angle set§(¢o,¢;) : j € G, ] # 0} C C of the seven inequivalent harmonic frames of
7 vectors inC3. Note one is real, and three are equiangular.

Theorem 8.Harmonic frames can be combined as follows:

e The direct sum of disjoint harmonic frames is a harmonic ftam
e The tensor product of harmonic frames is a harmonic frame.
e The complement of a harmonic frame is a harmonic frame.

6 Equiangular harmonic frames and difference sets

We have seen in Example 11 that there exist harmonic framiesahe equiangular.
These are characterised by the existence diffarence sefor an abelian group,
which leads to some infinite families of equiangular tiglanfies.

Definition 8. An N element subset of a finite groupG of orderM is said to be
an (M,N, A)—difference setif every nonidentity element o& can be written as a
differencea— b of two elements, b € J in exactlyA ways.

Equiangularharmonic frames are in 1-1 correspondence with differeatse s

Theorem 9.([20]) Let G be an abelian group of order M. Then the frame of M
vectors forCN obtained by restricting the characters of G taJG, [J| = N is an
equiangular tight frame if and only if J is aiM, N, A )—difference set for G.

The parameters of a difference set satisfy
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N2 — N
1<A=——
—_ M_17

and so an equiangular harmonic framevbfectors forCN satisfies
M <N2-N+1.

The cyclic case has been used in applications, see, e.§§.[131

Example 13For G = Z7 three of the seven harmonic frames in Example 11 are
equiangular, i.e., the ones given by the (multiplicativelgquivalent) difference
sets

{1,2,4}, {1,2,6}, {0,1,3}.

Example 14TheLa Jolla Difference Set Repository

http://ww. ccrwest.org/diffsets/diff_sets/
has numerous examples of difference sets.

7 Highly symmetric tight frames (and finite reflection groups)

For G abelian, we have seen there éirétely many G—frames. FoiG nonabelian
there are infinitely many. This follows from Theorem 4, butiisst easily under-
stood by an example. L& = D3 be the dihedral group of symmetries of the triangle
(|G| = 6), acting orR?, so as to express the Mercedes—Benz frame as the orbit of a
vectorv which is fixed by a reflection. ¥ is not fixed by a reflection, then its orbit
is a tight frame (by Theorem 3), and it is easily seen thatitefin many unitarily
inequivalent tightDs—frames of six distinct vectors fd&? can be obtained in this
way (see Fig. 4).

All'is not lost! We now consider two ways in which a finite clagsG—frames
can be obtained from a nonabelian (abstract) grGuf he first seeks to identify
the distinguishing feature of the Mercedes—Benz frame @stdhe possibilities of
indicated by Fig. 4, and the secori®) generalises the notion of a harmonic frame.

Motivated by the Mercedes—Benz example:

Definition 9. A finite frame @ of distinct vectors isighly symmetric if the action

of its symmetry group Syi) is irreducible, transitive, and the stabiliser of any
one vector (and hence all) is a nontrivial subgroup whichsfexepace of dimension
exactly one.

Example 15The standard orthonormal bagis, ..., ey} is not a highly symmetric
tight frame forFN, since its symmetry group fixes the vectps- - - - +ey. However,
the vertices of the regular simplex always are (the MerceBlesz frame is the case
N = 2). Since both of these frames are harmonic, we conclude ti@tmonic frame
may or may not be highly symmetric. Moreover, for many harindrames ofM
vectors the symmetry group has ordér(cf. [10]), which implies that they are not
highly symmetric.



14 Shayne Waldron

Fig. 4 Unitarily inequivalent tighDz—frames foiR? given by the orbit of a vector.

Example 16The vertices of the platonic solidsk?, and theMl equally spaced unit
vectors inR? are highly symmetric tight frames.

Theorem 10.Fix M > N. There is a finite number of highly symmetric Parseval
frames of M vectors fafN (up to unitary equivalence).

Proof. Suppose tha® is a highly symmetric Parseval frame Wdf vectors forFN.
Then it is determined, up to unitary equivalence, by theesgntation induced by
Sym(®), and a subgroupl which fixes only the one—dimesional subspace spanned
by some vector ip. There is a finite number of choices for Sy since its order

is < |Su| = M!, and hence (by Maschke’s theorem) a finite number of passibl
representations. As there is only a finite number of choiceBlf it follows that the
class of such frames is finite.

The highly symmetric tight frames have only recently beeiimee in [4], where
those corresponding to the Shephard-Todd classificatiotheofinite reflection
groupsandcomplex polytopesere enumerated. We give a couple of examples ([4]):

Example 17Let G = G(1,1,8) = S, a member of one of the three infinite families
of imprimitive irreducible complex reflection groupsting as permutations of the
indices of a vectox € C8 in the subspace consisting of vectors with- - - - 4+ xg = 0.
The orbit of the vector

v=3w,=(3,3,-1,-1-1 -1 -1 -1).
gives an equiangular tight frame of 28 vectors for a 7—diroerad space.

Example 18The Hessianis the regular complex polytope with 27 vertices and
Schéfli symbol J3}3{3}3. Its symmetry group (Shephard—Todd) ST 25 (of order
648) is generated by the following three reflections of otteze

w 1 w+t2w—-1w-1 1 -
R = 1 , Rzzé w—1lw+2w-1], Ry3= 1 , w=e3,
1 w—1lw—-1w+2 w
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and ithasy= (1,—1,0) as a vertex (cf. [6]). These vertices are Hreorbit of v, with
H the Heisenberg group, which isHeisenberg framéseet9). In particular, they
are a highly symmetric tight frame. We observe tHas normal inG = (Ry, Ry, Rs).

The classification of all highly symmetric tight frames igtinfancy.

8 Central G—frames

To narrow down the class of unitarily inequivale@tframes forG nonabelian
(which is infinite), we impose an additional symmetry coiaafit

Definition 10. A G—frame ® = (¢g)qcc is said to becentral if v : G — C defined
by
v(g) := (91, bg) = (¢1,901)

is a class function, i.e., is constant on the conjugacy eRefG.

It is easy to see being central is equivalent tospemetry condition

(9¢.h¢) = (gy,hy),  Vg,heG, Vo, P c @.

Example 19For G abelian, allG—frames are central, since the conjugacy classes of
an abelian group are singletons.

Thus centraG—frames generalise harmonic framestaonabelian.

Definition 11. Let p : G — % (5¢) be a representation of a finite gro@ The
character of p is the mapy = x, : G — C defined by

X(g) :=tracep(g)).

We now characterise all central Parse@alframes in terms of the Gramian. In
particular, it turns out that the class of cent@ilframes idinite.

Theorem 11.([18]) Let G be a finite group with irreducible characteps, ..., X;-
Then® = (¢g)gcc is a central Parseval G—frame if and only if its Gramian isegiv
by

e X

Gram(®)gh = o X (g th), (5)

for some IC {1,...,r}.

The centralG—frames can be constructed from the irreducible charaoféssin
a similar way to the harmonic frames.

Corollary 3. Let G be a finite group with irreducible charactexs, ..., xr. Choose
Parseval G—frame@, for 74, i =1,...,r, with



16 Shayne Waldron

Gramt ) = AEIMG),  dim(oA) = (1)

e.g., take the columns @ram(@;). Then the unique (up to unitary equivalence)
central Parseval G—frame with GramidB) is given by the direct sum

DicI B C I = Dig) .

Further, if p : G — U(CY%) is a representation with charactey;, then®; can be

given as
®ii=y )Téll)(pi(g))gee cu(cY) c cdrd ~ ¥, (6)

where the inner product on the space pkdl; matrices is(A, B) := tracgB*A).
Example 20Let G = D3 = S3 be the dihedral group (symmetric group) of order 6
G=D3=(ab:a®=1b’=1blab=al),

and write class functions ar@-matrices with respect to the orderala?, b, ab, a2b.
The conjugacy classes afé},{a,a’},{b,ab,a’b}, and the irreducible characters
are

1 1 2
1 1 -1
1 1 -1
X1= 1] X2 = 1] X3= ol-
1 -1 0
1 -1 0

Corresponding to each of these, there is a central Par€efedme @, for a space
of dimensiony;(1)2. Sincex; andy; are 1-dimensional, (6) gives

1 1
O = —(1L,1,1,1,11), = —(1,1,1-1-1-1).
1 \/é( ) 2 \/é( )

A representatiop : D3 — U (C?) ¢ C?*? ~ C* with tracgp) = x3 is given by

2

[1] ) w

_(10\ _ |0 (w0) _|O 2 (w?0) _ |0
pw=(53)~[o|: p@=(52)~[o| p@=(2a)~|0l

1 w

1] w
- 0 .
01 1 0 w W 0 w? w?
p(b)=(1o>% 1l p(ab>=<wz 0)% W2l p(azb)=<w0>z ol
0 0 0

and so we obtain from (6)
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1 W ?] [0 0 0

1/]0 0 0 1 W W?
¢3_%(0’0’0’1’aﬁ’w>

1 W? w 0 0 0

Thus there are seven central Pars®mgtframes, namely
O, >, CC, @GP CC?  @zcC?

OB B3, DB P3C C°, D1 D Pz C CO.

9 Heisenberg frames (SIC-POVMs) Zauner’s conjecture.

The Mercedes—Benz frame gives three equiangular linB.ifhe search for such
sets of equiangular lines iRN has a long history, and effectively spawned the area
of algebraic graph theorysee [7]).

Recently, sets dfl = N? equiangular lines iftN, equivalently equiangular tight
frames ofVl = N? vectors inCN, have been constructed numerically, and, in some
cases, analytically. We note tHdt is the maximum number of vectors possible for
an equiangular tight frame fa@N ([15]). Such frames are known &C-POVMs
(symmetric informationally complete positive operatotueal measures) in quan-
tum information theory (see [15]), where they are of consilike interest. The claim
that they exist for alN is usually known aZauner’s conjecture (see [22]).

We now explain how such equiangular tight frames have be&haee expected
to be constructed — as the orbit a (Heisenberg) group.

Fix N > 1, and letw be the primitiveN—th root of unity

w:=eN,

Let T € CN*N be the cyclic shift matrix, an@ € CN*N the diagonal matrix

000---01 100-- 0
100---00 OwO0-- 0
. 919..-09’ 0 000)2. 0
000 10 000 N1?

These have ordey, i.e., TN = QN = Id, and satisfy theommutativity relation
QkTI = wkTi QK. (7)

In particular, the group generated ByandQ contains the scalar matricesg|d.
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Definition 12. The groupH = (T, Q) generated by the matricdsand Q is called
thediscrete Heisenberg group moduld\N, or for short theHeisenberg group

In view of (7), the Heisenberg group has oréiy; and is given explicitly by
H={o'TIQX:0<r jk<N-1}.

Sincew, T, Q have ordeiN, it is convenient to allow the indices o T1 QX to be
integers moduldN. SinceT andQ are unitaryH is a group of unitary matrices.

The action oH onCN is irreducible, and so by Theorem 3, every oflgit) gen,
v+ 0 is a tight frame forCN. For j, k fixed, theN vectorsw T/Q%v, 0<r <N -1
are scalar multiples of each other, which we identify togett is in this sense that
the orbit ofH is interpreted as a set dF (hopefully equiangular) vectors:

P = {TJQKV}(j,k)EZNXZN' (8)

This @ is the Gabor systengiven by the subset = Zy x Zny = G x G, G = Zy
(see Chapter X — Gabor frames).

Definition 13. We call a tight frame® of the form (8) aHeisenberg frameif it is
an equiangular tight frame, i.e., a SIC-POVM, and\aegenerating vector

1 3+V3
- V6 \ef\/3-3

generates a Heisenberg frame of 4 equiangular vectoi&%oTo date (see [16]),
there are known analytic solutions filr=2,3,...,15,19,24, 35,48.

Example 21The vector

Starting with [15], there have been numerous attempts togemerating vectors
v for various dimensionl, starting from numerical solutions. The current state of
affairs is summarised in [16]. We now outline some of theesdlpoints.

The key ideas for finding generating vectors are:

e Solve an equivalent simplified set of equations.
e Find a generating vector with special properties.
e Understand the relationship between generating vectors.

For a unit vector € CN, the condition that it generate a Heisenberg frame is:

[{guhv)| = j£k = [(wTIok)|= j.ke Zn.

1 1
VN+T’ VN+T
This isn’t ammenable to numerical calculation. In [15], #eeond frame potential

N—1IN-1

f(v) = %él(%TijV>l47
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was minimised over all satisfyingg(v) = ||v||> = 1. A minimiser of this constained
optimisation problem with

1 2N
(VN+1)* N+1

is a generating vector. Various simplified equations forifigdyenerators have been
proposed, most notably (see [1], [2], [14]):

f(v)=1+(N>-1)

Theorem 12.A vector v= (zj) ez, is a generating vector for a Heisenberg frame
if and only if

0, st#£0;
; Zj2j+57t+]zj+s+t = ﬁv S#Oatzoa S:07t#0|
JEmN ng1e (8)=(0,0).

If v generates a Heisenberg franteis a unitary matrix which normalises the
Heisenberg group, thewvis also a generating vector, since

[{(bv), g(bV))| = [(v,b*gbv)| = |(v, b *gby)| =

1
, €H, Id.
Nl geH,g#
The normaliser oH in the unitary matrices is often called tdifford group . This
group contains the Fourier matrix, since

FYTIQYF = w kT QT e H.
and the matriXZ given by

(2) = 02k B

vd

i

since
Z7YTIQKzZ = pid+i-2Tk=i g,

A scalar multiple ofZ has order 3, i.eZ% = Vit Vi=e% . The strong form of
Zauner's conjecture is:

Conjecture 1(Zauner). Every generating vector for a Heisenberg frarpgquni-
tary equivalence) is an eigenvecterof

All known generating vectors (both numerical and analydigyport this conjec-
ture. Indeed, many were found as eigenvectora.dVithout doubt, the solution of
Zauner's conjecture, and the construction of equiangigat frames in general, is
one of the central problems in the construction of tight feamia groups. This field
in still in its infancy: frames given as the orbit of more thame vector G—invariant
fusion frames) have scarcely been studied.
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