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Abstract

We give some new explicit examples of putatively optimal projective spherical
designs. i.e., ones for which there is numerical evidence that they are of minimal
size. These form continuous families, and so have little apparent symmetry in
general, which requires the introduction of new techniques for their construction.
New examples of interest include an 11-point spherical (3, 3)-design for R3, and
a 12-point spherical (2, 2)-design for R4 given by four Mercedes-Benz frames that
lie on equi-isoclinic planes. We also give results of an extensive numerical study
to determine the nature of the real algebraic variety of optimal projective real
spherical designs, and in particular when it is a single point (a unique design) or
corresponds to an infinite family of designs.
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1 Introduction

Due to a wide range of applications, there is a large body of work on the general problem
of constructing points (or lines) on a sphere which are optimally separated in some way.
These configurations can be numerical or explicit, with the general hope being that
numerical configurations of interest approximate explicit constructions that might be
found. Some examples include Hardin and Sloane’s list of numerical spherical t-designs
[HS96], the numerical constructions of Weyl-Heisenberg SICs (d2 equiangular lines in Cd)
[SG10] and exact constructions obtained from them [ACFW18], the “Game of Sloanes”
optimal packings in complex projective space [JKM19], and minimisers of the p-frame
energy on the sphere [BGM+22].

Here we consider numerical and explicit constructions of a putatively optimal set
of points (or lines) of what are variously called spherical (t, t)-designs for Rd [HW21],
spherical half-designs [KP11] and projective t-designs [Hog82]. These are given by a
sequence of vectors v1, . . . , vn ∈ Rd (not all zero) which give equality in the inequality

n∑
j=1

n∑
k=1

|〈vj, vk〉|2t ≥
1 · 3 · 5 · · · (2t− 1)

d(d+ 2) · · · (d+ 2(t− 1))

( n∑
`=1

‖v`‖2t
)2
, (1.1)

where t = 1, 2, . . .. The case where all the vectors have unit length is variously referred
to as an equal-norm/unweighted/classical design, and in general as a weighted design.
We observe (see [Wal17], [HW21]) that

� These are projective objects (lines), which are counted up to projective unitary
equivalence, i.e., for U unitary and cj unit scalars, we have that (vj) is a spherical
(t, t)-design if and only if (cjUvj) is, and these are considered to be equivalent.

� Spherical (t, t)-designs of n vectors in Rd exist for n sufficiently large, i.e., the
algebraic variety given by (1.1) is nonempty for n sufficiently large. Designs for
which n is minimal are of interest, and are said to be optimal.

� The existence of (optimal) spherical designs can investigated numerically.

If (vj) gives equality in (1.1) up to machine precision, then we will call it a numerical
design. We say a numerical or explicit design is putatively optimal if a numerical
search (which finds it) suggests that there is no design with fewer points.

The examples of putatively optimal spherical (t, t)-designs for Rd found so far (see
Table 6.1 of [Wal18]) come from cases where the algebraic variety of spherical (t, t)-
designs (up to equivalence) appears to consist of a finite number of points. This can be
detected by considering the m-products

∆(vj1 , . . . , vjm) := 〈vj1 , vj2〉〈vj2 , vj3〉 · · · 〈vjm , vj1〉, 1 ≤ j1, . . . , jm ≤ n,

which determine projective unitary equivalence [CW16]. From these, it is then possible
to conjecture what the symmetry group of the design is [CW18], and ultimately to
construct an explicit (putatively optimal) spherical (t, t)-design as the orbit of a few
vectors under the unitary action of the symmetry group (cf. [HW20], [ACFW18]).
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In this paper, we consider, for the first time, the case when the algebraic variety of
optimal spherical (t, t)-designs appears to be uncountable (of positive dimension). In the
examples that we consider, a generic numerical putatively optimal spherical (t, t)-design
has a trivial symmetry group. However, there is often some structure, referred to as
“repeated angles”, i.e., some 2-products

∆(vj, vk) = |〈vj, vk〉|2, j 6= k,

are repeated. This is just enough structure to tease out an uncountably infinite family
of putatively optimal spherical (t, t)-designs, in some examples.

2 Numerics

For V = [v1, . . . , vn] ∈ Rd×n, let f(V ) = ft,d,n(V ) ≥ 0 be given by

f(V ) :=
n∑
j=1

n∑
k=1

|〈vj, vk〉|2t − ct(Rd)
( n∑
`=1

‖v`‖2t
)2
, ct(Rd) :=

t−1∏
j=0

2j + 1

d+ 2j
. (2.2)

We consider the real algebraic variety of spherical (t, t)-designs given by f(V ) = 0,
subject to the (algebraic) constraints

‖v1‖2 = · · · = ‖vn‖2 = 1, equal-norm/unweighted/classical designs

‖v1‖2 + · · ·+ ‖vn‖2 = n, weighted designs (n chosen for convenience).

This has been studied in the case t = 1, where it gives the tight frames [CMS17], [Wal18].
In particular, local minimisers of f for t = 1 are global minimisers. It is not known if
this is true for t > 1, and obviously this impacts on the numerical search for designs,
e.g., a local minimiser which was not a global minimiser might be more easily found,
leading to a false conclusion that there is no spherical (t, t)-design.

We are primarily interested in the minimal n for which the variety is nonempty
(denoted by ne and nw, respectively), i.e., the optimal spherical (t, t)-designs. We have(

t+ d− 1

t

)
= dim(Hom(t)) ≤ nw ≤ ne ≤ dim(Hom(2t)) =

(
2t+ d− 1

2t

)
.

For d fixed, ne and nw are increasing functions of t.
A numerical search was done in [HW21] using an iterative method that moves in

the direction of −∇f(V ). The results there, and in Table 1 of [BGM+22], have been
duplicated and extended by using the manopt software [BMAS14] for optimisation on
manifolds and matrices (implemented in Matlab). The putatively optimal numerical
designs that we found are summarised in Table 1, and can be downloaded from [EW22]
and viewed at

www.math.auckland.ac.nz/~waldron/SphericalDesigns

Here are some details about our manopt calculations:
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� The cost function f of (2.2) was minimised using the trustregions solver.

� This requires the manifold over which the minimisation is done to be specified. We
used obliquefactory for real equal-norm designs and euclideanfactory for real
weighted designs, and obliquecomplexfactory and euclideancomplexfactory

for complex designs.

� Since euclideanfactory(d,n) is the manifold Rd×n, minimising the homogeneous
polynomial f tended to give minima of small norm. To avoid this, we added the
term (‖v1‖2−1)2 to the cost function, so that the weighted designs V = [v1, . . . , vn]
obtained have the first vector v1 of unit norm. For the purpose of calculating errors,
V was normalised so that ‖v1‖2 + · · ·+ ‖vn‖2 = n (as for unit-norm designs).

� The solver requires the gradient and Hessian of f as parameters. The gradient
function (page 140, [Wal18]) was given explicitly, and the Hessian was calculated
symbolically from f by trustregion.

� We used the default solver options, except for the delta bar parameter, where
setting problem.delta bar to problem.M.typicaldist()/10, rather than the
default problem.M.typicaldist() gave better results.

� We considered the absolute error in V being a design, i.e.,

ft,d,n = ft,d,n(V ) :=
∑

j

∑
k |〈vj, vk〉|2t − ct(Rd)(

∑
` ‖v`‖2t)2 ≥ 0, (2.3)

where trace(V ∗V ) = ‖v1‖2 + · · ·+ ‖vn‖2 = n.

See [Elz20] for further details.

Figure 1: The graphs of n 7→ ft,d,n and n 7→ log10 ft,d,,n for t = 2, d = 6, i.e., the error in
numerical approximations to a unit-norm spherical (2, 2)-design of n vectors in R6.

We now discuss the heuristics of determining when ft,d,n(V ) is (numerically) zero.
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3 The overall picture

We use ft,d,n(V ) for a numerically computed V = [v1, . . . , vn] as a proxy for

αt,d,n := min
V ∈Rd×n

trace(V ∗V )=n

ft,d,n(V ),

where the condition ‖vj‖ = 1 is added for unit-norm designs. It is known that

� For equal-norm designs n 7→ αt,d,n is zero for some (large) n.

� For unweighted designs n 7→ αt,d,n is decreasing, becoming zero for some (large) n.

Moreover

� For large n (relative to t and d), a random set of n points is close to being a
spherical (t, t)-design, and hence has a small error ft,d,n(V ).

A priori, these properties suggest that it may be difficult to identify (t, t)-designs, in the
sense that the error n 7→ ft,d,n(V ) slowly approaches numerical zero. However, extensive
calculations suggest that in the “generic” situation (see Figure 1) this is not the case:

Generic situation: At the point where an optimal (t, t)-design is obtained the
error “jumps down” to numerical zero.

There are also “special” situations (see Figures 2 and 4), where (by reasons of symmetry)

Special situation: An equal-norm (t, t)-design with a unexpectedly small number
of vectors exists. This design may or may not be obtained by calculating a single
numerical design. Here the error jumps to zero, but then returns to roughly the
generic situation (nonzero with an eventual jump to numerical zero).

Figure 2: The graphs of n 7→ ft,d,n and n 7→ log10 ft,d,,n for t = 5, d = 4, i.e., the error in
numerical approximations to a unit-norm spherical (5, 5)-design of n vectors in R4.

The error graphs for unweighted (t, t)-designs share this “jump” phenomenon (see
Figure 3), but are strictly decreasing (becoming constant once zero is obtained). This is

5



because a zero weight corresponds to a design with one fewer point (and so increasing
the number of points enlarges the possible set of designs).

Figure 3: The graphs n 7→ ft,d,n and n 7→ log10 ft,d,,n of the error in approximations to
weighted designs with t = 6 and d = 5, i.e., (6, 6)-designs of n vectors in R5.

The cost of finding of a numerical approximation to a spherical (t, t)-design in Rd

grows with t and d. Therefore (like in previous studies) we could only calculate numerical
designs up to a certain point. The previous calculations of [BGM+22] and [HW21] were
replicated and extended. These are summarised in Table 1 below, with comments, e.g.,

structure means some angles are repeated for equal-norm designs (repeated angles),
and some norms are repeated for unweighted designs.

infinite family means a different numerical design is obtained each time, and we
infer that the algebraic variety of optimal designs has positive dimension.

group structure means that a finite number of numerical designs are obtained,
which are a union of orbits of some (symmetry) group.

A set of equal-norm vectors for which the angles |〈vj, vk〉|, j 6= k, are all equal is said to
be equiangular.

The following example shows that minimising ft,d,n over a larger number of points
than for an optimal design can give a unique configuration.

Example 3.1 Minimisation of ft,d,n for t = 2 and n equal-norm vectors in R2 gives

n = 3: the unique optimal configuration of three equiangular lines in R2.

n = 4: a unique configuration of two MUBs (mutually unbiased bases),
equivalently, four equally spaced lines.

n = 5: a unique configuration of five equally spaced lines.

n = 6: configurations with six angles of 1
2

and three other angles (each appearing
3 times), which are seen to be the union of two Mercedes-Benz frames.

The set of t+ 1 equally spaced lines in R2 is a known optimal spherical (t, t)-design.
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Table 1: The minimum numbers nw and ne of vectors in a weighted and in a equal-norm
spherical (t, t)-design for Rd (spherical half-design of order 2t) as calculated numerically.
The (t, t)-design of t+ 1 vectors in R2 was obtained for all t (not all cases are listed).

t d nw ne Remarks on nw Remarks on ne

2 2 3 3 Mercedes-Benz frame see Example 3.1
2 3 6 6 equiangular lines in R3

2 4 11 12 §6.3 [Str71], [Rez92], infinite family infinite family (Theorem 4.1)
2 5 16 20 §6.3 unique, group structure [MW19] infinite family (Example 5.1)
2 6 22 24 §6.3 unique, group structure [MW19] repeated angles (Example 5.2)
2 7 28 28 equiangular lines in R7

2 8 45 51 infinite family, no structure infinite family, no structure
2 9 55 67 infinite family, no structure infinite family, no structure
2 10 76 85 infinite family, no structure infinite family, no structure
2 11 96 106 infinite family, no structure infinite family, no structure
2 12 120 131 infinite family, no structure infinite family, no structure
2 13 146 159 infinite family, no structure infinite family, no structure
2 14 177 190 infinite family, no structure infinite family, no structure
2 15 212 226 infinite family, no structure
2 16 250 267 infinite family, no structure
2 17 294 312 infinite family, no structure
2 18 342 362

3 2 4 4 two real mutually unbiased bases see Example 3.1
3 3 11 16 §6.1 Reznick, no structure infinite family, no structure
3 4 23 24 group structure (Example 5.3) infinite family (Example 6.1)
3 5 41 55 group structure (Example 5.4) infinite family, no structure
3 6 63 96 unique, two orbits (Example 5.5) infinite family, no structure
3 7 91 158 unique, two orbits (Example 5.5) infinite family, no structure
3 8 120 120 unique (Example 6.2) see Figure 4
3 9 338 380 infinite family, no structure infinite family, no structure

4 2 5 5 Equally spaced lines see Example 3.1
4 3 16 24 unique, two orbits (Example 5.5) repeated angles (Example 5.6)
4 4 43 57 infinite family, no structure infinite family, no structure
4 5 101 126 infinite family, no structure infinite family, no structure
4 6 217 261
4 7 433 504

5 2 6 6 Equally spaced lines see Example 3.1
5 3 24 35 infinite family, no structure infinite family, no structure
5 4 60 60 unique, one orbit [HW21] see Figure 2 and Example 5.8
5 5 203 253
5 6 503 604 infinite family, no structure

6 3 32 47 infinite family, no structure infinite family, no structure
6 4 116 154 infinite family, no structure infinite family, no structure
6 5 368 458

7 3 41 61 unique (Example 5.7) infinite family, no structure
7 4 173 229 infinite family, no structure

8 3 54 78 infinite family, some structure infinite family, no structure
8 4 249

9 3 70 97 infinite family, no structure
9 4 360 unique, two orbits (Example 5.5)

10 3 89 119 infinite family, no structure see Example 5.9

We now describe some specific (t, t)-designs that we obtained during our calculations.
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4 A family of 12-point spherical (2, 2)-designs for R4

Putatively optimal unit-norm 12-point spherical (2, 2)-designs for R4 are easily found.
These numerical designs appear to have trivial projective symmetry group. However,
they all have the feature:

� Each vector/line makes an angle of 1
2

with two others,

i.e., each row and column of the Gramian has two entries of modulus 1
2

(up to machine
precision). We now outline how we went from this observation, to an infinite family of
explicit putatively optimal designs (Theorem 4.1).

� The vector and the two making an angle 1
2

with it were seen (numerically) to give
three equiangular lines.

� These four sets of three equiangular lines, were seen to be Mercedes-Benz frames,
i.e., each lies in a 2-dimensional subspace.

� The four associated 2-dimensional subspaces are equi-isoclinic planes in R4.

Let V1, . . . , V4 ∈ R4×2 have orthonormal columns. Then Pj := VjV
∗
j is the orthogonal

projection onto the 2-dimensional subspace of R4 spanned by the columns of Vj. These
four subspaces (planes) are said to be equi-isoclinic if

PjPkPj = σ2Pj, j 6= k, for some σ. (4.4)

There is a unique such configuration [LS73], [ET06] (up to a unitary map) given by

[V1, V2, V3, V4] =
1√
6


√

6 0
√

2 0
√

2 0
√

2 0
0
√

6 0
√

2 0
√

2 0
√

2
0 0 −2 0 1 −

√
3 1

√
3

0 0 0 −2
√

3 1 −
√

3 1

 . (4.5)

A Mercedes-Benz frame is a set of three equiangular vectors/lines in a 2-dimensional
subspace.

Theorem 4.1 Let (vj) consist of four Mercedes-Benz frames that lie in four equi-isoclinic
planes in R4. Then (vj) is a 12-vector spherical (2, 2)-design for R4.

Proof: Let Mj ∈ R2×3 give a Mercedes-Benz frame (in R2), i.e., have the form

Mj = [uj, Ruj, R
2uj], R =

(
cos 2π

3
− sin 2π

3
sin 2π

3
cos 2π

3

)
=

(
−1

2
−
√
3
2√

3
2
−1

2

)
, uj =

(
cos θj
sin θj

)
,

and Vj ∈ R4×2 be given by (4.5). Then all such (vj) are given up to projective unitary
equivalence by V = [V1M1, . . . , V4M4]. The variational condition to be such a design is

12∑
j=1

12∑
k=1

|〈vj, vk〉|4 =
1 · 3
4 · 6

( 12∑
`=1

‖v`‖4
)2

=
1

8
122 = 18, (4.6)
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which we now verify by considering the 16 blocks of the Gramian V ∗V = [(VjMj)
∗VkMk].

The four diagonal blocks (VjMj)
∗VjMj = M∗

j (V ∗j Vj)Mj = M∗
jMj are the Gramian

of a Mercedes-Benz frame, and so each contribute 3 · 1 + 6 · (1
2
)4 = 27

8
to the left-hand

side of the sum (4.6). The off-diagonal blocks are all circulant (by a direct calculation)

(VjMj)
∗VkMk =

(
a b c
c a b
b c a

)
, a4 + b4 + c4 =

1

8
.

Thus (4.6) holds as 4 · 27
8

+ 12 · 3
8

= 18.

Here are some further observations on this example:

� Our calculations suggest this gives the entire variety of optimal designs.

� A simple calculation shows that |〈vj, vk〉| can take any value in the interval [0, 1√
3
].

� The optimal designs V = Vθ1,θ2,θ3,θ4 described in the proof are a continuous family
(depending on three real parameters). It is believed that these are all such designs.

� A generic design has no projective symmetries.

� There are designs with projective symmetries. In particular, V0,π
2
,π
2
,π
2

consists of
three real MUBs (mutually unbiased orthonormal bases) for R4, i.e., orthonormal
bases for which vectors from different bases make an angle |〈vj, vk〉| = 1

2
, and has

a projective symmetry group of order 576. These have the nice presentation

[B1, B2, B3] =
1√
2

1 1 0 0 1 1 0 0 1 1 0 0
1 −1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 −1 0 0 0 0 1 −1
0 0 1 −1 0 0 1 −1 1 −1 0 0


where (4.6) holds as 12 ·1+(12 ·8) · (1

2
)4 +(12 ·3) ·04 = 18. This design can also be

constructed as a union of one or two orbits of the Shephard-Todd group G(2, 1, 4)
(see [MW19]), the generating vectors being (1, 1, 0, 0) and (1, 0, 0, 0), 1

2
(1, 1, 1, 1).

� The idea of decomposing a tight frame (design) as a union of smaller dimensional
ones, as we have done here, is an old idea to understand and construct them. Here
we have considered the subsets of vectors which form a regular simplex in R2,
which [FJKM18] call the binder.
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5 Selected calculations

5.1 A family of 24-point spherical (4, 4)-designs for R3

A set of three equiangular vectors (vj) is said to be isogonal if they span a 3-dimensional
subspace, i.e., by appropriately multiplying the vectors by ±1 their Gramian has the
form (

1 a a
a 1 a
a a 1

)
, −1

2
< a < 1.

The limiting case a = −1
2

gives a Mercedes-Benz frame and a = 1 gives three equal lines.
These can be viewed as a lift of a Mercedes-Benz frame to three dimensions [Wal18].

Putatively optimal 24-point spherical (4, 4)-designs for R3 are readily calculated,
and all appear to have the following structure:

� Each is a union of 8 sets of three isogonal lines.

� Each set of isogonal lines is the lift of a Mercedes-Benz frame in a fixed 2-dimensional
subspace.

� This suggests an order three rotational symmetry.

We speculate that (up to projective unitary equivalence) every design has the form:

V = [v1, gv1, g
2v1, . . . , v8, gv8, g

2v8],

where

g =

(
1

R

)
, R =

(
−1

2
−
√
3
2√

3
2
−1

2

)
, vj =

(
bj
cj

)
, bj ∈ R, cj =

(
yj
zj

)
∈ R2.

The blocks of the Gramian have the (numerically observed) circulant form

[vk, gvk, g
2vk]

∗[vj, gvj, g
2vj] =

 〈vj, vk〉 〈gvj, vk〉 〈g2vj, vk〉
〈g2vj, vk〉 〈vj, vk〉 〈gvj, vk〉
〈gvj, vk〉 〈g2vj, vk〉 〈vj, vk〉

 .

In particular, since |bj|2 + ‖cj‖2 = 1, the diagonal blocks are given by(
1 aj aj
aj 1 aj
aj aj 1

)
, aj := 〈vj, gvj〉 = b2j + (1− b2j)〈

cj
‖cj‖

, R
cj
‖cj‖
〉 =

3

2
(b2j −

1

3
).

The definition f(V ) = 0 for being a design gives a polynomial of degree 16 in the 24
variables bj, cj. The condition |bj|2 + ‖cj‖2 = 1 allows this to be effectively reduced to
16 variables. We now indicate how the characterisation of a design as a cubature rule
allows us to obtain a system of lower degree polynomials.
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A unit-norm sequence of n vectors (vj) in Rd is a spherical (t, t)-design if and only
if it satisfies the cubature rule (see Theorem 6.7 [Wal18])∫

S
p dσ =

1

n

n∑
j=1

p(vj), ∀p ∈ Hom(2t), (5.7)

where σ is the normalised surface area measure on the unit sphere S in Rd. and Hom(2t)
are the homogeneous polynomials Rd → R of degree 2t. The integral of any monomial
xα = xα1

1 · · ·x
αd
d is zero, unless the power of every coordinate is even, in which case∫

S
x2α dσ(x) =

(1
2
)α

(d
2
)|α|

, (5.8)

with (a)α :=
∏

j aj(aj + 1) · · · (aj + αj − 1) the Pochammer symbol.
We now consider our design. The cubature rule (5.7) for Hom(8) restricted to the

sphere x2 + y2 + z2 = 1, implies that the monomials x2, x4, x6, x8 are integrated, i.e.,

1

8

∑
j

b2j =
1

3
,

1

8

∑
j

b4j =
1

5
,

1

8

∑
j

b6j =
1

7
,

1

8

∑
j

b8j =
1

9
,

which implies that

∑
j

aj =
3

2

(∑
j

b2j −
8

3

)
= 0,

∑
j

a2j =
9

4

(∑
j

b4j −
2

3

∑
j

b2j +
8

9

)
=

8

5
.

Since our design has the symmetry group G = {I, g, g2}, it is sufficient to check the
cubature rule holds for the polynomials Hom(8)G, which are invariant under this group,
i.e., the image of Hom(8) under the Reynolds operator RG given by

RG(f) :=
1

|G|
∑
g∈G

f g, f g := f(g·).

By computing the Molien series∑
g∈G

1

det(I − tg)
=
∞∑
j=0

dim(H(j)G)tj

= 1 + t+ 2t2 + 4t3 + 5t4 + 7t5 + 10t6 + 12t7 + 15t8 + 19t9 + · · · ,

we see that Hom(8)G has dimension 15 (we are only concerned with its restriction to the
sphere, which happens to have the same dimension). We have

Hom(2)G = span{x2, y2 + z2},

since x2 (by our choice of bj) and x2 + y2 + z2 (which is 1 on the sphere) are integrated
by the cubature rule, so is Hom(2)G, and hence all of Hom(2). We now consider

Hom(4)G = span{x4, (y2 + z2)2, x2(y2 + z2), xy(3z2 − y2), xz(3y2 − z2)}.
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On the sphere x2 + y2 + z2 = 1, the first three of the polynomials above can be written
as x4, (1− x2)2, x2(1− x2) and so are integrated by the cubature rule. To integrate the
fourth polynomial xy(3z2 − y2), which can be written on the sphere as

xy(3z2 − y2)|S = xy(3− 3x2 − 4y2),

we must have
1

8

∑
j

bjyj(3− 3b2j − 4y2j ) = 0.

The fifth polynomial on the sphere cannot be written as a polynomial in x, y only, and
so we get the condition

xz(3y2 − z2)|S = xz(3− 3x2 − 4z2) =⇒ 1

8

∑
j

bjzj(3− 3b2j − 4z2j ) = 0.

Continuing in this way, we obtain the following condition.

Theorem 5.1 Let

g =

(
1

R

)
, R =

(
−1

2
−
√
3
2√

3
2
−1

2

)
, vj =

(
bj
xj
yj

)
∈ R3, b2j + x2j + y2j = 1.

Then the orbit of the eight vectors {v1, . . . , v8} under the unitary action of the group
G = {I, g, g2} is a 24-vector (4, 4)-design for R3 if and only if

1

8

∑
j

b2j =
1

3
,

1

8

∑
j

b4j =
1

5
,

1

8

∑
j

b6j =
1

7
,

1

8

∑
j

b8j =
1

9
,

∑
j

b2k−1j yj(3− 3b2j − 4y2j ) =
∑
j

b2k−1j zj(3− 3b2j − 4z2j ) = 0, k = 1, 2, 3,

1

8

∑
j

b2jy
2
j (3− 3b2j − 4y2j )

2 =
8

315
,

∑
j

b2kj yjzj(3z
2
j − y2j )(3y2j − z2j ) = 0, k = 0, 1,

∑
j

(y4j − z4j )(y4j − 14y2j z
2
j + z4j ) = 0.

Proof: A basis for the Hom(8)G is given by the 15 polynomials

x8, x6(y2 + z2), x4(y2 + z2)2, x2(y2 + z2)3, (y2 + z2)4,

x5y(3z2 − y2), x3y(3z2 − y2)(y2 + z2), xy(3z2 − y2)(y2 + z2)2,

x5z(3y2 − z2), x3z(3y2 − z2)(y2 + z2), xz(3y2 − z2)(y2 + z2)2,

x2y2(3z2 − y2)2, x2yz(3z2 − y2)(3y2 − z2), yz(3z2 − y2)(3y2 − z2)(y2 + z2),

(y2 − z2)(y2 + z2)(y2 − 4yz + z2)(y2 + 4yz + z2) = (y4 − z4)(y4 − 14y2z2 + z4).

12



By using x2 + y2 + z2 = 1 on the sphere to eliminate variables, and taking appropriate
linear combinations to simplify, we obtain the desired equations, e.g., the polynomials
in the first row restricted to the sphere span the same subspace as 1, x2, x4, x6, x8, which
gives the condition

1

8

∑
j

b2kj =

∫
S
x2k dσ(x, y, z) =

1

2k + 1
, k = 0, 1, 2, 3, 4.

We omit the case k = 0, since it automatically holds.

This gives 19 equations (the 11 derived and b2j + y2j + z2j = 1) in the 24 variables
bj, yj, zj, 1 ≤ j ≤ 8. We were unable to solve these equations using numerical solvers,
however they are easily seen to hold for the numerical designs we obtained.

5.2 Spherical (t, t)-designs with some structure

Here is an example where designs with and without structure are commonly generated.

Example 5.1 The equal-norm 20-point (2, 2)-designs in R5 seem to split into two types:

� No apparent structure (repeated angles).

� Exactly 190 angles, each repeated 5 times.

Both appear to be continuous families. Further analysis of the numerical designs with
repeated angles shows each is a union of four sets of five vectors, which have just two
angles (each occurring five times) and projective symmetry group the dihedral group D5.

Here is an example of the special situation.

Example 5.2 The search for equal-norm 24-point (2, 2)-designs in R6 returns either

� A set of vectors which is not a design, but does have repeated angles. This might
indicate local minima which are not global minima.

� A design with repeated angles, specifically what appears to be 1
2

(48 times or 32
times) and 0 (12 times or 20 times).

We also note that there are no numerical equal-norm designs with n = 25, 26, and the
minimiser for 25 vectors appears to be a unique configuration with repeated angles.

Example 5.3 The unweighted 23-vector (3, 3)-designs in R4 seem to have some group
structure: 12 vectors with equal-norms, which have just three angles between them (ap-
pearing with multiplicities 30, 30, 6).

Example 5.4 The unweighted 41-vector (3, 3)-designs in R5 seem to have a unique
group structure. Two sets of 16 vectors with equal norms (the same in all examples), four
pairs with equal norms, and one vector with a unique norm (the same in all examples).
For those with largest norm, the (normalised) angles are 0 (48 times) or 1

2
(72 times)

(a MUB like configuration). The other 16 make angles 1
5

(80 times) and 3
5

(40 times).

13



Example 5.5 A number of spherical (t, t)-designs constructed in [MW19] as unions of
two orbits that give lower order designs appear (from our numerical search) to be optimal.
These include (3, 3)-designs of 63 vectors in R6 (orbits of size 27 and 36), 91 vectors in
R7 (orbits of size 28 and 63), and a (4, 4)-design of 16 vectors in R3 (orbits of size 6
and 10). There is also a (9, 9)-design of 360 vectors in R4 (orbits of size 60 and 300).
This is always detected in our numerical search, which is costly, and so it is assumed to
be unique and optimal.

Example 5.6 The equal-norm 24-vector (4, 4)-designs in R3 have 92 different angles,
each appearing three times. They either involve 3 or 6 vectors.

Example 5.7 There appears to be a unique unweighted 41-vector (7, 7)-design in R3.
This appears in roughly half the searches. It consists of 8 sets of 5 lines, each with
projective symmetry group the dihedral group of order 10, together with a single line.
The sets of 5 lines present as 2-angle frames, and can be viewed as nonunitary images
of the unique harmonic frame of 5 lines in R3 (the lifted five equally spaced lines in R2).

We say that subspaces with orthogonal projections Pj and Pk are isoclinic with
angle σ if (4.4) holds.

Example 5.8 The search for equal-norm (5, 5)-designs for R4 (see Figure 2) provided
two examples of the special situation: a unique putatively optimal design of 60 points,
and ones with 72 points. The 72-point designs appear to be part of an infinite family.
Each numerical design has projective symmetry group Z6, and consists of 12 orbits of size
6. These orbits consist of six equally spaced lines in a plane (two-dimensional subspace).
The 12 planes in R4 appear to have a unique geometric configuration: each plane is
orthogonal to one other, i.e., σ = 0, and makes the following angles with the other ten

σ2
1 =

5 +
√

5

10
≈ 0.72361 (5 times), σ2

2 =
5−
√

5

10
≈ 0.27640 (5 times).

Example 5.9 For large values of t, the jump in the generic case can be less pronounced,
e.g., for (10, 10)-designs R3. A heuristic explanation for this is that for small angles,
the terms |〈vj, vk〉|2t are close to numerical zero, e.g., for |〈vj, vk〉| ≤ 1

3
and t = 10, we

have
|〈vj, vk〉|2t ≤ (1

3
)20 ≈ 10−10.

Motivated by our calculations, we will say that an equal-norm spherical (t, t)-design
of n points for Rd is exceptional if there exists no (t, t)-design of n− 1 or n+ 1 points.
This is an easily checkable condition that can indicate the existence of interesting designs.

Example 5.10 Of the putatively optimal spherical (2, 2)-designs for Rd in Table 1, those
for d = 3, 4, 7 are exceptional. There are exceptional (3, 3)-designs for d = 4, 8. The
(5, 5)-designs for R4 of 60 and 72 points (Example 5.8) are exceptional.

14



6 Designs from number theory and cubature

We now consider some designs first obtained as algebraic formulas, and a completely
new one.

6.1 The Reznick 11-point spherical (3, 3)-design for R3

The first putatively optimal design on the list of [HW21] for which an explicit design
was not known is a weighted spherical (3, 3)-design of 11 points for R3, which was said
to have “no structure”. In [BGM+22] it is referred to as the Reznick design, due to the
formula (9.36) of [Rez92]

540(x2 + y2 + z2)3 = 378x6 + 378y6 + 280z6 + (
√

3x+ 2z)6 + (
√

3x− 2z)6

+ (
√

3y + 2z)6 + (
√

3y − 2z)6 + (
√

3x+
√

3y + z)6

+ (
√

3x−
√

3y + z)6 + (
√

3x+
√

3y − z)6 + (
√

3x−
√

3y − z)6.

(6.9)

Let us elaborate. The definition f(V ) = 0 for being a spherical (t, t)-design is equivalent
to the “Bessel identity” (see Theorem 6.7 [Wal18])

ct(Rd)‖x‖2t =
1∑n

`=1 ‖v`‖2t
n∑
j=1

(〈x, vj〉)2t, ∀x ∈ Rd, (6.10)

which allows the d-ary 2t-ic form ‖x‖2t = (x21 + · · · + x2d)
t to be written as a sum of n

2t-powers. The converse is also true, that is if there is a constant C with

C‖x‖2t =
n∑
j=1

(〈x, vj〉)2t, ∀x ∈ Rd, (6.11)

then integrating over the unit sphere in Rd using (5.8) for α = (t, 0, . . . , 0) gives

C =
n∑
j=1

‖vj‖2t
∫
S
(〈x, vj
‖vj‖

〉)2t dσ(x) =
n∑
j=1

‖vj‖2t
∫
S
x2t1 dσ(x) = ct(Rd)

n∑
j=1

‖vj‖2t,

so that (vj) is a spherical (t, t)-design. Thus (6.9) gives an 11-point spherical (3, 3)-design

V =

 6
√

378 0 0
√

3
√

3 0 0
√

3
√

3
√

3
√

3
0 6

√
378 0 0 0

√
3
√

3
√

3 −
√

3
√

3 −
√

3
0 0 6

√
280 2 −2 2 −2 1 1 −1 −1

 .

Moreover, Theorem 9.28 of [Rez92] implies that this design is optimal. We make some
observations/comments based on our calculations:

� The algebraic variety of (optimal) 11-point weighted spherical (3, 3)-designs for R3

appears to have infinitely many points.

� A generic numerical design on it has no symmetry properties, with none of the
norms ‖vj‖ repeated.

� The Reznick design has projective symmetry group of order 2 (exchange the x and
y coordinates), and three different norms taken by 1, 2, 8 of the vectors.
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6.2 A new 11-point (3, 3)-design for R3

The search for numerical 11-point (3, 3)-designs for R3, with the condition that two of
the vectors have equal norms, yielded the Reznick design (which appears to be unique)
and also, frequently, a design with two sets of five vectors with equal norm. This new
design has symmetry group the dihedral group D5.

The projection of each set of five vectors onto the orthogonal complement of the
other single vector gave sets of five equally spaced lines in R2, exactly the same up to a
scalar multiple. Thus we came the conjectured analytic form of such a design:

V =

(
a1E a2E 0
b1e −b2e −b3

)
, E = [

(
cos(2π

5
k)

sin(2π
5
k)

)
]0≤k≤4, e = [1]0≤k≤4, (6.12)

where, numerically,

a1 ≈ 0.972824, b1 ≈ 0.172322, a2 ≈ 0.736481, b2 ≈ 0.692954, b3 ≈ 1.003311,

with the normalisation
5(a21 + b21 + a22 + b22) + b23 = 11. (6.13)

From this assumed structural form, by substituting into the sum of squares formula
(6.11), we deduce the necessary and sufficient conditions for such a design

5b61 + 5b62 + b63 =
25

16
(a61 + a62), a61 + a62 = 6(a41b

2
1 + a42b

2
2) = 8(a21b

4
1 + a22b

4
2).

A fourth more complicated equation is given by the variational condition f3,3,11(V ) = 0.
In the computer algebra package Maple, we attempted to solve these four equations for
four of the variables a1, a2, b1, b2, b3, with the other as a parameter. This yields some
solutions with complex entries, some which are real but not numerically correct, and
some which are numerically correct – often with very complicated formulas. With b2 as
the free parameter, we eventually came to

a1
b2

= (3051− 297
√

105)
1
6 ,

a2
b2

=
3
√

5−
√

21

2
=

(
32373− 3159

√
105

2

) 1
6

,

b1
b2

=

(
135311− 13205

√
105

64

) 1
6

,
b3
b2

=

(
1246875− 121625

√
105

64

) 1
6

.

On putting these ratios with b2 (presented as sixth roots) into Maple, the variational
inequality and the sum of squares formula are seen to hold, with the sums of the 6-th
powers of the 11 inner products with (x, y, z) giving

675

32

(
1425− 139

√
105
)
b62 (x2 + y2 + z2)3.

To obtain a neat formula for this design, with (1425− 139
√

105)b62 rational, we choose

b2 =
(
1425 + 139

√
105
) 1

6
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to get

a1 =
(
12960 + 864

√
105
) 1

6 , a2 =
(
12960− 864

√
105
) 1

6 ,

b1 =
(
1425− 139

√
105
) 1

6 , b2 =
(
1425 + 139

√
105
) 1

6 , b3 = 26250
1
6 .

This gives an 11-point (3, 3)-design for R3 of the form (6.12), which does not satisfy the
normalisation (6.13). The corresponding sum of squares can be written

40500(x2 + y2 + z2)3 =
1∑
j=0

4∑
k=0

(
αj(ckx+ sky) + βjz

)6
+ 26250z6, (6.14)

where ck = cos(2π
5
k), sk = sin(2π

5
k), and

αj =
(
12960 + (−1)j864

√
105
) 1

6 , βj = (−1)j
(
1425− (−1)j139

√
105
) 1

6 .

This design and the Reznick design appear to be singular points on the algebraic
variety of such designs. It would interesting to study this variety further, e.g., finding
nice points on it (those giving designs with large symmetry groups), rational points, or
explicitly giving an infinite family of these designs.

6.3 The Reznick/Stroud spherical (2, 2)-designs for R4,R5,R6

The equation (9.27)(i) of [Rez92] is

192(x21 + x22 + x23 + x24)
2 = 6(x1 + x2 + x3 + x4)

4 + Σ4(3x1 − x2 − x3 − x4)4

+ Σ6((1 +
√

2)x1 + (1 +
√

2)x2 + (1−
√

2)x3 + (1−
√

2)x4)
4,

where Σ4(3x1−x2−x3−x4)4 stands for the 4 terms obtained by making a permutation
of the variables x1, x2, x3, x4 in (3x1 − x2 − x3 − x4), etc. Therefore

V =


4
√

6 3 −1 −1 −1 a a a b b b
4
√

6 −1 3 −1 −1 a b b a a b
4
√

6 −1 −1 3 −1 b a b a b a
4
√

6 −1 −1 −1 3 b b a b a a

 , a = 1 +
√

2, b = 1−
√

2,

is an 11-point spherical (2, 2)-design for R4. This is the first in a family of three optimal
spherical (2, 2)-designs for Rd, d = 4, 5, 6 that can be obtained from Stroud’s [Str71]
antipodal cubature rules of degree 5 (5-designs) for the unit sphere, given by

C(x21 + · · ·+ x2d)
2 = a1(Σxj)

4 + Σd(a2Σxj + a3x1)
4 + Σ(d2)(a4Σxj + a5(x1 + x2))

4,

g = (8− d)
1
4 , a1 = 8(g4 − 1)(g2 ±

√
2)4, a2 = 2g2 ± 2

√
2,

a3 = ∓2
√

2g4 − 8g2, a4 = 2g, a5 = ∓2
√

2g3 − 8g, C = 3a45.

The corresponding vectors are

V = [a
1
4
1 u, {a2u+ a3ej}1≤j≤d, {a4u+ a5(ej + ek)}1≤j<k≤d], u = e1 + · · ·+ ed.

Our numerical search shows that for d = 4 there is an infinite family of designs, and
for d = 5, 6 there is a unique design. The unique designs can be obtained as a union of
two orbits (sizes 6, 10 and 6, 16 respectively) [MW19].
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6.4 Kempner’s 24-point spherical (3, 3)-design for R4

With the ± independent of each other and the previous notation, Kempner 1912 gives

120(x21 + x22 + x23 + x24)
3 = Σ4(2x1)

6 + 8Σ12(x1 ± x2)6 + Σ8(x1 ± x2 ± x3 ± x4)6. (6.15)

The vectors in the corresponding design have equal norms.

Example 6.1 Our search for equal-norm 24-point spherical (3, 3)-designs for R4 gave
an infinite family, with repeated angles 0 (60 times), 1√

2
(32 times) and 21 other angles

(each 4 times). The exact example given by (6.15) has just three angles 0 (108 times) 1√
2

(72 times) and 1
2

(96 times), and is the orbit of three vectors under the natural action
of S4. This design can also be obtained as the orbit of two vectors under the action of
the real reflection group W (F4) (Shephard-Todd number 28) [MW19].

Interestingly, our search for equal-norm 23-point spherical (3, 3)-designs for R4 seemed
to give a unique configuration, with repeated angles.

6.5 Kotelina and Pevnyi’s 120-point (3, 3)-design for R8

A similar formula to (6.15) is given in [KP11], which leads to what appears to be the
unique optimal 120-vector (3, 3)-design for R8.

Example 6.2 Our numerical search for equal-norm spherical (3, 3)-designs for R8 gave
an optimal design of 120 points, with repeated angles 0 (3780 times) and 1

2
(3360 times).

This is easily recognised to be the design of [KP11]. This is an example of the special
situation, see Figure 4. The next value of n for which there is a design is n = 250.

Intuitively, one would expect that for fixed t, the numbers ne = ne(d) and nw = nw(d)
of vectors in optimal equal-norm and weighted (t, t)-designs in Rd should be increasing
functions of d. The above example for t = 3 is so exceptional that it provides a counter
example (see Table 1), i.e.,

ne(7) = 158, ne(8) = 120, ne(9) = 380.

Nevertheless, we expect d 7→ ne(d) and d 7→ nw(d) to be asymptotically increasing.

7 Conclusion

We used the manopt optimisation software to considerably enlarge the list of putatively
optimal spherical (t, t)-designs (see Table 1).

The generic situation seems to be

� The algebraic variety of optimal equal-norm and weighted spherical (t, t)-designs
for Rd has positive dimension. A typical (numerical) element in the variety has
little or no structure/symmetry, though there may be such points on the variety.
It is characterised by a significant “jump” down in the error ft,d,n to numerical
zero from configurations with fewer points.
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Figure 4: Special situation: the graphs n 7→ ft,d,n and n 7→ log10 ft,d,,n for t = 3, d = 8.

A highlight is the first full geometric description of the algebraic variety of optimal
designs in the generic case of positive dimension (Theorem 4.1). The new 11-point
(3, 3)-design for R3 of §6.2 is also of particular interest.

There are also special situations (previously the only explicit examples known) where

� The algebraic variety consists of single point, or a finite set of points. These designs
have a high degree of structure/symmetry, which may lead to explicit constructions
(as group orbits).

Some other observations about our methods that may be of future use are:

� The special situation is not always detected by a single calculation (though it
might be indicated by the graph of the minimum values obtained), and so could
be missed by methods which do only one calculation for a given value of n.

� In the generic situation, the jump value of n is not always detected by one
calculation, e.g., for unweighted (t, d, n) = (4, 5, 101), (6, 4, 116) and weighted
(2, 9, 45), (6, 4, 154), (8, 3, 78). Because of this, we suggest constructing several nu-
merical designs of n− 1 points, where n is the presumed jump (optimal value).

� Adaptive methods could be used to find larger numerical designs, e.g., instead
of calculating ft,d,n for consecutive values of n until numerical zero is found, a
bisection method could be used to find the “jump”, or an interval in which it lies.

� The methods outlined apply to a wide class of configurations, and could for example
be applied to the Game of Sloanes, for which the optimal solutions are strictly
speaking not an algebraic variety.

� We came to no firm conclusions about the existence of local minimisers which are
not optimal designs (for t > 1), when an optimal design exists.
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