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Abstract

We consider the space Pn of orthogonal polynomials of degree n on the unit disc for a general radially
symmetric weight function. We show that there exists a single orthogonal polynomial whose rotations through
the angles j�

n+1 , j = 0, 1, . . . , n forms an orthonormal basis for Pn, and compute all such polynomials
explicitly. This generalises the orthonormal basis of Logan and Shepp for the Legendre polynomials on the
disc.

Furthermore, such a polynomial reflects the rotational symmetry of the weight in a deeper way: its rotations
under other subgroups of the group of rotations forms a tight frame for Pn, with a continuous version also
holding. Along the way, we show that other frame decompositions with natural symmetries exist, and consider
a number of structural properties of Pn including the form of the monomial orthogonal polynomials, and
whether or not Pn contains ridge functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Here we consider the space Pn = Pw
n of orthogonal polynomials of degree n on the unit disc

D := {(x, y) ∈ R2 : x2 + y2 �1}
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for a suitable radially symmetric weight function given by w : [0, 1] → R+ (or more generally
a measure). This n + 1 dimensional space consists of all polynomials of degree n which are
orthogonal to all polynomials of degree < n with respect to the corresponding inner product

〈f, g〉 = 〈f, g〉w :=
∫

D
fgw =

∫ 2�

0

∫ 1

0
(fg)(r cos �, r sin �)w(r)r dr d�. (1.1)

We are primarily interested in the Gegenbauer polynomials, which are given by the weight

w(r) := (1 − r2)�, � > −1. (1.2)

These polynomials have long been used to analyse the optical properties of a circular lens, and to
reconstruct images from Radon projections, see, e.g., [5,6].

Let R� : R2 → R2 denote rotation through the angle �, i.e.,

R�(x, y) :=
(

cos � − sin �

sin � cos �

)(
x

y

)
=
(

x cos � − y sin �

x sin � + y cos �

)
.

Let the group of rotations of the disc (which are symmetries of the weight)

SO(2) = {R� : 0�� < 2�}
act on functions defined on the disc in the natural way, i.e.,

R�f := f ◦ R−1
� .

Logan and Shepp [3] showed that the Legendre polynomials on the disc (constant weight w = 1)
have an orthonormal basis given by the n + 1 polynomials

pj (x, y) := 1√
�

Un

(
x cos

j�

n + 1
+ y sin

j�

n + 1

)
, j = 0, . . . , n, (1.3)

where Un is the nth Chebyshev polynomial of the second kind. This result says that an orthonormal
basis can be constructed from a single simple polynomial p0 (a ridge function obtained from a
univariate orthogonal polynomial) by rotating it through the angles j�

n+1 , 0�j �n. In this paper
we explore how this can be extended for a general radially symmetric weight. It turns out that
such an orthogonal expansion always exists, though the ‘simple’ polynomial p0 is not in general
a ridge function. Moreover, such an expansion reflects the rotational symmetry of the weight in a
deeper way, e.g., for Legendre polynomials there exists the so-called tight frame decompositions

f = n + 1

k

k−1∑
j=0

〈f, R
j
2�
k

p0〉Rj
2�
k

p0 = n + 1

2�

∫ 2�

0
〈f, R�p0〉R�p0 d�, ∀f ∈ Pn,

where p0 is given by (1.3), and k�n + 1 with k not even if k�2n.
The paper is set out as follows. In the remainder of this section we give formulas for the inner

product, and discuss ridge functions and Zernike polynomials. In Section 2, we discuss symmetries
of tight frames as they apply to Pn. We show that orthogonal and biorthogonal systems with
rotational symmetries always exist, and that the corresponding expansions automatically inherit a
higher degree of rotational symmetry than would be expected. In Section 3, we use the orthogonal
decomposition ofPn into SO(2)-invariant subspaces to find an explicit formula for all polynomials

p ∈ Pn for which
{
R

j
�

n+1
p
}n

j=0
is an orthonormal basis for Pn.
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1.1. The inner product

It is convenient to allow the orthogonal polynomials in Pn to have complex coefficients, and at
times replace the cartesian coordinates x and y by z and z, where z := x + iy. We also allow the
formula for a polynomial (in either system) to appear in place of the function in the inner product
and the integral defining it, e.g., by integrating the polar form, we have

〈zj zk, 1〉 =
∫

D
zj zkw(|z|) =

{
0, j 
= k,

mj , j = k,
(1.4)

where

mj :=
∫

D
|z|2jw(|z|) = 2�

∫ 1

0
r2j+1w(r) dr > 0, j = 0, 1, . . . .

By symmetry 〈xj1yk1 , xj2yk2〉 = 0 unless j1 + j2 and k1 + k2 are both even, in which case the
inner product is given by

〈x2j y2k, 1〉 = I (j, k)mj+k, j, k�0, (1.5)

where

I (j, k) := 1

2�

∫ 2�

0
cos2j � sin2k � d� = 1 · 3 · · · (2j − 1) · 1 · 3 · · · (2j − 1)

2 · 4 · · · (2j + 2k)
.

For example, the inner products of quintic polynomials can be computed using

〈1, 1〉 = m0, 〈x2, 1〉 = 〈y2, 1〉 = 1
2m1, 〈x4, 1〉 = 〈y4, 1〉 = 3

8m2,

〈x2y2, 1〉 = 1
8m2. (1.6)

For the Gegenbauer weight (1.2), the ‘moments’ mj are given by

mj = j !�
(� + 1)j+1

, j = 0, 1, . . . . (1.7)

By the Cauchy–Schwarz inequality

mk−2mk − m2
k−1 > 0, k�2. (1.8)

The values (1.8) appear in the denominators of some of the formulas which follow.

1.2. Ridge functions

A nonzero function f on the disc is called ridge function (or plane wave) if it can be written
as a univariate map g : [−1, 1] → R composed with a linear map 〈·, v〉 : R2 → R, v ∈ R2,
‖v‖ = 1, i.e.,

f (x, y) = g(〈
(

x

y

)
,

(
v1

v2

)
〉) = g(v1x + v2y),

(
x

y

)
∈ D.

In particular, if v = e1 = (1, 0) the first standard basis vector, then f (x, y) = g(x).
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There exist ridge functions in Pn, as in the case of the Legendre polynomials, if and only if
the orthogonal projection of 〈·, e1〉n : (x, y) �→ xn onto Pn is a ridge function, i.e., is a function
only of x. This may or may not be the case.

Example 1. The Gegenbauer polynomials contain ridge polynomials (this is also true for a ball
in any number of dimensions (cf. [2, Proposition 6.1.13])), namely

P
(�+ 1

2 ,�+ 1
2 )

n (〈·, v〉), ‖v‖ = 1,

where

‖P (�+ 1
2 ,�+ 1

2 )

k (〈·, v〉)‖2 = 22�+1�(� + 1)2

�(2� + 2)

22�+2�(n + � + 3
2 )2

n!(2n + � + 2)�(n + 2� + 2)
.

For a general radially symmetric weight the orthogonal projections of (x, y) �→ xn onto Pn for
the first few n are given by

1, x, x2 − m1

2m0
, x3 − 3m2

4m1
x,

which are ridge functions. For n = 4, the formula is

x4 − 3m1m
2
2 + 4m2

1m3 − 7m0m2m3

8m2(m
2
1 − m0m2)

x2 + 4m2
1m3 − 3m1m

2
2 − m0m2m3

8m2(m
2
1 − m0m2)

y2

+3

8

m2
2 − m1m3

m2
1 − m0m2

,

which is not a ridge function if

4m2
1m3 − 3m1m

2
2 − m0m2m3 
= 0.

Let w be the radially symmetric weight given by

w(r) := r2�, � > −1, mj = �

j + 1 + �
. (1.9)

Then the orthogonal projection of (x, y) �→ x4 onto P4 is given by

x4 − 1

4

5� + 12

� + 4
x2 − 1

4

�

� + 4
y2 + 3

8

�2 + 3� + 2

�2 + 7� + 12
,

which is a ridge function if only if � = 0. Hence for the inner product given by (1.9) with � 
= 0,
P4 does not contain any ridge functions.

As the above example indicates, the orthogonal projection of (x, y) �→ xjyn−j onto Pn is
even if n is even, and odd if n is odd. Moreover, for the Gegenbauer polynomials, only the powers
x�1y�2 with (�1, �2)�(j, n − j) have nonzero coefficients.

1.3. Zernike polynomials

From (1.4) it follows that the orthogonal projections of z �→ zj zk , j + k = n onto Pn form
an orthogonal basis for Pn. For the Gegenbauer weight these polynomials are given by
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the formula

P �
j,k(z) := (� + 1)j+k

(� + 1)j (� + 1)k
zj zk

2F1

( −j, −k

−� − j − k
; 1

zz

)

= (� + 1)j+k

(� + 1)j (� + 1)k
zj zk + lower order terms,

and have the factorisation (cf. [2, Section 2.4.3])

P �
n−j,j (z) = j !

(� + 1)j
zn−2jP

(�,n−2j)
j (2|z|2 − 1), n − j �j. (1.10)

These polynomials are often referred to as Zernike polynomials or disc polynomials, see, e.g.,
[2,5]. The Zernike polynomials for a general radially symmetric weight satisfy a factorisation
similar to (1.10).

Lemma 1.11. Fix a weight function w : [0, 1] → R+. Let 0�j � n
2 , and Pj 
= 0 be an orthog-

onal polynomial of degree j for the univariate weight (1 + x)n−2jw

(√
1+x

2

)
on [−1, 1]. Then

the polynomials of degree n given by the formulas

Qw
j,n(z) := zn−2jPj (2|z|2 − 1), Qw

j,n(z) = zn−2jPj (2|z|2 − 1), (1.12)

belong to Pn = Pw
n . Moreover the set of these polynomials are an orthogonal basis for Pn, with

their norms given by

hj := ‖|z|n−2jPj (2|z|2 − 1)‖2 = �

2n−2j+1

∫ 1

−1
P 2

j (x)(1 + x)n−2jw

(√
1 + x

2

)
dx.

(1.13)

Proof. If p ∈ Pn, then so is the polynomial z �→ p(z), and so it suffices to show that the first of
these polynomials is in Pn. This polynomial has the form

Qw
j,n(z) = zn−2jPj (2|z|2 − 1) =

j∑
k=0

ckz
n−2j+kzk,

and so, by (1.4), is orthogonal to all monomials of degree < n, except possibly

z �→ zn−2j zszs, s = 0, 1, . . . , j − 1.

By making the change of variables x = 2r2 − 1, the condition for orthogonality to these can be
written

〈Qw
j,n(z), z

n−2j zszs〉 =
∫

D
Pj (2|z|2 − 1)|z|2s |z|2n−4jw(|z|)

= 2�
∫ 1

0
Pj (2r2 − 1)r2sr2n−4jw(r)r dr

= 2�
∫ 1

−1
Pj (x)

(
1 + x

2

)s (1 + x

2

)n−2j

w

(√
1 + x

2

)
dx

4
= 0
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for 0�s < j , which is satisfied by the choice of Pj . Similarly, we compute

hj := ‖|z|n−2jPj (2|z|2 − 1)‖2 = ‖Qw
j,n(z)‖2 = ‖Qw

j,n(z)‖2

= 2�
∫ 1

0
P 2

j (2r2 − 1)r2n−4jw(r)r dr

= 2�
∫ 1

−1
P 2

j (x)

(
1 + x

2

)n−2j

w

(√
1 + x

2

)
dx

4
. �

Example 1. The first two monic polynomials are given by

P0(x) = 1, P1(x) = x + mn−2 − 2mn−1

mn−2
, n�2.

Thus using (1.13) and (1.4), we obtain

1√
h0

P0(2|z|2 − 1) = 1√
mn

, n�0, (1.14)

1√
h1

P1(2|z|2 − 1) =
√

mn−2√
mn−2mn − m2

n−1

(
|z|2 − mn−1

mn−2

)
, n�2. (1.15)

Example 2. If the radial weight is given by the generalised Gegenbauer weight

w(r) := (1 − r2)�r2�, � > −1, � > −1,

then

(1 + x)n−2jw

(√
1 + x

2

)
= (1 + x)n−2j

(
1 − x

2

)� (1 + x

2

)�

= 1

2�+�
(1 − x)�(1 + x)n−2j+�,

so that Pj is the Jacobi polynomial P
(�,n−2j+�)

j , for which

hj = �

2n−2j+1

1

2�+�

∫ 1

−1
(P

(�,n−2j+�)

j (x))2(1 − x)�(1 + x)n−2j+� dx

= �
�(j + � + 1)�(n − j + � + 1)

(� + n + � + 1)j !�(� + n − j + � + 1)
. (1.16)

2. Frames and their symmetries

We outline the basics of finite frame theory (cf. [1,4]) as they apply to our construction.
Given a finite spanning set � = {�j } (called a frame) for a finite dimensional Hilbert space H,
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such as Pn, the self adjoint operator S = S� : H → H given by

Sf :=
∑
j

〈f, �j 〉�j , ∀f ∈ H (2.1)

is positive and invertible. The set {�̃j }, �̃j := S−1�j is called the dual frame, and gives the
expansion

f =
∑
j

〈f, �j 〉�̃j =
∑
j

〈f, �̃j 〉�j , ∀f ∈ H.

Special cases include orthogonal and biorthogonal expansions. Moreover, if 	j := S− 1
2 �j , then

we have the canonical tight frame decomposition

f =
∑
j

〈f, 	j 〉	j , ∀f ∈ H.

Suppose that G is group of unitary transformations of H which maps � to itself. Then each
g ∈ G commutes with S

g(Sf ) =
∑
j

〈f, �j 〉g�j =
∑
j

〈f, g−1g�j 〉g�j =
∑
j

〈gf, g�j 〉g�j = S(gf ),

and hence with S−1 and S− 1
2 . Thus if the G-orbit of a vector �0 spans H, then the corresponding

dual and canonical dual frames are the G-orbit of a vector. This result allows us to take a spanning
set for Pn given by the rotates of a single polynomial (which is easy to find) and convert it into a
tight frame which is given by the corresponding rotates of a single polynomial. We now illustrate
this.

Any polynomial p ∈ Pn is a multiple of its rotation through �

R�p = (−1)np, ∀p ∈ Pn, (2.2)

and so for the rotations of p by multiples of 2�
k

to span the n + 1 dimensional space Pn, we
must have either k�n + 1 and k odd, or k�2(n + 1). Under these conditions we can find such a
polynomial p.

Lemma 2.3. Let � be the orthogonal projection of (x, y) �→ xn onto Pn. If either k�n + 1 and
k is odd, or k�2(n + 1), then the rotations of � through multiples of 2�

k
, i.e., the set

� = {�j }k−1
j=0, �j := Rj�, R := R 2�

k
,

spans Pn. Thus, there exists �, �̃, 	 ∈ Pn for which

f =
k−1∑
j=0

〈f, Rj�〉Rj �̃ =
k−1∑
j=0

〈f, Rj �̃〉Rj� =
k−1∑
j=0

〈f, Rj	〉Rj	, ∀f ∈ Pn. (2.4)

In particular, by taking k = 2(n + 1), we conclude that there exists a polynomial v ∈ Pn for

which
{
R

j
�

n+1
v
}n

j=0
is an orthonormal basis.
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Proof. In view of (2.2), we may assume without loss of generality that k�2(n + 1). Since an
orthogonal polynomial in Pn is uniquely determined by its leading term

�(x, y) = �↓(x, y) + lower order terms, �↓(x, y) := xn,

and

(Rj�)(x, y) = (Rj�↓)(x, y) + lower order terms.

Hence to show � spans Pn, it suffices to show that the rotations of �↓ : (x, y) �→ xn through the

angles 2�j
k

, 0�j �n are linearly independent, i.e., using the complex notation, that

n∑
j=0

cj (

j z + 
j z)n =

n∑
j=0

cj

n∑
r=0

(
n

r

)
(
j z)r (
j z)n−r = 0, 
 := e

2�i
k

implies all the coefficients cj are zero. From the orthogonality between zrzn−r , 0�r �n given
by (1.4), we obtain

n∑
j=0

cj (

2r−n)j = 0, 0�r �n.

Thus the polynomial z �→ ∑n
j=0 cj z

n has n + 1 distinct roots 
2r−n, 0�r �n, and so all of its
coefficients cj are zero.

The decomposition (2.4) follows from the previous discussion, where

�̃ := S−1
� �, 	 := S

− 1
2

� �.

Finally, taking k = 2(n + 1) and using (2.2), gives

f =
2n+1∑
j=0

〈f, R
j

2�
2(n+1)

	〉Rj
2�

2(n+1)

	 = 2
n∑

j=0

〈f, R
j

�
(n+1)

	〉Rj
�

(n+1)
	, ∀f ∈ Pn,

so that
√

2	 gives the desired polynomial v. �

If any frame expansion of the type (2.4) holds, then (with appropriate normalisation) it holds
for all possible k, including a continuous version.

Theorem 2.5. If there are polynomials g, g̃ ∈ Pn and some k ∈ N, for which

f = n + 1

k

k−1∑
j=0

〈f, Rjg〉Rj g̃, ∀f ∈ Pn, R := R 2�
k
, (2.6)

then (2.6) holds for any k with either k�n + 1 and k odd, or k�2(n + 1). Moreover,

f = n + 1

2�

∫ 2�

0
〈f, R�g〉R�g̃ d�, ∀f ∈ Pn.
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Proof. Suppose that (2.6) holds for some k. Then k�n+1 (by spanning). Further, we may assume
without loss of generality that k�2(n+1), since if not then by (2.2) k must be odd, in which case
R

2j+k
�
k

= −R
j
2�
k

, giving

f = 1

2

n + 1

k

k−1∑
j=0

〈f, R
2j
�
k

g〉R2j
�
k

g̃ + 1

2

n + 1

k

k−1∑
j=0

〈f, R
2j+k
�
k

g〉R2j+k
�
k

g̃

= n + 1

2k

2k−1∑
j=0

〈f, R
j
2�
2k

g〉Rj
2�
2k

g̃, ∀f ∈ Pn.

It therefore suffices to prove for k�2(n + 1) that

1

k

k−1∑
j=0

〈f, R
j
2�
k

g〉Rj
2�
k

g̃ = 1

2�

∫ 2�

0
〈f, R�g〉R�g̃ d�, ∀f ∈ Pn. (2.7)

Since p : � �→ 〈f, R�g〉R�g̃(x, y) is a trigonometric polynomial of degree 2n, and k > 2n, we
can integrate it using the quadrature formula for k equally spaced nodes

1

2�

∫ 2�

0
〈f, R�g〉R�g̃(x, y) d� = 1

2�

∫ 2�

0
p(�) d� = 1

k

k−1∑
j=0

p

(
2�j

k

)

= 1

k

k−1∑
j=0

〈f, R 2�j
k

g〉R 2�j
k

g̃(x, y), ∀f ∈ Pn,

thereby obtaining (2.7). �

Let Tn be the trigonometric polynomials of degree �n, with the usual inner product. If (2.6)
holds with g = g̃, then we can naturally associate with each f ∈ Pn a trigonometric polynomial
f̂ ∈ Tn given by

f̂ (�) := 〈f, R�g〉, f = n + 1

2�

∫ 2�

0
f̂ (�)R�g d�, ∀f ∈ Pn.

The map Pn → Tn : f �→ f̂ is a (complex) Hilbert space isomorphism, since

〈f1, f2〉 = n + 1

2�

〈∫ 2�

0
f̂1(�)R�g d�, f2

〉
= n + 1

2�

∫ 2�

0
f̂1(�)〈R�g, f2〉 d�

= n + 1

2�

∫ 2�

0
f̂1(�)f̂2(�) d�, ∀f1, f2 ∈ Pn.

Example 1. Let � ∈ P2 be the orthogonal projection of (x, y) �→ x2 onto the quadratic orthog-
onal polynomials P2, i.e.,

�(x, y) := x2 − m1

2m0
.
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By Lemma 2.3, � := {�0, �1, �2}, �j := R
j
2�
3
� is a basis for P2. By (1.6),

〈�, R��〉 =
〈
x2 − m1

2m0
, (x cos � − y sin �)2 − m1

2m0

〉
= 1

4
m2 cos2 � − 1

4

m2
1

m0
+ 1

8
m2,

so the matrix representing S� of (2.1) with respect to this basis is

A =

⎛
⎜⎜⎝

a b b

b a b

b b a

⎞
⎟⎟⎠ , a := 3

8
m2 − 1

4

m2
1

m0
, b := 3

16
m2 − 1

4

m2
1

m0
.

This symmetric matrix can be diagonalised

A = V �V −1, V :=

⎛
⎜⎜⎝

1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

−2√
6

0

⎞
⎟⎟⎠ , � :=

⎛
⎜⎜⎜⎝

3
4

m0m2−m2
1

m0
0 0

0 3
16m2 0

0 0 3
16m2

⎞
⎟⎟⎟⎠ .

From this we calculate

�̃ = S−1
� � = 4

9

9m0m2 − 8m2
1

m2(m0m2 − m2
1)

� − 4

9

3m0m2 − 4m2
1

m2(m0m2 − m2
1)

(R 2�
3
� + R 4�

3
�),

and 	 = S
− 1

2
� �, which gives

	 =
⎛
⎜⎝2

9

√
3m0√

m0m2 − m2
1

+ 8

9

√
3√

m2

⎞
⎟⎠� +

⎛
⎜⎝2

9

√
3m0√

m0m2 − m2
1

− 4

9

√
3√

m2

⎞
⎟⎠

×(R 2�
3
� + R 4�

3
�).

Thus for k�3, k 
= 4, we have

f = 3

k + 1

k−1∑
j=0

〈f, R
j
2�
k

�〉Rj
2�
k

�̃ = 3

k + 1

k−1∑
j=0

〈f, R
j
2�
k

�̃〉Rj
2�
k

�

= 3

k + 1

k−1∑
j=0

〈f, R
j
2�
k

	〉Rj
2�
k

	, ∀f ∈ P2.

The above computation for 	 is difficult to do for a general n, as it requires the computation of
the positive square root of S−1. In the next section, we use a result of [4] to obtain all polynomials
	 ∈ Pn whose rotations form an orthonormal basis for Pn, and in particular, that corresponding
to the orthogonal projection of (x, y) �→ xn onto Pn.

3. The orthonormal basis

In Lemma 2.3 the existence of a polynomial v ∈ Pn for which
{
R

j
�

n+1
v
}n

j=0
is an orthonormal

basis for Pn was proved. We now calculate all such polynomials explicitly.
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3.1. The SO(2)-invariant subspaces of Pn

By Lemma 1.11, the polynomial z �→ �(�zn−2j )Pj (2|z|2 −1), � ∈ C can be written as a linear
combination of Zernike polynomials

2�(�zn−2j )Pj (2|z|2 − 1) = �zn−2jPj (2|z|2 − 1) + �zn−2jPj (2|z|2 − 1).

Thus Pn as a real vector space can be written as an orthogonal direct sum of subspaces

Pn =
⊕

0� j � n
2

Vj , Vj := span{z �→ �(�zn−2j )Pj (2|z|2 − 1) : � ∈ C}, (3.1)

where each Vj is invariant under the action of SO(2). Moreover, the summands Vj are absolutely
irreducible under the action of any subgroup G of SO(2) of order 3 or more, i.e., Vj considered
as a complex vector space has no G-invariant subspaces other than 0 and Vj . The polynomials in
Vj can be factored into a harmonic homogeneous polynomial of degree n − 2j multiplied by a
common factor of degree 2j , and so

dim(Vj ) =
{

2, j 
= n
2 ,

1, j = n
2 .

Given the decomposition (3.1) of Pn into absolutely irreducibles, we have the following example
of [4, Theorem 6.18].

Theorem 3.2. Let G be a finite subgroup of SO(2) for which span{gp : g ∈ G} = Pn, for some
p ∈ Pn, i.e., G = 〈R 2�

k
〉, where either k�n + 1 and k is odd, or k�2(n + 1). If v = ∑

j vj ,

vj ∈ Vj , then {gv}g∈G is an isometric tight frame for Pn if and only if

‖vj‖2

‖vk‖2
= dim(Vj )

dim(Vk)
, 0�j, k� n

2
.

In particular, {Rj
�

n+1
v : 0�j �n} is an orthonormal basis for Pn if and only if

‖vj‖ =

⎧⎪⎨
⎪⎩
√

2
n+1 , j 
= n

2 ,√
1

n+1 , j = n
2 .

(3.3)

From this we obtain our main result. Let Pj be the univariate orthogonal polynomial of degree
j in Lemma 1.11, and hj be given by (1.13).

Theorem 3.4. Let v ∈ Pn be the polynomial with real coefficients defined by

v(x, y) := 1√
n + 1

∑
0� j � n

2

2

1 + j, n
2

1√
hj

�(�j z
n−2j )Pj (2|z|2 − 1), z := x + iy,

(3.5)
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where �j are complex numbers of unit modulus, with � n
2

∈ {−1, 1}. Then {Rj
�

n+1
v}nj=0 is an

orthonormal basis for Pn, and all such polynomials are given by (3.5). Moreover

f = n + 1

k

k−1∑
j=0

〈f, R
j
2�
k

v〉Rj
2�
k

v = n + 1

2�

∫ 2�

0
〈f, R�v〉R�v d�, ∀f ∈ Pn, (3.6)

whenever k�n + 1 and k is odd, or k�2(n + 1).

Proof. By Theorems 3.2 and 2.5, we need only find all elements vj ∈ Vj satisfying (3.3). For
j 
= n

2 the Zernike polynomials of (1.12) are orthogonal, so that

‖�(�zn−2j )Pj (2|z|2 − 1)‖2 = 1

4

(
‖�zn−2jPj (2|z|2 − 1)‖2 + ‖�zn−2jPj (2|z|2 − 1)‖2

)

= hj

2
|�|2,

and all the possible choices for vj are given by

vj (x, y) =
√

2

n + 1

√
2√
hj

�(�j z
n−2j )Pj (2|z|2 − 1), j 
= n

2
, |�j | = 1.

For j = n
2 (when n is even), we have ‖Pj (2|z|2 − 1)‖2 = hj , and so we must choose

vj (x, y) = ±
√

1

n + 1

1√
hj

Pj (2|z|2 − 1)

=
√

1

n + 1

1√
hj

�(�j z
n−2j )Pj (2|z|2 − 1), j = n

2
, � n

2
∈ {−1, 1}.

Thus v =∑j vj is given by (3.5). �

Example 1. The quadratics P2. Writing

�0 = a + ib, a, b ∈ R, a2 + b2 = 1,

and using (1.14) and (1.15), we have

v(x, y) = 2√
3
√

m2
(a(x2 − y2) − 2bxy) ±

√
m0√

3
√

m0m2 − m2
1

(
x2 + y2 − m1

m0

)
.

This formula can yield a ridge function if and only if

2√
m2

=
√

m0√
m0m2 − m2

1

⇐⇒ 3m0m2 = 4m2
1,
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in which case each such polynomial is a ridge function

v(x, y) = 2√
3
√

m2
(a(x2 − y2) − 2bxy) ± 2√

3
√

m2

(
x2 + y2 − m1

m0

)

= ± 4√
3m2

⎧⎨
⎩
(√

1 ± a√
2

x ∓ sign(b)

√
1 ∓ a√

2
y

)2

− m1

2m0

⎫⎬
⎭ .

Fig. 1. Contour plots of the quintic Legendre polynomials v ∈ P5 given by (3.5) for the choices �0 = 1 and
�1, �2 ∈ {−1, 1}. The first is the Logan–Shepp polynomial.

Example 2. The cubics P3. Writing

�0 = a + ib, �1 = c + id, a, b, c, d ∈ R, a2 + b2 = c2 + d2 = 1,

we obtain

v(x, y) = 1√
m3

(a(x3 − 3xy2) + b(y3 − 3x2y))

+
√

m1√
m1m3 − m2

2

(cx − dy)

(
x2 + y2 − m2

m1

)
.
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For the Gegenbauer polynomials, we single out the particular choice for v which corresponds
to the decomposition of Logan and Shepp [3] for Legendre polynomials.

Corollary 3.7. Let Pn be the Gegenbauer polynomials for the weight given by

w(r) = (1 − r2)�, � > −1,

and v ∈ Pn be the Gegenbauer polynomial with real coefficients defined by

v(x, y) := 2√
�

√
� + n + 1√

n + 1

∑
0� j � n

2

1

1 + j, n
2

√
(� + j + 1)n−2j√

(j + 1)n−2j

×�(zn−2j )P
(�,n−2j)
j (2|z|2 − 1). (3.8)

Then {Rj
�

n+1
v}nj=0 is an orthonormal basis for Pn. For the Legendre polynomials (� = 0), this

polynomial reduces to

v(x, y) = 1√
�

Un(x).

Proof. For the Gegenbauer polynomials, by (1.16), we have

Pj = P
(�,n−2j)
j , hj = �

(� + n + 1)

(j + 1)n−2j

(� + j + 1)n−2j

.

Hence taking �j = 1, ∀j in (3.5), we obtain

v(x, y) = 2√
�

√
� + n + 1√

n + 1

∑
0� j � n

2

1

1 + j, n
2

√
(� + j + 1)n−2j√

(j + 1)n−2j

×�(zn−2j )P
(�,n−2j)
j (2|z|2 − 1).

We recall the normalisations

P
(�,�)

j (x) = 1

2j

(j + � + � + 1)j

j ! xj + lower order terms,

Un(x) = 22n n!(n + 1)!
(2n + 1)! P

( 1
2 , 1

2 )
n (x) = 2nxn + lower order terms.

For the Legendre polynomials, the leading term of v is

2√
�

∑
0� j � n

2

1

1 + j, n
2

(
n

j

)
zn−j zj + zj zn−j

2

= 1√
�

n∑
j=0

(
n

j

)
zj zn−j = 1√

�
(z + z)n = 2n

√
�

xn,

so that v is the orthogonal projection of (x, y) �→ 2n√
�
xn onto Pn, i.e.,

v(x, y) = 1√
�

Un(x). �
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Fig. 2. Contour plots of the v ∈ P5 given by (3.8) for � = − 1
2 , 0 (Logan–Shepp), 1

2 .

It is clear that the results presented here have a natural counterpart for orthogonal polynomials
on a unit ball in Rd with a radially symmetric weight, e.g., the integral decomposition in (3.6)
would become an integral over the Lie group SO(d). To give a full generalisation of the results
here requires an understanding of those subgroups of SO(d) which map some homogeneous
polynomial of degree n to a basis for this space, and the corresponding numerical integration rule.
This is left to the future.

It is hoped that our generalisation of Logan and Shepp’s orthogonal expansion will be used to
extend important applications based on it to a Gegenbauer weight, e.g., in computed tomography
the fast algorithm of [6] for reconstructing images from radon projections.
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