
Technical Report

17 May 2007

Orthogonal polynomials on the disc

Shayne Waldron

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
e–mail: waldron@math.auckland.ac.nz (http:www.math.auckland.ac.nz/˜waldron)

ABSTRACT

We consider the space Pn of orthogonal polynomials of degree n on the unit disc for a
general radially symmetric weight function. We show that there exists a single orthogonal
polynomial whose rotations through the angles jπ

n+1 , j = 0, 1, . . . , n forms an orthonormal
basis for Pn, and compute all such polynomials explicitly. This generalises the orthonormal
basis of Logan and Shepp for the Legendre polynomials on the disc.

Furthermore, such a polynomial reflects the rotational symmetry of the weight in a
deeper way: its rotations under other subgroups of the group of rotations forms a tight
frame for Pn, with a continuous version also holding. Along the way, we show that other
frame decompositions with natural symmetries exist, and consider a number of structural
properties of Pn including the form of the monomial orthogonal polynomials, and whether
or not Pn contains ridge functions.
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1. Introduction

Here we consider the space Pn = Pw
n of orthogonal polynomials of degree n on the

unit disc
ID := {(x, y) ∈ IR2 : x2 + y2 ≤ 1}

for a suitable radially symmetric weight function given by w : [0, 1] → IR+ (or more
generally a measure). This n+ 1 dimensional space consists of all polynomials of degree n
which are orthogonal to all polynomials of degree < n with respect to the corresponding
inner product

〈f, g〉 = 〈f, g〉w :=

∫

ID

fg w =

∫ 2π

0

∫ 1

0

(fg)(r cos θ, r sin θ)w(r) rdr dθ. (1.1)

We are primarily interested in the Gegenbauer polynomials, which are given by the weight

w(r) := (1 − r2)α α > −1. (1.2)

These polynomials have long been used to analyse the optical properties of a circular lens,
and to reconstruct images from Radon projections, see, e.g., [W05] and [X06].

Let Rθ : IR2 → IR2 denote rotation through the angle θ, i.e.,

Rθ(x, y) :=

(

cos θ − sin θ
sin θ cos θ

)(

x

y

)

=

(

x cos θ − y sin θ
x sin θ + y cos θ

)

.

Let the group of rotations of the disc (which are symmetries of the weight)

SO(2) = {Rθ : 0 ≤ θ < 2π}

act on functions defined on the disc in the natural way, i.e.,

Rθf := f ◦R−1
θ .

Logan and Shepp [LS75] showed that the Legendre polynomials on the disc (constant
weight w = 1) have an orthonormal basis given by the n+ 1 polynomials

pj(x, y) :=
1√
π
Un

(

x cos
jπ

n+ 1
+ y sin

jπ

n+ 1

)

, j = 0, . . . , n, (1.3)

where Un is the n–th Chebyshev polynomial of the second kind. This result says that
an orthonormal basis can be constructed from a single simple polynomial p0 (a ridge
function obtained from a univariate orthogonal polynomial) by rotating it through the
angles jπ

n+1 , 0 ≤ j ≤ n. In this paper we explore how this can be extended for a general
radially symmetric weight. It turns out that such an orthogonal expansion always exists,
though the ‘simple’ polynomial p0 is not in general a ridge function. Moreover, such an
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expansion reflects the rotational symmetry of the weight in a deeper way, e.g., for Legendre
polynomials there exists the so called tight frame decompositions

f =
n+ 1

k

k−1
∑

j=0

〈f,Rj
2π
k

p0〉Rj
2π
k

p0 =
n+ 1

2π

∫ 2π

0

〈f,Rθp0〉Rθp0 dθ, ∀f ∈ Pn,

where p0 is given by (1.3), and k ≥ n+ 1 with k not even if k ≤ 2n.
The paper is set out as follows. In the remainder of this section we give formulas for

the inner product, and discuss ridge functions and Zernike polynomials. In Section 2, we
discuss symmetries of tight frames as they apply to Pn. We show that orthogonal and
biorthogonal systems with rotational symmetries always exist, and that the corresponding
expansions automatically inherit a higher degree of rotational symmetry than would be
expected. In Section 3, we use the orthogonal decomposition of Pn into SO(2)–invariant
subspaces to find an explicit formula for all polynomials p ∈ Pn for which {Rj

π
n+1

p}n
j=0 is

an orthonormal basis for Pn.

1.1. The inner product

It is convenient to allow the orthogonal polynomials in Pn to have complex coefficients,
and at times replace the cartesian coordinates x and y by z and z, where z := x+ iy. We
also allow the formula for a polynomial (in either system) to appear in place of the function
in the inner product and the integral defining it, e.g., by integrating the polar form, we
have

〈zjzk, 1〉 =

∫

ID

zjzk w(|z|) =

{

0, j 6= k;
mj , j = k

(1.4)

where

mj :=

∫

ID

|z|2j w(|z|) = 2π

∫ 1

0

r2j+1w(r) dr > 0, j = 0, 1, . . . .

By symmetry 〈xj1yk1 , xj2yk2〉 = 0 unless j1 + j2 and k1 + k2 are both even, in which case
the inner product is given by

〈x2jy2k, 1〉 = I(j, k)mj+k, j, k ≥ 0, (1.5)

where

I(j, k) :=
1

2π

∫ 2π

0

cos2j θ sin2k θ dθ =
1 · 3 · · · (2j − 1) · 1 · 3 · · · (2j − 1)

2 · 4 · · · (2j + 2k)
.

For example, the inner products of quintic polynomials can be computed using

〈1, 1〉 = m0, 〈x2, 1〉 = 〈y2, 1〉 =
1

2
m1, 〈x4, 1〉 = 〈y4, 1〉 =

3

8
m2, 〈x2y2, 1〉 =

1

8
m2.

(1.6)
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For the Gegenbauer weight (1.2), the ‘moments’ mj are given by

mj =
j!π

(α+ 1)j+1
, j = 0, 1, . . . . (1.7)

By the Cauchy–Schwarz inequality

mk−2mk −m2
k−1 > 0, k ≥ 2. (1.8)

The values (1.8) appear in the denominators of some of the formulas which follow.

1.2. Ridge functions

A nonzero function f on the disc is called ridge function (or plane wave) if it can be
written as a univariate map g : [−1, 1] → IR composed with a linear map 〈·, v〉 : IR2 → IR,
v ∈ IR2, ‖v‖ = 1, i.e.,

f(x, y) = g(〈
(

x

y

)

,

(

v1
v2

)

〉) = g(v1x+ v2y),

(

x

y

)

∈ ID.

In particular, if v = e1 = (1, 0) the first standard basis vector, then f(x, y) = g(x).
There exist ridge functions in Pn, as in the case of the Legendre polynomials, if and

only if the orthogonal projection of 〈·, e1〉n : (x, y) 7→ xn onto Pn is a ridge function, i.e.,
is a function only of x. This may or may not be the case.

Example 1. The Gegenbauer polynomials contain ridge polynomials (this is also true for
a ball in any number of dimensions, (cf [DX01:Prop. 6.1.13]), namely

P
(α+ 1

2 ,α+ 1
2 )

n (〈·, v〉), ‖v‖ = 1,

where

‖P (α+ 1
2 ,α+ 1

2 )

k (〈·, v〉)‖2 =
22α+1Γ(α+ 1)2

Γ(2α+ 2)

22α+2Γ(n+ α+ 3
2 )2

n!(2n+ α+ 2)Γ(n+ 2α+ 2)
.

For a general radially symmetric weight the orthogonal projections of (x, y) 7→ xn onto Pn

for the first few n are given by

1, x, x2 − m1

2m0
, x3 − 3m2

4m1
x,

which are ridge functions. For n = 4, the formula is

x4 − 3m1m
2
2 + 4m2

1m3 − 7m0m2m3

8m2(m2
1 −m0m2)

x2 +
4m2

1m3 − 3m1m
2
2 −m0m2m3

8m2(m2
1 −m0m2)

y2 +
3

8

m2
2 −m1m3

m2
1 −m0m2

,

which is not a ridge function if

4m2
1m3 − 3m1m

2
2 −m0m2m3 6= 0.
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Let w be the radially symmetric weight given by

w(r) := r2β , β > −1, mj =
π

j + 1 + β
. (1.9)

Then the orthogonal projection of (x, y) 7→ x4 onto P4 is given by

x4 − 1

4

5β + 12

β + 4
x2 − 1

4

β

β + 4
y2 +

3

8

β2 + 3β + 2

β2 + 7β + 12
,

which is a ridge function if only if β = 0. Hence for the inner product given by (1.9) with
β 6= 0, P4 does not contain any ridge functions.

As the above example indicates, the orthogonal projection of (x, y) 7→ xjyn−j onto
Pn is even if n is even, and odd if n is odd. Moreover, for the Gegenbauer polynomials,
only the powers xβ1yβ2 with (β1, β2) ≤ (j, n− j) have nonzero coefficients.

1.3. Zernike polynomials

From (1.4) it follows that the orthogonal projections of z 7→ zjzk, j + k = n onto Pn

form an orthogonal basis for Pn. For the Gegenbauer weight these polynomials are given
by the formula

Pα
j,k(z) :=

(α+ 1)j+k

(α+ 1)j(α+ 1)k

zjzk
2F1

( −j, −k
−α− j − k

;
1

zz

)

=
(α+ 1)j+k

(α+ 1)j(α+ 1)k

zjzk + lower order terms,

and have the factorisation (cf [DX01:§2.4.3])

Pα
n−j,j(z) =

j!

(α+ 1)j

zn−2jP
(α,n−2j)
j (2|z|2 − 1), n− j ≥ j. (1.10)

These polynomials are often referred to as Zernike polynomials or disc polynomials, see,
e.g., [DX01] and [W05]. The Zernike polynomials for a general radially symmetric weight
satisfy a factorisation similar to (1.10).

Lemma 1.11. Fix a weight function w : [0, 1] → IR+. Let 0 ≤ j ≤ n
2 , and Pj 6= 0 be

an orthogonal polynomial of degree j for the univariate weight (1 + x)n−2jw(
√

1+x
2 ) on

[−1, 1]. Then the polynomials of degree n given by the formulas

Qw
j,n(z) := zn−2jPj(2|z|2 − 1), Qw

j,n(z) = zn−2jPj(2|z|2 − 1), (1.12)

belong to Pn = Pw
n . Moreover the set of these polynomials are an orthogonal basis for Pn,

with their norms given by

hj := ‖|z|n−2jPj(2|z|2 − 1)‖2 =
π

2n−2j+1

∫ 1

−1

P 2
j (x)(1 + x)n−2jw

(

√

1 + x

2

)

dx. (1.13)
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Proof: If p ∈ Pn, then so is the polynomial z 7→ p(z), and so it suffices to show
that the first of these polynomials is in Pn. This polynomial has the form

Qw
j,n(z) = zn−2jPj(2|z|2 − 1) =

j
∑

k=0

ckz
n−2j+kzk,

and so, by (1.4), is orthogonal to all monomials of degree < n, except possibly

z 7→ zn−2jzszs, s = 0, 1, . . . , j − 1.

By making the change of variables x = 2r2 − 1, the condition for orthogonality to these
can be written

〈Qw
j,n(z), zn−2jzszs〉 =

∫

ID

Pj(2|z|2 − 1)|z|2s|z|2n−4jw(|z|)

= 2π

∫ 1

0

Pj(2r
2 − 1)r2sr2n−4jw(r) r dr

= 2π

∫ 1

−1

Pj(x)

(

1 + x

2

)s(
1 + x

2

)n−2j

w(

√

1 + x

2
)
dx

4
= 0,

for 0 ≤ s < j, which is satisfied by the choice of Pj . Similarly, we compute

hj := ‖|z|n−2jPj(2|z|2 − 1)‖2 = ‖Qw
j,n(z)‖2 = ‖Qw

j,n(z)‖2

= 2π

∫ 1

0

P 2
j (2r2 − 1)r2n−4jw(r) rdr = 2π

∫ 1

−1

P 2
j (x)

(

1 + x

2

)n−2j

w
(

√

1 + x

2

)dx

4
.

Example 1. The first two monic polynomials are given by

P0(x) = 1, P1(x) = x+
mn−2 − 2mn−1

mn−2
, n ≥ 2.

Thus using (1.13) and (1.4), we obtain

1√
h0

P0(2|z|2 − 1) =
1√
mn

, n ≥ 0, (1.14)

1√
h1

P1(2|z|2 − 1) =

√
mn−2

√

mn−2mn −m2
n−1

(

|z|2 − mn−1

mn−2

)

, n ≥ 2. (1.15)

Example 2. If the radial weight is given by the generalised Gegenbauer weight

w(r) := (1 − r2)αr2β , α > −1, β > −1,
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then

(1+x)n−2jw(

√

1 + x

2
) = (1+x)n−2j

(

1 − x

2

)α(
1 + x

2

)β

=
1

2α+β
(1−x)α(1+x)n−2j+β ,

so that Pj is the Jacobi polynomial P
(α,n−2j+β)
j , for which

hj =
π

2n−2j+1

1

2α+β

∫ 1

−1

(P
(α,n−2j+β)
j (x))2(1 − x)α(1 + x)n−2j+β dx

= π
Γ(j + α+ 1)Γ(n− j + β + 1)

(α+ n+ β + 1)j!Γ(α+ n− j + β + 1)
.

(1.16)

2. Frames and their symmetries

We outline the basics of finite frame theory (cf [Ch03], [VW05]) as they apply to our
construction. Given a finite spanning set Φ = {φj} (called a frame) for a finite dimensional
Hilbert space H, such as Pn, the self adjoint operator S = SΦ : H → H given by

Sf :=
∑

j

〈f, φj〉φj , ∀f ∈ H, (2.1)

is positive and invertible. The set {φ̃j}, φ̃j := S−1φj is called the dual frame, and gives
the expansion

f =
∑

j

〈f, φj〉φ̃j =
∑

j

〈f, φ̃j〉φj , ∀f ∈ H.

Special cases include orthogonal and biorthogonal expansions. Moreover, if ψj := S− 1
2φj ,

then we have the canonical tight frame decomposition

f =
∑

j

〈f, ψj〉ψj , ∀f ∈ H.

Suppose that G is group of unitary transformations of H which maps Φ to itself. Then
each g ∈ G commutes with S

g(Sf) =
∑

j

〈f, φj〉gφj =
∑

j

〈f, g−1gφj〉gφj =
∑

j

〈gf, gφj〉gφj = S(gf),

and hence with S−1 and S− 1
2 . Thus if the G–orbit of a vector φ0 spans H, then the

corresponding dual and canonical dual frames are the G–orbit of a vector. This result
allows us to take a spanning set for Pn given by the rotates of a single polynomial (which
is easy to find) and convert it into a tight frame which is given by the corresponding rotates
of a single polynomial. We now illustrate this.

Any polynomial p ∈ Pn is a multiple of its rotation through π

Rπp = (−1)np, ∀p ∈ Pn, (2.2)

and so for the rotations of p by multiples of 2π
k

to span the n + 1 dimensional space Pn,
we must have either k ≥ n+ 1 and k odd, or k ≥ 2(n+ 1). Under these conditions we can
find such a polynomial p.
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Lemma 2.3. Let φ be the orthogonal projection of (x, y) 7→ xn onto Pn. If either k ≥ n+1
and k is odd, or k ≥ 2(n+ 1), then the rotations of φ through multiples of 2π

k
, i.e., the set

Φ = {φj}k−1
j=0 , φj := Rjφ, R := R 2π

k
,

spans Pn. Thus, there exists φ, φ̃, ψ ∈ Pn for which

f =

k−1
∑

j=0

〈f,Rjφ〉Rj φ̃ =

k−1
∑

j=0

〈f,Rj φ̃〉Rjφ =

k−1
∑

j=0

〈f,Rjψ〉Rjψ, ∀f ∈ Pn. (2.4)

In particular, by taking k = 2(n + 1), we conclude that there exists a polynomial v ∈ Pn

for which {Rj
π

n+1
v}n

j=0 is an orthonormal basis.

Proof: In view of (2.2), we may assume without loss of generality that k ≥ 2(n+1).
Since an orthogonal polynomial in Pn is uniquely determined by its leading term

φ(x, y) = φ↓(x, y) + lower order terms, φ↓(x, y) := xn,

and
(Rjφ)(x, y) = (Rjφ↓)(x, y) + lower order terms.

Hence to show Φ spans Pn, it suffices to show that the rotations of φ↓ : (x, y) 7→ xn through
the angles 2πj

k
, 0 ≤ j ≤ n are linearly independent, i.e., using the complex notation, that

n
∑

j=0

cj(ω
jz + ωjz)n =

n
∑

j=0

cj

n
∑

r=0

(

n

r

)

(ωjz)r(ωjz)n−r = 0, ω := e
2πi
k

implies all the coefficients cj are zero. From the orthogonality between zrzn−r, 0 ≤ r ≤ n

given by (1.4), we obtain

n
∑

j=0

cj(ω
2r−n)j = 0, 0 ≤ r ≤ n.

Thus the polynomial z 7→
∑n

j=0 cjz
n has n+ 1 distinct roots ω2r−n, 0 ≤ r ≤ n, and so all

of its coefficients cj are zero.
The decomposition (2.4) follows from the previous discussion, where

φ̃ := S−1
Φ φ, ψ := S

− 1
2

Φ φ.

Finally, taking k = 2(n+ 1) and using (2.2), gives

f =
2n+1
∑

j=0

〈f,Rj
2π

2(n+1)

ψ〉Rj
2π

2(n+1)

ψ = 2
n
∑

j=0

〈f,Rj
π

(n+1)
ψ〉Rj

π
(n+1)

ψ, ∀f ∈ Pn,

so that
√

2ψ gives the desired polynomial v.
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If any frame expansion of the type (2.4) holds, then (with appropriate normalisation)
it holds for all possible k, including a continuous version.

Theorem 2.5. If there are polynomials g, g̃ ∈ Pn and some k ∈ IN, for which

f =
n+ 1

k

k−1
∑

j=0

〈f,Rjg〉Rj g̃, ∀f ∈ Pn, R := R 2π
k
, (2.6)

then (2.6) holds for any k with either k ≥ n+ 1 and k odd, or k ≥ 2(n+ 1). Moreover,

f =
n+ 1

2π

∫ 2π

0

〈f,Rθg〉Rθg̃ dθ, ∀f ∈ Pn.

Proof: Suppose that (2.6) holds for some k. Then k ≥ n + 1 (by spanning).
Further, we may assume without loss of generality that k ≥ 2(n+ 1), since if not then by

(2.2) k must be odd, in which case R2j+k
π
k

= −Rj
2π
k

, giving

f =
1

2

n+ 1

k

k−1
∑

j=0

〈f,R2j
π
k
g〉R2j

π
k
g̃ +

1

2

n+ 1

k

k−1
∑

j=0

〈f,R2j+k
π
k

g〉R2j+k
π
k

g̃

=
n+ 1

2k

2k−1
∑

j=0

〈f,Rj
2π
2k

g〉Rj
2π
2k

g̃, ∀f ∈ Pn.

It therefore suffices to prove for k ≥ 2(n+ 1) that

1

k

k−1
∑

j=0

〈f,Rj
2π
k

g〉Rj
2π
k

g̃ =
1

2π

∫ 2π

0

〈f,Rθg〉Rθg̃ dθ, ∀f ∈ Pn. (2.7)

Since p : θ 7→ 〈f,Rθg〉Rθg̃(x, y) is a trigonometric polynomial of degree 2n, and k > 2n,
we can integrate it using the quadrature formula for k equally spaced nodes

1

2π

∫ 2π

0

〈f,Rθg〉Rθg̃(x, y) dθ =
1

2π

∫ 2π

0

p(θ) dθ =
1

k

k−1
∑

j=0

p
(2πj

k

)

=
1

k

k−1
∑

j=0

〈f,R 2πj

k

g〉R 2πj

k

g̃(x, y), ∀f ∈ Pn,

thereby obtaining (2.7).
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Let Tn be the trigonometric polynomials of degree ≤ n, with the usual inner product.
If (2.6) holds with g = g̃, then we can naturally associate with each f ∈ Pn a trigonometric

polynomial f̂ ∈ Tn given by

f̂(θ) := 〈f,Rθg〉, f =
n+ 1

2π

∫ 2π

0

f̂(θ)Rθg dθ, ∀f ∈ Pn.

The map Pn → Tn : f 7→ f̂ is a (complex) Hilbert space isomorphism, since

〈f1, f2〉 =
n+ 1

2π
〈
∫ 2π

0

f̂1(θ)Rθg dθ, f2〉 =
n+ 1

2π

∫ 2π

0

f̂1(θ)〈Rθg, f2〉 dθ

=
n+ 1

2π

∫ 2π

0

f̂1(θ)f̂2(θ) dθ, ∀f1, f2 ∈ Pn.

Example 1. Let φ ∈ P2 be the orthogonal projection of (x, y) 7→ x2 onto the quadratic
orthogonal polynomials P2, i.e.,

φ(x, y) := x2 − m1

2m0
.

By Lemma 2.3, Φ := {φ0, φ1, φ2}, φj := R
j
2π
3

φ is a basis for P2. By (1.6),

〈φ,Rθφ〉 = 〈x2 − m1

2m0
, (x cos θ − y sin θ)2 − m1

2m0
〉 =

1

4
m2 cos2 θ − 1

4

m2
1

m0
+

1

8
m2,

so the matrix representing SΦ of (2.1) with respect to this basis is

A =





a b b

b a b

b b a



 , a :=
3

8
m2 −

1

4

m2
1

m0
, b :=

3

16
m2 −

1

4

m2
1

m0
.

This symmetric matrix can be diagonalised

A = V ΛV −1, V :=







1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0






, Λ :=





3
4

m0m2−m2
1

m0
0 0

0 3
16m2 0

0 0 3
16m2



 .

From this we calculate

φ̃ = S−1
Φ φ =

4

9

9m0m2 − 8m2
1

m2(m0m2 −m2
1)
φ− 4

9

3m0m2 − 4m2
1

m2(m0m2 −m2
1)

(R 2π
3
φ+R 4π

3
φ),

and ψ = S
− 1

2

Φ φ, which gives

ψ =

(

2

9

√
3m0

√

m0m2 −m2
1

+
8

9

√
3√
m2

)

φ+

(

2

9

√
3m0

√

m0m2 −m2
1

− 4

9

√
3√
m2

)

(R 2π
3
φ+R 4π

3
φ).
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Thus for k ≥ 3, k 6= 4, we have

f =
3

k + 1

k−1
∑

j=0

〈f,Rj
2π
k

φ〉Rj
2π
k

φ̃ =
3

k + 1

k−1
∑

j=0

〈f,Rj
2π
k

φ̃〉Rj
2π
k

φ

=
3

k + 1

k−1
∑

j=0

〈f,Rj
2π
k

ψ〉Rj
2π
k

ψ, ∀f ∈ P2.

The above computation for ψ is difficult to do for a general n, as it requires the computation
of the positive square root of S−1. In the next section, we use a result of [VW05] to
obtain all polynomials ψ ∈ Pn whose rotations form an orthonormal basis for Pn, and in
particular, that corresponding to the orthogonal projection of (x, y) 7→ xn onto Pn.

3. The orthonormal basis

In Lemma 2.3 the existence of a polynomial v ∈ Pn for which {Rj
π

n+1
v}n

j=0 is an

orthonormal basis for Pn was proved. We now calculate all such polynomials explicitly.

3.1. The SO(2)–invariant subspaces of Pn

By Lemma 1.11, the polynomial z 7→ Re(ξzn−2j)Pj(2|z|2 − 1), ξ ∈ C can be written
as a linear combination of Zernike polynomials

2Re(ξzn−2j)Pj(2|z|2 − 1) = ξ zn−2jPj(2|z|2 − 1) + ξ zn−2jPj(2|z|2 − 1).

Thus Pn as a real vector space can be written as an orthogonal direct sum of subspaces

Pn =
⊕

0≤j≤n
2

Vj , Vj := span{z 7→ Re(ξzn−2j)Pj(2|z|2 − 1) : ξ ∈ C}, (3.1)

where each Vj is invariant under the action of SO(2). Moreover, the summands Vj are
absolutely irreducible under the action of any subgroup G of SO(2) of order 3 or more, i.e.,
Vj considered as a complex vector space has no G–invariant subspaces other than 0 and
Vj . The polynomials in Vj can be factored into a harmonic homogeneous polynomial of
degree n− 2j multiplied by a common factor of degree 2j, and so

dim(Vj) =

{

2, j 6= n
2 ;

1, j = n
2 .

Given the decomposition (3.1) of Pn into absolutely irreducibles, we have the following
example of [VW05:Th.6.18].
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Theorem 3.2. Let G be a finite subgroup of SO(2) for which span{gp : g ∈ G} = Pn, for

some p ∈ Pn, i.e., G = 〈R 2π
k
〉, where either k ≥ n + 1 and k is odd, or k ≥ 2(n + 1). If

v =
∑

j vj , vj ∈ Vj , then {gv}g∈G is an isometric tight frame for Pn if and only if

‖vj‖2

‖vk‖2
=

dim(Vj)

dim(Vk)
, 0 ≤ j, k ≤ n

2
.

In particular, {Rj
π

n+1
v : 0 ≤ j ≤ n} is an orthonormal basis for Pn if and only if

‖vj‖ =







√

2
n+1 , j 6= n

2 ;
√

1
n+1 , j = n

2 .
(3.3)

From this we obtain our main result. Let Pj be the univariate orthogonal polynomial
of degree j in Lemma 1.11, and hj be given by (1.13).

Theorem 3.4. Let v ∈ Pn be the polynomial with real coefficients defined by

v(x, y) :=
1√
n+ 1

∑

0≤j≤n
2

2

1 + δj, n
2

1
√

hj

Re(ξjz
n−2j)Pj(2|z|2 − 1), z := x+ iy (3.5)

where ξj are complex numbers of unit modulus, with ξ n
2
∈ {−1, 1}. Then {Rj

π
n+1

v}n
j=0 is

an orthonormal basis for Pn, and all such polynomials are given by (3.5). Moreover

f =
n+ 1

k

k−1
∑

j=0

〈f,Rj
2π
k

v〉Rj
2π
k

v =
n+ 1

2π

∫ 2π

0

〈f,Rθv〉Rθv dθ, ∀f ∈ Pn, (3.6)

whenever k ≥ n+ 1 and k is odd, or k ≥ 2(n+ 1).

Proof: By Theorems 3.2 and 2.5, we need only find all elements vj ∈ Vj satisfying
(3.3). For j 6= n

2 the Zernike polynomials of (1.12) are orthogonal, so that

‖Re(ξzn−2j)Pj(2|z|2 − 1)‖2 =
1

4

(

‖ξzn−2jPj(2|z|2 − 1)‖2 + ‖ξzn−2jPj(2|z|2 − 1)‖2
)

=
hj

2
|ξ|2,

and all the possible choices for vj are given by

vj(x, y) =

√

2

n+ 1

√
2

√

hj

Re(ξjz
n−2j)Pj(2|z|2 − 1), j 6= n

2
, |ξj | = 1.

For j = n
2 (when n is even), we have ‖Pj(2|z|2 − 1)‖2 = hj , and so we must choose

vj(x, y) = ±
√

1

n+ 1

1
√

hj

Pj(2|z|2 − 1)

=

√

1

n+ 1

1
√

hj

Re(ξjz
n−2j)Pj(2|z|2 − 1),

j =
n

2
, ξn

2
∈ {−1, 1}.

Thus v =
∑

j vj is given by (3.5).
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Fig 1. Contour plots of the quintic Legendre polynomials v ∈ P5 given by (3.5) for the

choices ξ0 = 1 and ξ1, ξ2 ∈ {−1, 1}. The first is the Logan-Shepp polynomial.

Example 1. The quadratics P2. Writing

ξ0 = a+ ib, a, b ∈ IR, a2 + b2 = 1,

and using (1.14) and (1.15), we have

v(x, y) =
2√

3
√
m2

(a(x2 − y2) − 2bxy) ±
√
m0√

3
√

m0m2 −m2
1

(x2 + y2 − m1

m0
).

This formula can yield a ridge function if and only if

2√
m2

=

√
m0

√

m0m2 −m2
1

⇐⇒ 3m0m2 = 4m2
1,

in which case each such polynomial is a ridge function

v(x, y) =
2√

3
√
m2

(a(x2 − y2) − 2bxy) ± 2√
3
√
m2

(x2 + y2 − m1

m0
)

= ± 4√
3m2

{

(
√

1 ± a√
2

x∓ sign(b)

√
1 ∓ a√

2
y

)2

− m1

2m0

}

.
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Example 2. The cubics P3. Writing

ξ0 = a+ ib, ξ1 = c+ id, a, b, c, d ∈ IR, a2 + b2 = c2 + d2 = 1,

we obtain

v(x, y) =
1√
m3

(a(x3 − 3xy2) + b(y3 − 3x2y)) +

√
m1

√

m1m3 −m2
2

(cx− dy)
(

x2 + y2 − m2

m1

)

.

For the Gegenbauer polynomials, we single out the particular choice for v which cor-
responds to the decomposition of Logan and Shepp [LS75] for Legendre polynomials.

Corollary 3.7. Let Pn be the Gegenbauer polynomials for the weight given by

w(r) = (1 − r2)α, α > −1,

and v ∈ Pn be the Gegenbauer polynomial with real coefficients defined by

v(x, y) :=
2√
π

√
α+ n+ 1√
n+ 1

∑

0≤j≤n
2

1

1 + δj, n
2

√

(α+ j + 1)n−2j
√

(j + 1)n−2j

Re(zn−2j)P
(α,n−2j)
j (2|z|2−1).

(3.8)
Then {Rj

π
n+1

v}n
j=0 is an orthonormal basis for Pn. For the Legendre polynomials (α = 0),

this polynomial reduces to

v(x, y) =
1√
π
Un(x).

Proof: For the Gegenbauer polynomials, by (1.16), we have

Pj = P
(α,n−2j)
j , hj =

π

(α+ n+ 1)

(j + 1)n−2j

(α+ j + 1)n−2j

.

Hence taking ξj = 1, ∀j in (3.5), we obtain

v(x, y) =
2√
π

√
α+ n+ 1√
n+ 1

∑

0≤j≤n
2

1

1 + δj, n
2

√

(α+ j + 1)n−2j
√

(j + 1)n−2j

Re(zn−2j)P
(α,n−2j)
j (2|z|2−1).

We recall the normalisations

P
(α,β)
j (x) =

1

2j

(j + α+ β + 1)j

j!
xj + lower order terms,

Un(x) = 22nn!(n+ 1)!

(2n+ 1)!
P

( 1
2 , 1

2 )
n (x) = 2nxn + lower order terms.

For the Legendre polynomials, the leading term of v is

2√
π

∑

0≤j≤n
2

1

1 + δj, n
2

(

n

j

)

zn−jzj + zjzn−j

2
=

1√
π

n
∑

j=0

(

n

j

)

zjzn−j =
1√
π

(z + z)n =
2n

√
π
xn,

so that v is the orthogonal projection of (x, y) 7→ 2n

√
π
xn onto Pn, i.e.,

v(x, y) =
1√
π
Un(x).
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Fig 2. Contour plots of the v ∈ P5 given by (3.8) for α = − 1
2 , 0 (Logan-Shepp), 1

2 .

It is clear that the results presented here have a natural counterpart for orthogonal
polynomials on a unit ball in IRd with a radially symmetric weight, e.g., the integral
decomposition in (3.6) would become an integral over the Lie group SO(d). To give a full
generalisation of the results here requires an understanding of those subgroups of SO(d)
which map some homogeneous polynomial of degree n to a basis for this space, and the
corresponding numerical integration rule. This is left to the future.

It is hoped that our generalisation of Logan and Shepp’s orthogonal expansion will
be used to extend important applications based on it to a Gegenbauer weight, e.g., in
computed tomography the fast algorithm of [X06] for reconstructing images from radon
projections.
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