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ABSTRACT
We give some new explicit examples of putatively optimal projective spherical designs, that is, ones for which there is numerical

evidence that they are of minimal size. These form continuous families, and so have little apparent symmetry in general, which

requires the introduction of new techniques for their construction. New examples of interest include an 11‐point spherical
(3, 3)‐design for 3 , and a 12‐point spherical (2, 2)‐design for 4 given by four Mercedes‐Benz frames that lie on equi‐isoclinic
planes. The latter example shows that the set of optimal spherical designs can be uncountable. We also give results of an

extensive numerical study to determine the nature of the real algebraic variety of optimal projective real spherical designs, and

in particular when it is a single point (a unique design) or corresponds to an infinite family of designs.

AMS Classification: primary 05B30, 65D30, 65K10, 49Q12, 65H14, secondary 14Q10, 14Q65, 42C15, 94B25

1 | Introduction

Due to a wide range of applications, there is a large body of
work on the general problem of constructing points (or lines) on
a sphere that are optimally separated in some way. These
configurations can be numerical or explicit, with the general
hope being that numerical configurations of interest approxi-
mate explicit constructions that might be found. Some examples
include Hardin and Sloane's list of numerical spherical
t‐designs [1], the numerical constructions of Weyl–Heisenberg
SICs (d2 equiangular lines in d ) [2] and exact constructions
obtained from them [3], the “Game of Sloanes” optimal pack-
ings in complex projective space [4], and minimisers of the
p‐frame energy on the sphere [5].

Here we consider numerical and explicit constructions of a puta-
tively optimal set of points (or lines) of what are variously called
spherical t t( , )‐designs for d [6], spherical half‐designs [7] and
projective t‐designs [8]. These are given by a sequence of vectors
v v, …, n

d
1 ∈ (not all zero) which give equality in the inequality

   


 



v v

t

d d d t
v,

1 3 5 (2 − 1)

( + 2) ( + 2( − 1))
,

j

n

k

n

j k
t

n
t

=1 =1

2

ℓ=1

ℓ
2

2

≥ ⋅ ⋅ ⋯

⋯

(1)

where t = 1, 2, …. The case where all the vectors have unit
length is variously referred to as an equal‐norm/unweighted/
classical design, and in general as a weighted design. We
observe (see [9], [6]) that

• These are projective objects (lines), which are counted up to
projective unitary equivalence, that is, for U unitary and
cj unit scalars, we have that v( )j is a spherical t t( , )‐design if
and only if c Uv( )j j is, and these are considered to be
equivalent.

• Spherical t t( , )‐designs of n vectors in d exist for n suffi-
ciently large, that is, the algebraic variety given by Equation
(1) is nonempty for n sufficiently large. Designs for which n
is minimal are of interest, and are said to be optimal.
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• The existence of (optimal) spherical designs can be inves-
tigated numerically.

If v( )j gives equality in Equation (1) up to machine precision,
then we will call it a numerical design. We say a numerical or
explicit design is putatively optimal if a numerical search
(which finds it) suggests that there is no design with fewer
points.

The examples of putatively optimal spherical t t( , )‐designs for
d found so far (see Table 6.1 of [10]) come from cases where

the algebraic variety of spherical t t( , )‐designs (up to equiva-
lence) appears to consist of a finite number of points. This can
be detected by considering the m‐products

    δ v v v v v v v v j j n( , …, ) , , , , 1 , …, ,j j j j j j j j m1m m1 1 2 2 3 1
≤ ≤≔ ⋯

which determine these vectors up to projective unitary
equivalence [11]. From these, it is then possible to conjecture
what the symmetry group of the design is [12], and ultimately to
construct an explicit (putatively optimal) spherical t t( , )‐design
as the orbit of a few vectors under the unitary action of the
symmetry group (cf. [13], [3]).

In this paper, we consider, for the first time, the case when the
algebraic variety of optimal spherical t t( , )‐designs appears to be
uncountable (of positive dimension). In the examples that we
consider, a generic numerical putatively optimal spherical t t( , )‐
design has a trivial symmetry group. However, there is often some
structure, referred to as “repeated angles,” that is some 2‐products

 δ v v v v j k( , ) = , , ,j k j k
2 ≠

are repeated. This is just enough structure to tease out an un-
countably infinite family of putatively optimal spherical t t( , )‐
designs, in some examples. In particular, the example of Theo-
rem 4.1 does give a family of optimal spherical (2, 2)‐designs for 4 .

2 | Numerics

For V v v= [ , …, ]n d n
1

×∈ , let f V f V( ) = ( ) 0t d n, , ≥ be given by
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We consider the real algebraic variety of spherical t t( , )‐designs
given by f V( ) = 0, subject to the (algebraic) constraints

   
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n
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⋯

This has been studied in the case t = 1, where it gives the tight
frames [14], [10]. In particular, local minimisers of f for t = 1

are global minimisers. It is not known if this is true for t > 1,
and obviously this has an impact on the numerical search for
designs, for example, a local minimiser which was not a global
minimiser might be more easily found, leading to a false con-
clusion that there is no spherical t t( , )‐design.

We are primarily interested in the minimal n for which the
variety is nonempty (denoted by ne and nw, respectively), that is,
the optimal spherical t t( , )‐designs. We have
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(see [10] for details). For d fixed, ne and nw are increasing
functions of t .

A numerical search was done in [6] using an iterative method
that moves in the direction of f V− ( )∇ . The results there, and in
Table 1 of [5], have been duplicated and extended by using the
manopt software [15] for optimisation on manifolds and
matrices (implemented in Matlab). The putatively optimal
numerical designs that we found are summarised in Table 1,
and can be downloaded from [16] and viewed at

www.math.auckland.ac.nz/~waldron/
SphericalDesigns

Here are some details about our manopt calculations:

• The cost function f of Equation (2) was minimised using
the trustregions solver.

• This requires the manifold over which the minimisation is
done to be specified. We used obliquefactory for real
equal‐norm designs and euclideanfactory for real
weighted designs, and obliquecomplexfactory
and euclideancomplexfactory for complex
designs.

• Since euclideanfactory(d,n) is the manifold d n× ,
minimising the homogeneous polynomial f tended to give
minima of small norm. To avoid this, we added the term
 v( − 1)1

2 2 to the cost function, so that the weighted designs
V v v= [ , …, ]n1 obtained have the first vector v1 of unit norm.
For the purpose of calculating errors, V was normalised so
that    v v n+ + =n1

2 2⋯ (as for unit‐norm designs).

• The solver requires the gradient and Hessian of f as
parameters. The gradient function (page 140, [10]) was gi-
ven explicitly, and the Hessian was calculated symbolically
from f by trustregion.

• We used the default solver options, except for the
delta_bar parameter, where setting pro-
blem.delta_bar to problem.M.typicaldist
()/10, rather than the default pro-
blem.M.typicaldist() gave better results.
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TABLE 1 | The minimum numbers nw and ne of vectors in a weighted and in a equal‐norm spherical t t( , )‐design for d (spherical half‐design of

order t2 ) as calculated numerically.

t d nw ne Remarks on nw Remarks on ne

2 2 3 3 Mercedes‐Benz frame See Example 3.1

2 3 6 6 Equiangular lines in 3
2 4 11 12 §6.3[19], [20], infinite family Infinite family (Theorem 4.1)

2 5 16 20 §6.3 unique, group structure [21] Infinite family (Example 5.1)

2 6 22 24 §6.3 unique, group structure [21] Repeated angles (Example 5.2)

2 7 28 28 Equiangular lines in 7
2 8 45 51 Infinite family, no structure Infinite family, no structure

2 9 55 67 Infinite family, no structure Infinite family, no structure

2 10 76 85 Infinite family, no structure Infinite family, no structure

2 11 96 106 Infinite family, no structure Infinite family, no structure

2 12 120 131 Infinite family, no structure Infinite family, no structure

2 13 146 159 Infinite family, no structure Infinite family, no structure

2 14 177 190 Infinite family, no structure Infinite family, no structure

2 15 212 226 Infinite family, no structure

2 16 250 267 Infinite family, no structure

2 17 294 312 Infinite family, no structure

2 18 342 362

3 2 4 4 Two real mutually unbiased bases See Example 3.1

3 3 11 16 §6.1 Reznick, no structure Infinite family, no structure

3 4 23 24 Group structure (Example 5.3) Infinite family (Example 6.1)

3 5 41 55 Group structure (Example 5.4) Infinite family, no structure

3 6 63 96 Unique, two orbits (Example 5.5) Infinite family, no structure

3 7 91 158 Unique, two orbits (Example 5.5) Infinite family, no structure

3 8 120 120 Unique (Example 6.2) See Figure 4

3 9 338 380 Infinite family, no structure Infinite family, no structure

4 2 5 5 Equally spaced lines See Example 3.1

4 3 16 24 Unique, two orbits (Example 5.5) Repeated angles (Example 5.6)

4 4 43 57 Infinite family, no structure Infinite family, no structure

4 5 101 126 Infinite family, no structure Infinite family, no structure

4 6 217 261

4 7 433 504

5 2 6 6 Equally spaced lines See Example 3.1

5 3 24 35 Infinite family, no structure Infinite family, no structure

5 4 60 60 Unique, one orbit [6] See Figure 2 and Example 5.8

5 5 203 253

5 6 503 604 Infinite family, no structure

6 3 32 47 Infinite family, no structure Infinite family, no structure

6 4 116 154 Infinite family, no structure Infinite family, no structure

6 5 368 458

7 3 41 61 Unique (Example 5.7) Infinite family, no structure

7 4 173 229 Infinite family, no structure

8 3 54 78 Infinite family, some structure Infinite family, no structure

(Continues)
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• We considered the absolute error in V being a design,
that is,
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≥

≔
(3)

where    V V v v ntrace( * ) = + + =n1
2 2⋯ .

See [17] for further details.

We now discuss the heuristics of determining when f V( )t d n, , is
(numerically) zero.

3 | The Overall Picture

We use f V( )t d n, , for a numerically computed V v v= [ , …, ]n1 as a
proxy for

α f Vmin ( ),t d n t d n, , , ,
V d n

V V n

×

trace( * )=


≔
∈

where the condition  v = 1j is added for unit‐norm designs. It
is known that

• For equal‐norm designs n αt d n, ,↦ is zero for some (large) n
(see [18]).

• For unweighted designs n αt d n, ,↦ is decreasing, becoming
zero for some (large) n.

Moreover

• For large n (relative to t and d), a random set of n points is
close to being a spherical t t( , )‐design, and hence has a
small error f V( )t d n, , .

A priori, these properties suggest that it may be difficult to identify
t t( , )‐designs, in the sense that the error n f V( )t d n, ,↦ slowly ap-
proaches numerical zero. However, extensive calculations suggest
that in the “generic” situation (see Figure 1) this is not the case:

• Generic situation: At the point where an optimal t t( , )‐
design is obtained the error “jumps down” to numerical zero.

There are also “special” situations (see Figures 2 and 4), where
(by reasons of symmetry)

• Special situation: An equal‐norm t t( , )‐design with an
unexpectedly small number of vectors exists. This design
may or may not be obtained by calculating a single
numerical design. Here the error jumps to zero, but then
returns to roughly the generic situation (nonzero with an
eventual jump to numerical zero).

The error graphs for unweighted t t( , )‐designs share this “jump”
phenomenon (see Figure 3), but are strictly decreasing (becoming
constant once zero is obtained). This is because a zero weight

TABLE 1 | (Continued)

t d nw ne Remarks on nw Remarks on ne

8 4 249

9 3 70 97 Infinite family, no structure

9 4 360 Unique, two orbits (Example 5.5)

10 3 89 118 Infinite family, no structure See Example 5.9

Note: The (t, t)‐design of (t+ 1) vectors in R2 was obtained for all t (not all cases are listed).

FIGURE 1 | The graphs of n ft d n, ,↦ and n flog t d n10 , ,,↦ for t d= 2, = 6, that is, the error in numerical approximations to a unit‐norm spherical

(2, 2)‐design of n vectors in 6 .
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corresponds to a design with one fewer point (and so increasing
the number of points enlarges the possible set of designs).

The cost of finding a numerical approximation to a spherical
t t( , )‐design in d grows with t and d. Therefore (like in pre-
vious studies) we could only calculate numerical designs up to a
certain point. The previous calculations of [5] and [6] were
replicated and extended. These are summarised in Table 1, with
comments, for example,

• structure means some angles are repeated for equal‐norm
designs (repeated angles), and some norms are repeated for
unweighted designs.

• infinite family means a different numerical design is
obtained each time, and we infer that the algebraic variety
of optimal designs has positive dimension.

• group structure means that a finite number of numerical
designs are obtained, which are a union of orbits of some
(symmetry) group.

A set of equal‐norm vectors for which the angles  v v j k, ,j k ≠ ,
are all equal is said to be equiangular.

The following example shows that minimising ft d n, , over a
larger number of points than for an optimal design can give a
unique configuration.

Example 3.1. Minimisation of ft d n, , for t = 2 and n equal‐
norm vectors in 2 gives

• n = 3: the unique optimal configuration of three equiangular
lines in 2 , which is known as the Mercedes‐Benz frame.

• n = 4: a unique configuration of two MUBs (mutually
unbiased bases), equivalently, four equally spaced lines.

• n = 5: a unique configuration of five equally spaced lines.

• n = 6: configurations with six angles of 1

2
and three other

angles (each appearing 3 times), which are seen to be the
union of two Mercedes‐Benz frames.

FIGURE 2 | The graphs of n ft d n, ,↦ and n flog t d n10 , ,,↦ for t d= 5, = 4, that is, the error in numerical approximations to a unit‐norm spherical

(5, 5)‐design of n vectors in 4 .

FIGURE 3 | The graphs n ft d n, ,↦ and n flog t d n10 , ,,↦ of the error in approximations to weighted designs with t = 6 and d = 5, that is, (6, 6)‐
designs of n vectors in 5 .
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The set of t + 1 equally spaced lines in 2 is a known optimal
spherical t t( , )‐design.

We now describe some specific t t( , )‐designs that we obtained
during our calculations.

4 | A Family of 12‐Point Spherical (2, 2)‐Designs
for ℝ4

Putatively optimal unit‐norm 12‐point spherical (2, 2)‐designs
for 4 are easily found. These numerical designs appear to have
trivial projective symmetry group. However, they all have the
feature:

• Each vector/line makes an angle of 1

2
with two others,

that is, each row and column of the Gramian has two
entries of modulus 1

2
(up to machine precision). We

now outline how we went from this observation, to an
infinite family of explicit putatively optimal designs
(Theorem 4.1).

• The vector and the two making an angle 1

2
with it were seen

(numerically) to give three equiangular lines.

• These four sets of three equiangular lines, were seen to be
Mercedes‐Benz frames, that is, each lies in a 2‐dimensional
subspace.

• The four associated 2‐dimensional subspaces are equi‐
isoclinic planes in 4 .

Let V V, …,1 4
4×2∈ have orthonormal columns. Then

P V V *j j j≔ is the orthogonal projection onto the 2‐dimensional
subspace of 4 spanned by the columns of Vj. These four sub-
spaces (planes) are said to be equi‐isoclinic if

P P P σ P j k σ= , , for some .j k j j
2 ≠ (4)

There is a unique such configuration [22], [23] (up to a unitary
map) given by












V V V V[ , , , ] =

1

6

6 0 2 0 2 0 2 0

0 6 0 2 0 2 0 2

0 0 −2 0 1 − 3 1 3

0 0 0 −2 3 1 − 3 1

.1 2 3 4

(5)

A Mercedes‐Benz frame is a set of three equiangular vectors/
lines in a 2‐dimensional subspace.

Theorem 4.1. Let v( )j consist of four Mercedes‐Benz frames
that lie in four equi‐isoclinic planes in 4 . Then v( )j is a 12‐vector
spherical (2, 2)‐design for 4 .

Proof. LetMj
2×3∈ give a Mercedes‐Benz frame (in 2 ), that

is, have the form
































M u Ru R u R

π π

π π

u
θ

θ

= [ , , ], =

cos
2

3
−sin

2

3

sin
2

3
cos

2

3

=

−
1

2
−

3

2

3

2
−

1

2

, =
cos

sin
,

j j j j

j
j

j

2

and Vj 4×2∈ be given by Equation (5). Then all such v( )j are
given up to projective unitary equivalence by
V V M V M= [ , …, ]1 1 4 4 . The variational condition to be such a
design is

   


 



v v v, =

1 3

4 6
=

1

8
12 = 18,

j k

j k

=1

12

=1

12
4

ℓ=1

12

ℓ
4

2

2⋅

⋅
(6)

which we now verify by considering the 16 blocks of the Gra-
mian V V V M V M* = [( )* ]j j k k .

The four diagonal blocks ( )V M V M M V V M M M( )* = * * = *j j j j j j j j j j

are the Gramian of a Mercedes‐Benz frame, and so each
contributes 3 1 + 6 ( ) =

1

2
4 27

8
⋅ ⋅ to the left‐hand side of the sum

(6). The off‐diagonal blocks are all circulant (by a direct
calculation)









V M V M

a b c
c a b
b c a

a b c( )* = , + + =
1

8
.j j k k

4 4 4

Thus Equation (6) holds as 4 + 12 = 18
27

8

3

8
⋅ ⋅ . □

Corollary 4.1. The minimal number of vectors in an equal‐
norm spherical (2, 2)‐design for 4 is n = 12e , and therefore the
corresponding real algebraic variety of such optimal designs is
uncountable (of positive dimension).

Proof. It follows from [20] (Proposition 9.26, with n = 4

giving w h( ) = 114,4 ) that the minimal number of vectors in a
weighted spherical (2, 2)‐design is n = 11w (the explicit
construction is discussed in Section 6.3). Therefore, the
minimal number of vectors in an equal‐norm design satisfies
n n = 11e w≥ . On the other hand, [24] has used linear
programming bounds to prove that n 11e ≠ (Theorem 5.3,
with n = 4), so that n 12e ≥ . The construction of Theorem 4.1,
shows that n 12e ≤ , and so n = 12e , with the given designs
contained within the real algebraic variety of optimal (12‐point
equal‐norm) spherical (2, 2)‐designs for 4 . □

Here are some further observations on this example:

• Our calculations suggest this gives the entire variety of
optimal designs.

• A simple calculation shows that  v v,j k can take any value
in the interval [0, ]

1

3
.

6 of 13 Journal of Combinatorial Designs, 2025
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• The optimal designs V V= θ θ θ θ, , ,1 2 3 4
described in the proof,

up to unitary unitary equivalence, are a continuous family
(depending on three real parameters).

• A generic design has no projective symmetries.

• There are designs with projective symmetries. In particular,
V0, , ,π π π

2 2 2
consists of three real MUBs (mutually unbiased

orthonormal bases) for 4 , that is, orthonormal bases for
which vectors from different bases make an angle
 v v, =j k

1

2
, and has a projective symmetry group of order

576. These have the nice presentation












B B B[ , , ] =

1

2

1 1 0 0 1 1 0 0 1 1 0 0
1 −1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 −1 0 0 0 0 1 −1
0 0 1 −1 0 0 1 −1 1 −1 0 0

1 2 3

where Equation (6) holds as 12 1 + (12 8) ( ) +
1

2
4⋅ ⋅ ⋅

(12 3) 0 = 184⋅ ⋅ . This design can also be constructed as a
union of one or two orbits of the Shephard‐Todd group
G (2, 1, 4) (see [21]), the generating vectors being (1, 1, 0, 0)

and (1, 0, 0, 0), (1, 1, 1, 1)
1

2
.

5 | Selected Calculations

5.1 | A Family of 24‐Point Spherical (4, 4)‐Designs
for ℝ3

A set of three equiangular vectors v( )j is said to be isogonal if
they span a 3‐dimensional subspace, that is, by appropriately
multiplying the vectors by ±1 their Gramian has the form









a a
a a
a a

a
1

1
1

, −
1

2
< < 1.

The limiting case a = −
1

2
gives a Mercedes‐Benz frame and

a = 1 gives three equal lines. These can be viewed as a lift of a
Mercedes‐Benz frame to three dimensions [10].

Putatively optimal 24‐point spherical (4, 4)‐designs for 3 are
readily calculated, and all appear to have the following structure:

• Each is a union of eight sets of three isogonal lines.

• Each set of isogonal lines is the lift of a Mercedes‐Benz
frame in a fixed 2‐dimensional subspace.

• This suggests an order three rotational symmetry.

We speculate that (up to projective unitary equivalence) every
design has the form:

V v gv g v v gv g v= [ , , , …, , , ],1 1
2

1 8 8
2

8

where



























( )g

R
R v

b

c
b c

y

z
=

1
, =

−
1

2
−

3

2

3

2
−

1

2

, = , , = .j
j

j
j j

j

j

2 ∈ ∈

The blocks of the Gramian have the (numerically observed)
circulant form







     
     
     






v gv g v v gv g v

v v gv v g v v

g v v v v gv v

gv v g v v v v

[ , , ]*[ , , ] =

, , ,

, , ,

, , ,

.k k k j j j

j k j k j k

j k j k j k

j k j k j k

2 2

2

2

2

In particular, since    b c+ = 1j j
2 2 , the diagonal blocks are

given by












       



 




( )
a a

a a

a a

a v gv b b
c

c
R

c

c

b

1

1

1

, , = + 1 − ,

=
3

2
−

1

3
.

j j

j j

j j

j j j j j
j

j

j

j

j

2 2

2

≔

The definition f V( ) = 0 for being a design gives a polynomial
of degree 16 in the 24 variables b c,j j. The condition
   b c+ = 1j j

2 2 allows this to be effectively reduced to 16
variables. We now indicate how the characterisation of a design
as a cubature rule allows us to obtain a system of lower degree
polynomials.

A unit‐norm sequence of n vectors v( )j in d is a spherical
t t( , )‐design if and only if it satisfies the cubature rule
(see Theorem 6.7 [10])

 p dσ
n

p v p t=
1

( ), Hom(2 ),
j

n

j

=1
∀ ∈ (7)

where σ is the normalised surface area measure on the unit
sphere  in d . and tHom(2 ) are the homogeneous polynomials
d → of degree t2 . The integral of any monomial

x x x=α α
d
α

1
d1⋯ is zero, unless the power of every coordinate is

even, in which case


 

x dσ x( ) =
( )

( )
,α

α

d
α

2

1

2

2


(8)

with a a a a α( ) ( + 1) ( + − 1)α j j j j j≔ ⋯ the Pochammer
symbol.

We now consider our design. The cubature rule (7) for Hom(8)

restricted to the sphere x y z+ + = 12 2 2 , implies that the
monomials x x x x, , ,2 4 6 8 are integrated, that is,

   b b b b
1

8
=

1

3
,

1

8
=

1

5
,

1

8
=

1

7
,

1

8
=

1

9
,

j j j j j j j j
2 4 6 8

which implies that

    

 


 


 


a b a b b=

3

2
−

8

3
= 0, =

9

4
−

2

3
+

8

9

=
8

5
.

j j j j j j j j j j
2 2 4 2

7 of 13
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Since our design has the symmetry group G I g g= { , , }2 , it is
sufficient to check the cubature rule holds for the polynomials
Hom(8)G, which are invariant under this group, that is, the
image of Hom(8) under the Reynolds operator RG given by

 R f
G

f f f g( )
1

, ( ).G g G
g g

≔ ≔ ⋅

By computing the Molien series

 
I tg

j t

t t t t t t

t t t

1

det( − )
= dim(Hom( ) )

= 1 + + 2 + 4 + 5 + 7 + 10

+ 12 + 15 + 19 + ,

g G j

G j

=0

2 3 4 5 6

7 8 9 ⋯

∈

∞

we see that Hom(8)G has dimension 15 (we are only concerned
with its restriction to the sphere, which happens to have the
same dimension). We have

x y zHom(2) = spam{ , + },G 2 2 2

since x2 (by our choice of bj) and x y z+ +2 2 2 (which is 1 on
the sphere) are integrated by the cubature rule, so is Hom(2)G,
and hence all of Hom(2). We now consider

x y z x y z xy

z y xz y z

Hom(4) = spam{ , ( + ) , ( + ),

(3 − ), (3 − )}.

G 4 2 2 2 2 2 2

2 2 2 2

On the sphere x y z+ + = 12 2 2 , the first three of the polyno-
mials above can be written as x x x x, (1 − ) , (1 − )4 2 2 2 2 and so
are integrated by the cubature rule. To integrate the fourth
polynomial xy z y(3 − )2 2 , which can be written on the sphere as

xy z y xy x y(3 − ) = (3 − 3 − 4 ),2 2 2 2

we must have

 ( )b y b y
1

8
3 − 3 − 4 = 0.

j j j j j
2 2

The fifth polynomial on the sphere cannot be written as a
polynomial in x y, only, and so we get the condition



( )

xz y z xz x z b

z b z

(3 − ) = (3 − 3 − 4 )
1

8

3 − 3 − 4 = 0.

j j

j j j

2 2 2 2

2 2

 ⇒

Continuing in this way, we obtain the following condition.

Theorem 5.1. Let























( )g
R

R v

b

x

y
b x y=

1
, =

−
1

2
−

3

2

3

2
−

1

2

, = , + + = 1.j

j

j

j

j j j
3 2 2 2∈

Then the orbit of the eight vectors v v{ , …, }1 8 under the unitary
action of the groupG I g g= { , , }2 is a 24‐vector (4, 4)‐design for 3
if and only if

   b b b b
1

8
=

1

3
,

1

8
=

1

5
,

1

8
=

1

7
,

1

8
=

1

9
,

j j j j j j j j
2 4 6 8

 ( ) ( )b y b y b z b z

k

3 − 3 − 4 = 3 − 3 − 4

= 0, = 1, 2, 3,

j j
k

j j j j j
k

j j j
2 −1 2 2 2 −1 2 2

 ( )

( )( )

b y b y b y

z z y y z k

1

8
3 − 3 − 4 =

8

315
,

3 − 3 − = 0,

= 0, 1,

j j j j j j j
k
j

j j j j j

2 2 2 2 2 2

2 2 2 2

 ( )( )y z y y z z− − 14 + = 0.
j j j j j j j

4 4 4 2 2 4

Proof. A basis for the Hom(8)G is given by the 15 polynomials

x x y z x y z x y z y z, ( + ), ( + ) , ( + ) , ( + ) ,8 6 2 2 4 2 2 2 2 2 2 3 2 2 4

x y z y x y z y y z xy z y

y z

(3 − ), (3 − )( + ), (3 − )

( + ) ,

5 2 2 3 2 2 2 2 2 2

2 2 2

x z y z x z y z y z xz y z

y z

(3 − ), (3 − )( + ), (3 − )

( + ) ,

5 2 2 3 2 2 2 2 2 2

2 2 2

x y z y x yz z y y z yz

z y y z y z

(3 − ) , (3 − )(3 − ),

(3 − )(3 − )( + ),

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

y z y z y yz z y yz z

y z y y z z

( − )( + )( − 4 + )( + 4 + )

= ( − )( − 14 + ).

2 2 2 2 2 2 2 2

4 4 4 2 2 4

By using x y z+ + = 12 2 2 on the sphere to eliminate variables,
and taking appropriate linear combinations to simplify, we
obtain the desired equations, for example, the polynomials in
the first row restricted to the sphere span the same subspace as
x x x x1, , , ,2 4 6 8, which gives the condition

b x dσ x y z
k

k
1

8
= ( , , ) =

1

2 + 1
, = 0, 1, 2, 3, 4.

j
j
k k2 2



We omit the case k = 0, since it automatically holds. □

This gives 19 equations (the 11 derived and b y z+ + = 1j j j
2 2 2 ) in

the 24 variables b y z j, , , 1 8j j j ≤ ≤ . We were unable to solve
these equations using numerical solvers, however, they are
easily seen to hold for the numerical designs we obtained.

8 of 13 Journal of Combinatorial Designs, 2025
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5.2 | Spherical t t( , )‐Designs With Some Structure

Here is an example where designs with and without structure
are commonly generated.

Example 5.1. The equal‐norm 20‐point (2, 2)‐designs in 5
seem to split into two types:

• No apparent structure (repeated angles).

• Exactly 38 angles, each repeated five times.

Both appear to be continuous families. Further analysis of the
numerical designs with repeated angles shows each is a union of
four sets of five vectors, which have just two angles (each occurring
five times) and projective symmetry group the dihedral group D5.

Here is an example of the special situation.

Example 5.2. The search for equal‐norm 24‐point (2, 2)‐
designs in 6 returns either

• A set of vectors which is not a design, but does have
repeated angles. This might indicate local minima which
are not global minima.

• A design with repeated angles, specifically what appears to
be 1

2
(48 times or 32 times) and 0 (12 times or 20 times).

We also note that there are no numerical equal‐norm designs
with n = 25, 26, and the minimiser for 25 vectors appears to be
a unique configuration with repeated angles.

Example 5.3. The unweighted 23‐vector (3, 3)‐designs in 4
seem to have some group structure: 12 vectors with equal‐
norms, which have just three angles between them (appearing
with multiplicities 30, 30, 6).

Example 5.4. The unweighted 41‐vector (3, 3)‐designs in 5
seem to have a unique group structure. Two sets of 16 vectors
with equal norms (the same in all examples), four pairs with
equal norms, and one vector with a unique norm (the same in all
examples). For those with largest norm, the (normalised) angles
are 0 (48 times) or 1

2
(72 times) (a MUB like configuration). The

other 16 make angles 1

5
(80 times) and 3

5
(40 times).

Example 5.5. A number of spherical t t( , )‐designs
constructed in [21] as unions of two orbits that give lower
order designs appear (from our numerical search) to be optimal.
These include (3, 3)‐designs of 63 vectors in 6 (orbits of size 27
and 36), 91 vectors in 7 (orbits of size 28 and 63), and a (4, 4)‐
design of 16 vectors in 3 (orbits of size 6 and 10). There is also
a (9, 9)‐design of 360 vectors in 4 (orbits of size 60 and 300).
This is always detected in our numerical search, which is costly,
and so it is assumed to be unique and optimal.

Example 5.6. The equal‐norm 24‐vector (4, 4)‐designs in 3
have 92 different angles, each appearing three times. They
either involve three or six vectors.

Example 5.7. There appears to be a unique unweighted
41‐vector (7, 7)‐design in 3 . This appears in roughly half the

searches. It consists of eight sets of five lines, each with the
dihedral group of order 10 as its projective symmetry group,
together with a single line. The sets of five lines present as two‐
angle frames, and can be viewed as nonunitary images of the
unique harmonic frame of five lines in 3 (the lifted five equally
spaced lines in 2 ).

We say that subspaces with orthogonal projections Pj and Pk are
equi‐isoclinic with angle σ if Equation (4) holds.

Example 5.8. The search for equal‐norm (5, 5)‐designs for
4 (see Figure 2) provided two examples of the special situation:

a unique putatively optimal design of 60 points, and ones with
72 points. The 72‐point designs appear to be part of an infinite
family. Each numerical design has projective symmetry group

6 , and consists of 12 orbits of size 6. These orbits consist of six
equally spaced lines in a plane (two‐dimensional subspace). The
12 planes in 4 appear to have a unique geometric
configuration: each plane is orthogonal to one other, that is,
σ = 0, and makes the following angles with the other 10

σ times σ

times

=
5 + 5

10
0.72361 (5 ), =

5 − 5

10

0.27640 (5 ).

1
2

2
2≈

≈

Example 5.9. For large values of t , the jump in the generic
case can be less pronounced, for example, for (10, 10)‐designs

3 . A heuristic explanation for this is that for small angles, the
terms  v v,j k

t2 are close to numerical zero, for example, for
 v v,j k

1

3
≤ and t = 10, we have

 v v, (
1

3
) 10 .j k

t2 20 −10≤ ≈

Motivated by our calculations, we will say that an equal‐norm
spherical t t( , )‐design of n points for d is exceptional if there
exists no t t( , )‐design of n − 1 or n + 1 points. This is an easily
checkable condition that can indicate the existence of inter-
esting designs.

Example 5.10. Of the putatively optimal spherical (2, 2)‐
designs for d in Table 1, those for d = 3, 4, 7 are exceptional.
There are exceptional (3, 3)‐designs for d = 4, 8. The (5, 5)‐
designs for 4 of 60 and 72 points (Example 5.8) are exceptional.

6 | Designs From Number Theory and Cubature

We now consider some designs first obtained as algebraic
formulas, and a completely new one.

6.1 | The Reznick 11‐Point Spherical (3, 3)‐Design
for ℝ3

The first putatively optimal design on the list of [6] for which an
explicit design was not known is a weighted spherical (3, 3)‐
design of 11 points for 3 , which was said to have “no structure.”

9 of 13
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In [5], it is referred to as the Reznick design, due to the formula
(9.36) of [20]

x y z x y z

x z x z

y z y z

x y z

x y z

x y z

x y z

540( + + ) = 378 + 378 + 280

+ ( 3 + 2 ) + ( 3 − 2 )

+ ( 3 + 2 ) + ( 3 − 2 )

+ ( 3 + 3 + )

+ ( 3 − 3 + )

+ ( 3 + 3 − )

+ ( 3 − 3 − ) .

2 2 2 3 6 6 6

6 6

6 6

6

6

6

6

(9)

Let us elaborate. The definition f V( ) = 0 for being a spherical
t t( , )‐design is equivalent to the “Bessel identity” (see Theo-
rem 6.7 [10])

    c x
v

x v x( ) =
1

( , ) , ,t
d t

n t
j

n

j
t d2

ℓ=1 ℓ
2

=1

2 ∀ ∈ (10)

which allows the d‐ary t2 ‐ic form   ( )x x x= + +t
d

t
2

1
2 2⋯ to be

written as a sum of n t2 ‐powers. The converse is also true, that is
if there is a constant C with

  C x x v x= ( , ) , ,t

j

n

j
t d2

=1

2 ∀ ∈ (11)

then integrating over the unit sphere in d using Equation (8)
for α t= ( , 0, …, 0) gives

  


     



C v x
v

vj
dσ x v x dσ x

c v

= ( , ) ( ) = ( )

= ( ) ,

j

n

j
t j t

j

n

j
t t

t
d

j

n

j
t

=1

2 2

=1

2
1
2

=1

2

 

so that v( )j is a spherical t t( , )‐design. Thus, Equation (9) gives
an 11‐point spherical (3, 3)‐design












V =

378 0 0 3 3 0 0 3 3 3 3

0 378 0 0 0 3 3 3 − 3 3 − 3

0 0 280 2 −2 2 −2 1 1 −1 −1

.

6

6

6

Moreover, Theorem 9.28 of [20] implies that this design is
optimal. We make some observations/comments based on our
calculations:

• The algebraic variety of (optimal) 11‐point weighted
spherical (3, 3)‐designs for 3 appears to have infinitely
many points.

• A generic numerical design on it has no symmetry prop-
erties, with none of the norms  vj repeated.

• The Reznick design has projective symmetry group of order
2 (exchange the x and y coordinates), and three different
norms taken by 1, 2, 8 of the vectors.

6.2 | A New 11‐Point (3, 3)‐Design for ℝ3

The search for numerical 11‐point (3, 3)‐designs for 3 , with the
condition that two of the vectors have equal norms, yielded the
Reznick design (which appears to be unique) and also, fre-
quently, a design with two sets of five vectors with equal norm.
This new design has symmetry group the dihedral group D5.

The projection of each set of five vectors onto the orthogonal
complement of the other single vector gave sets of five equally
spaced lines in 2 , exactly the same up to a scalar multiple.
Thus we came the conjectured analytic form of such a design:
































V

a E a E

b e b e b
E

π
k

π
k

e

=
0

− −
, =

cos(
2

5
)

sin(
2

5
)

,

= [1] ,

k

k

1 2

1 2 3

0 4

0 4

≤ ≤

≤ ≤

(12)

where, numerically,

a b a b

b

0.972824, 0.172322, 0.736481, 0.692954,

1.003311,

1 1 2 2

3

≈ ≈ ≈ ≈

≈

with the normalisation

( )a b a b b5 + + + + = 11.1
2

1
2

2
2

2
2

3
2 (13)

From this assumed structural form, by substituting into the sum
of squares formula (11), we deduce the necessary and sufficient
conditions for such a design

( ) ( )

( )

b b b a a a a a b a b

a b a b

5 + 5 + =
25

16
+ , + = 6 +

= 8 + .

1
6

2
6

3
6

1
6

2
6

1
6

2
6

1
4

1
2

2
4

2
2

1
2

1
4

2
2

2
4

A fourth more complicated equation is given by the variational
condition f V( ) = 03,3,11 . In the computer algebra package
Maple, we attempted to solve these four equations for four of
the variables a a b b b, , , ,1 2 1 2 3, with the other as a parameter.
This yields some solutions with complex entries, some which
are real but not numerically correct, and some which are
numerically correct – often with very complicated formulas.
With b2 as the free parameter, we eventually came to









a

b

a

b
= (3051 − 297 105 ) , =

3 5 − 21

2

=
32373 − 3159 105

2
,

1

2

2

2

1
6

1
6

















b

b

b

b

=
135311 − 13205 105

64
,

=
1246875 − 121625 105

64
.

1

2

3

2

1
6

1
6
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On putting these ratios with b2 (presented as sixth roots) into
Maple, the variational inequality and the sum of squares for-
mula are seen to hold, with the sums of the 6‐th powers of the
11 inner products with x y z( , , ) giving

b x y z
675

32
(1425 − 139 105 ) ( + + ) .2

6 2 2 2 3

To obtain a neat formula for this design, with
b(1425 − 139 105 ) 2

6 rational, we choose

b = (1425 + 139 105 )2
1
6

to get

a a= (12960 + 864 105 ) , = (12960 − 864 105 ) ,1 2
1
6

1
6

b b

b

= (1425 − 139 105 ) , = (1425 + 139 105 ) ,

= 26250 .

1 2

3

1
6

1
6

1
6

This gives an 11‐point (3, 3)‐design for 3 of the form (12),
which does not satisfy the normalisation (13). The corre-
sponding sum of squares can be written as

 x y z α c x s y β z

z

40500( + + ) = ( ( + ) + )

+ 26250 ,

j k
j k k j

2 2 2 3

=0

1

=0

4

6

6

(14)

where c k s k= cos( ), = sin( )k
π

k
π2

5

2

5
, and

α β= (12960 + (−1) 864 105 ) , = (−1)

(1425 − (−1) 139 105 ) .

j
j

j
j

j

1
6

1
6

This design and the Reznick design appear to be singular
points on the algebraic variety of such designs. It would be
interesting to study this variety further, for example, finding
nice points on it (those giving designs with large symmetry
groups), rational points, or explicitly giving an infinite family
of these designs.

6.3 | The Reznick/Stroud Spherical (2, 2)‐Designs
for , ,ℝ ℝ ℝ4 5 6

The equation (9.27)(i) of [20] is

( )x x x x

x x x x x x x x

x x x x

192 + + +

= 6( + + + ) + Σ (3 − − − )

+ Σ ((1 + 2 ) + (1 + 2 ) + (1 − 2 ) + (1 − 2 ) ) ,

1
2

2
2

3
2

4
2 2

1 2 3 4
4 4

1 2 3 4
4

6
1 2 3 4

4

where x x x xΣ (3 − − − )4
1 2 3 4

4 stands for the four terms
obtained by making a permutation of the variables x x x x, , ,1 2 3 4

in x x x x(3 − − − )1 2 3 4 , and so on. Therefore












V

a a a b b b

a b b a a b

b a b a b a

b b a b a a

a b

=

6 3 −1 −1 −1

6 −1 3 −1 −1

6 −1 −1 3 −1

6 −1 −1 −1 3

,

= 1 + 2 , = 1 − 2 ,

4

4

4

4

is an 11‐point spherical (2, 2)‐design for 4 . This is the first in a
family of three optimal spherical (2, 2)‐designs for d, = 4, 5, 6d
that can be obtained from Stroud's [19] antipodal cubature rules
of degree 5 (five‐designs) for the unit sphere, given by

( )
( )

C x x a x a x a x

a x a x x

+ + = (Σ ) + Σ ( Σ + )

+ Σ ( Σ + ( + )) ,

d j
d

j

d

j

1
2 2 2

1
4

2 3 1
4

2 4 5 1 2
4

⋯

g d a g g a g= (8 − ) , = 8( − 1)( ± 2 ) , = 2 ± 2 2 ,1
4 2 4

2
21

4

a g g a g a g g C a= 2 2 − 8 , = 2 , = 2 2 − 8 , = 3 .3
4 2

4 5
3

5
4∓ ∓

The corresponding vectors are







V a u a u a e a u a e e

u e e

= , { + } , { + ( + )} ,

= + + .

j j d j k j k d

d

1 2 3 1 4 5 1 <

1

1
4 ≤ ≤ ≤ ≤

⋯

Our numerical search shows that for d = 4 there is an infinite
family of designs, and for d = 5, 6 there is a unique design. The
unique designs can be obtained as a union of two orbits (sizes
6, 10 and 6, 16 respectively) [21].

6.4 | Kempner's 24‐Point Spherical (3, 3)‐Design
for ℝ4

With the ± independent of each other and the previous nota-
tion, Kempner (1912) [25] gives

( )x x x x x x x

x x x x

120 + + + = Σ (2 ) + 8Σ ( ± )

+ Σ ( ± ± ± ) .

1
2

2
2

3
2

4
2 3

4
1

6 12
1 2

6

8
1 2 3 4

6

(15)

The vectors in the corresponding design have equal norms.

Example 6.1. Our search for equal‐norm 24‐point spherical
(3, 3)‐designs for 4 gave an infinite family, with repeated angles
0 (60 times), 1

2
(32 times) and 21 other angles (each four times).

The exact example given by Equation (15) has just three angles 0
(108 times) 1

2
(72 times) and 1

2
(96 times), and is the orbit of

three vectors under the natural action of S4. This design can also
be obtained as the orbit of two vectors under the action of the
real reflection groupW F( )4 (Shephard‐Todd number 28) [21].

Interestingly, our search for equal‐norm 23‐point spherical
(3, 3)‐designs for 4 seemed to give a unique configuration,
with repeated angles.
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6.5 | Kotelina and Pevnyi's 120‐Point (3, 3)‐Design
for ℝ8

A similar formula to Equation (15) is given in [7], which leads
to what appears to be the unique optimal 120‐vector (3, 3)‐
design for 8 .

Example 6.2. Our numerical search for equal‐norm
spherical (3, 3)‐designs for 8 gave an optimal design of 120
points, with repeated angles 0 (3780 times) and 1

2
(3360 times).

This is easily recognised to be the design of [7]. This is an
example of the special situation, see Figure 4. The next value of
n for which there is a design is n = 250.

Intuitively, one would expect that for fixed t , the numbers
n n d= ( )e e and n n d= ( )w w of vectors in optimal equal‐norm
and weighted t t( , )‐designs in d should be increasing functions
of d. The above example for t = 3 is so exceptional that it pro-
vides a counter example (see Table 1), for example,

n n n(7) = 158, (8) = 120, (9) = 380.e e e

Nevertheless, we expect d n d( )e↦ and d n d( )w↦ to be
asymptotically increasing.

7 | Conclusion

We used the manopt optimisation software to considerably
enlarge the list of putatively optimal spherical t t( , )‐designs (see
Table 1).

The generic situation seems to be

• The algebraic variety of optimal equal‐norm and weighted
spherical t t( , )‐designs for d has positive dimension. A
typical (numerical) element in the variety has little or no
structure/symmetry, though there may be such points on
the variety. It is characterised by a significant “jump” down

in the error ft d n, , to numerical zero from configurations
with fewer points.

A highlight is the first full geometric description of the algebraic
variety of optimal designs in the generic case of positive
dimension (Theorem 4.1). The new 11‐point (3, 3)‐design for 3
of § is also of particular interest.

There are also special situations (previously the only explicit
examples known) where

• The algebraic variety consists of a single point, or a finite set
of points. These designs have a high degree of structure/
symmetry, which may lead to explicit constructions (as
group orbits).

Some other observations about our methods that may be of
future use are:

• The special situation is not always detected by a single
calculation (though it might be indicated by the graph of
the minimum values obtained), and so could be missed by
methods which do only one calculation for a given value
of n.

• In the generic situation, the jump value of n is not
always detected by one calculation, for example, for
unweighted t d n( , , ) = (4, 5, 101), (6, 4, 116) and weighted
(2, 9, 45), (6, 4, 154), (8, 3, 78). Because of this, we suggest
constructing several numerical designs of n − 1 points,
where n is the presumed jump (optimal value).

• Adaptive methods could be used to find larger numerical
designs, for example, instead of calculating ft d n, , for con-
secutive values of n until numerical zero is found, a
bisection method could be used to find the “jump”, or an
interval in which it lies.

• The methods outlined apply to a wide class of configura-
tions, and could for example be applied to the Game of
Sloanes, for which the optimal solutions are strictly
speaking not an algebraic variety.

FIGURE 4 | Special situation: the graphs n ft d n, ,↦ and n flog t d n10 , ,,↦ for t d= 3, = 8.
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• We came to no firm conclusions about the existence of local
minimisers which are not optimal designs (for t > 1), when
an optimal design exists.

Finally, we mention a couple of interesting connections.

• The idea of decomposing a tight frame (design) as a union
of smaller dimensional ones, as was done in Theorem 4.1
(subsets of vectors which form a regular simplex in 2 ) is an
old idea used to understand and construct them [26].

• Unique minimisers which are not spherical designs may
also be of interest, for example, there appears to be a unique
set of 16 vectors in 5 which minimise the potential for
spherical (2, 2)‐designs, which is related to the exact value
of the fifth maximal projection constant [27].
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