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Abstract

An abstract polytope of rank n is said to be chiral if its automorphism group
has two orbits on flags, with adjacent flags lying in different orbits. In this paper,
we describe a method for constructing finite chiral n-polytopes, by seeking particu-
lar normal subgroups of the orientation-preserving subgroup of n-generator Coxeter
group (having the property that the subgroup is not normalized by any reflection and
is therefore not normal in the full Coxeter group). This technique is used to identify
the smallest examples of chiral 3- and 4-polytopes, in both the self-dual and non
self-dual cases, and then to give the first known examples of finite chiral 5-polytopes,
again in both the self-dual and non self-dual cases.
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1 Introduction

In the classical theory of convex geometric polytopes, all the facets and vertex figures are
spherical. In the 1970s, Branko Griinbaum [14] proposed the study of of a more general class
of polytopes, whose facets or vertex figures might not be spherical. This suggestion was
taken further by Ludwig Danzer and Egon Schulte [10, 20, 21] with their investigation of
incidence polytopes, which are now more commonly known as abstract polytopes. Abstract
polytopes generalize the classical notion of convex polytopes to more general combinatorial
structures. Of particularly interest are those with a high degree of symmetry, together with
their geometry and topology.

Chiral polytopes are abstract polytopes that have maximum possible rotational symme-
try but no reflection. Note that the assumption of maximum rotational symmetry makes
this definition of ‘chiral’ more restrictive than its use in other contexts such as molec-
ular chemistry, but appears to be the accepted term for such abstract polytopes — see
[16, 19, 23, 24| for example. Chiral polytopes occur in pairs, with each member of a pair
being the ‘mirror image’ of the other. This phenomenon does not occur among classical
polytopes, but does occur in 3 dimensions. Chiral 3-polytopes are also known as chiral
regular maps. The first family of such maps was constructed by Heffter [15] in 1898 (and
studied again recently by Doro and Wilson [11]). Contributions to the more general study
of chiral polytopes were first made by Weber and Seifert [27], and also later by Coxeter [6].

The study of regular maps was initiated by Brahana [2], and progressed by Cox-
eter [6]. An orientably-reqular map is now known as a 2-cell embedding of a connected
graph (or multigraph) on an orientable surface, with the property that the group of all
orientation-preserving automorphisms of the map (or equivalently, the group of all self-
homeomorphisms of the surface preserving the embedding) is transitive on the ordered
edges of the graph. By connectedness and maximum symmetry, this group can be gen-
erated by two particular automorphisms: one that cyclically permutes the edges (and
vertices) bounding a given face, and another that cyclically permutes the edges (and faces)
incident with a given vertex of that face. Such a map is called reflexible if it also possesses
an orientation-reversing automorphism that interchanges two adjacent vertices without
interchanging the two faces that contains the edge joining them. In that case, the auto-
morphism group is transitive on the incident vertex-edge-face triples (or flags) of the map.
On the other hand, if no such automorphism exists, then the flags fall into two orbits under
the group action, and the map is called irreflexible, or chiral.

In 1948 Coxeter [6] enumerated all regular maps (whether reflexible or chiral) on the
torus. The smallest example has type {4,4}, and is self-dual, with 5 vertices, 10 edges and
5 faces, and automorphism group of order 20. (The two smallest non-self-dual examples
have types {3,6} and {6, 3}, with one being the dual of the other; one has 7 vertices, 21
edges and 14 faces and the other has 14 vertices, 21 edges and 7 faces, and both have
automorphism group of order 42.) After Coxeter, several families of chiral regular maps
on surfaces of higher genus were found by Sherk [26], Garbe [12], and Bujalance, Conder



and Costa [3]. In 1969 Garbe [13] showed that no chiral maps exist on orientable surfaces
of genus 2 to 6 (inclusive), and in 2001 Conder and Dobcsanyi [4] determined all chiral
regular maps on orientable surfaces of genus 7 to 15. Also Schulte [22] has constructed
three families of infinite 3-polytopes in ordinary space that are geometrically chiral, and
showed that no finite chiral 3-polytope exists in ordinary space.

In 1970 Coxeter [8] used honeycombs to construct a family of chiral 4-polytopes, by
forcing the right and left Petrie motions of the polytopes to have different lengths. Later
Schulte and Weiss [24] constructed examples from hyperbolic honeycombs, using isome-
tries of hyperbolic 3-space and complex Mobius transformations. Also Nostrand [19] has
constructed such chiral 4-polytopes whose faces are cubes or dodecahedra.

In higher dimensions (rank > 5), until now only infinite examples of chiral polytopes
have been found. In [25], Schulte and Weiss constructed such examples with Schléfli symbol
{p1, ..., Pn_1} where p; = 0o or p,_; = 0.

In this paper, we give the first known examples of finite chiral 5-polytopes. These
were found by means of a search for normal subgroups of small index in the orientation-
preserving subgroup of a 5-generator Coxeter group, with the property that the subgroup
is not normalized by any reflection (and is therefore not normal in the full Coxeter group).
The same technique can be used to find the smallest examples of chiral 4-polytopes, in both
the self-dual and non self-dual cases. (Here ‘smallest’ means having the smallest number
of flags, and so smallest automorphism group, subject to the given requirements.)

In Section 2 we give background definitions and properties of abstract polytopes and
their automorphism groups and their duals, and explain in detail the definitions and prop-
erties of directly regular and chiral polytopes. In Section 3 we explain our method for
constructing examples of chiral polytopes from particular subgroups of Coxeter groups,
and then we apply this method to find the smallest self-dual and non self-dual chiral
4-polytopes in Section 4. Finally, we do the same for chiral 5-polytopes in Section 5.

2 Background definitions and properties

Definition 2.1 An abstract polytope of rank n (otherwise known simply as an n-polytope)
1s a partially ordered set P endowed with a strictly monotone rank function having range
{—1,...,n}. The elements of P are called faces. For —1 < j < n, the elements of P of rank
J are called j-faces, and a typical j-face is denoted by F;. The faces of rank 0,1 and n—1
are usually called the vertices, edges and facets of the polytope, respectively. We require
that P have a smallest (—1)-face F_1, and a greatest n-face F,,, and that each mazimal
chain (called a flag) of P contains exactly n + 2 faces. Two flags are said to be adjacent
if they differ by just one face. Also, we require that P is strongly flag-connected, that is,
any two flags ® and U of P can be joined by a sequence of flags ® = Py, Py,..., P = W
such that each two successive faces ®;_1 and ®; are adjacent, and ® "V C ®; for all i.
Finally, we require the following homogeneity property, which is often called the diamond
condition: whenever F' < G, with rank(F) = j — 1 and rank(G) = j + 1, there are exactly



two faces H of rank j such that F < H < G.

These conditions ensure that an abstract polytope P shares many of the combinatorial
properties customarily associated with classical geometric polytopes.

Next, if F' and G are faces of P with F' < G, then we call the set {H | F < H < G}
a section of P, and denote this by G/F. In particular, if Fj is a vertex, then the section
F./Fy ={G € P | Fy < G} is called a vertez-figure of P at Fy. More generally, if F} is a
j-face of P, then the section F,/F; = {G € P | F; < G} is called the co-face of Fj.

Definition 2.2 An automorphism of an abstract polytope P is an order-preserving bijec-
tion P — P. The group of all automorphisms of P is denoted by I'(P). A polytope P is
said to be regular if T'(P) is transitive on the flags of P.

The automorphism group I'(P) of a regular polytope P is generated by n involutions
00, P1,- - > Pn_1, Where each p; maps a given base flag ® to the adjacent flag ®* (differing
from @ only in its i-face, as determined by the diamond condition applied to the (i—1)-
and (i+1)-faces of ®). These distinguished generators satisfy (among others) the relations

(pipsV" =1 for 0<i<j<n-—1, 1)

where p; =1 for all i, and p;; = p;; whenever |i — j| =1, and p;; = 2 otherwise.

Letting p; = pi—1; = pii—1 for 1 < i < n, we say that P is of type {p1,...,pn-1}, and
call {p1,...,pn_1} the Schlafli symbol of P.

Furthermore, the generators p; for I'(P) satisfy an additional condition known as the
intersection condition, namely

(piiel)N{p:ied) = (p:ielInJ) forevery I,JC{0,1,...,n—1}. (2)

Conversely, if I" is a permutation group generated by elements pg, p1, - . ., pn—1 Which satisfy
the relations (1) and condition (2), then there exists a polytope P with I'(P) = I'; for more
details, see [17].

All polytopes of rank 2 are regular, with dihedral automorphism group. Also every
polytope of rank 3 is a map (that is, a 2-cell embedding of a connected graph into a closed
surface without boundary) but the converse is not true, however, since maps need not
satisfy the homogeneity property (diamond condition): for example, it is not always true
that every edge has two vertices and lies in exactly two faces of the map.

If the map is orientable and reflexible, then its automorphism group has a subgroup
of index 2 consisting of the orientation-preserving automorphisms (and generated by the
vertex- and face-rotations). For an arbitrary regular n-polytope P, with automorphism
group I'(P) = (po,---,pPn_1), we may consider the subgroup I'*(P) generated by the
‘rotations’ o; = p;_1p; for 1 < j < n. This subgroup always has index 1 or 2 in I'(P).
When this index is 2, the polytope P is said to be directly regular. All classical regular



polytopes are directly regular. A regular 3-polytope (regular map) is directly regular if
and only of the corresponding surface is orientable.

We now give the definition of a ‘chiral’” polytope (having maximum rotational symmetry
but no reflections), as follows:

Definition 2.3 Let P be an abstract polytope of rank n > 3. Then P is chiral if its auto-
morphism group I'(P) has precisely two orbits on flags, with adjacent flags being in distinct
orbits, and for each flag ® = {F_q, Fy, ..., F,}, there exist automorphisms oy,...,0,_1
such that each o; fizes all faces in ® \ {F,;_1,F;}, and cyclically permutes consecutive
j-faces of P in the rank 2 section Fj1/Fj_o = {G | Fj_o <G < Fj11} of P.

Given any base flag ® = {F_y, Fy, ..., F,,}, the automorphisms o1, ...,0,_1 given by
the above definition may be chosen such that o; takes ® to the flag ®7v~! (differing from
® in its (j—1)- and j-faces), for 1 < j < n. These automorphisms then generate I'(P),
and satisfy (among others) the relations

(0i0i41...05) =1 for 1<i<j<n-—1, (3)

and if p; is the order of o; for 1 < i < n—1, then {py,...,p,_1} is called the type of P.
The generators o; also satisfy an intersection condition, which is rather intricate and not
easy to state for arbitrary rank n; see [23] for precise details. This condition ensures that
the group generated by oy,..., 0,1 acts faithfully on the polytope, and that each o; acts
in the appropriate way on the rank 2 section Fjj 1/F;_o of P. For rank 5 the intersection
condition is equivalent to the following;

<o >N<oy>= {l}=<o0y>N< o3 >,
< 01,09 >N < 09,03 > = <09 >,

< 01,09,03 >N < 09,03,04 > = < 09,03 > (4)
< 01,09,03 >N < 03,04 > = < 03 >,

< 01,009,053 >N <04 >= {1}

Conversely, if I' is any permutation group generated by elements o1, 09, ..., 0,_1 which
satisfy the relations (3) and the intersection condition, then there exists a polytope P of
rank n which is either directly regular or chiral, of type {p1,...,pn_1} where p; is the order
of o; (for 1 <i < n), and with I'(P) 2 T"if P is chiral, or I'H(P) = I if P is directly regular.
This polytope may be denoted by P({(o1,09,...,0,-1)). The facets and vertex figures of
P are isomorphic to the (n—1)-polytopes P({o1,09,...,0,_2)) and P({o2,03,...,0,_1))
respectively, and similar isomorphisms exist for other sections of P. Moreover, P is directly
regular if and only if there exists an involutory group automorphism p: I' — I" such that
p(o1) = o', p(o2) = 020y, and p(o;) = o; for 3 < i < n—1 (or in other words, acting like
conjugation by the generator p; in the directly regular case; see [23, Theorem 1]).



Chiral polytopes (for which no such additional automorphism exists) occur in pairs of
enantiomorphic forms, with one being the ‘mirror image’ of the other.

All the sections of a chiral polytope P are either directly regular or chiral, and in fact
all the (n—2)-faces (and the co-faces of all edges) of a chiral n-polytope are directly regular;
see [23, Proposition 9]). In particular, the 3-faces of a chiral 5-polytope are directly regular.

Furthermore, the layer graphs of a chiral n-polytope P are all edge-transitive, and often
vertex- or arc-transitive. Here by a ‘layer graph’ we mean the (bipartite) incidence graph
of (i—1)-faces and i-faces, for any ¢ in the range 0 < ¢ < n. In particular, when n is
even, the layer graph of (n/2—1)- and n/2-faces is called the medial layer graph. The
semisymmetric 3-valent graphs occurring as the medial layer graphs of chiral or directly
regular 4-polytopes have been investigated in [18].

Finally we define a number of aspects of duality:

Definition 2.4 The dual of the n-polytope P is the n-polytope P* obtained from P by
reversing the partial order, so that j-faces of P* are (n—1—j)-faces of P for —1 < j <mn,
and vice versa. The polytope P is called self-dual if P is isomorphic to its dual P*. In that
case there exists an incidence-reversing bijection 6 : P — P, which is called a duality of P,
and if 62 is the identity automorphism of P then § is called a polarity.

If P is a chiral n-polytope, then P is said to be properly self-dual if there exists a
duality §: P — P mapping a flag ® of P to a flag ®° in the same orbit as P under the
automorphism group I'(P), or improperly self-dual if P has a duality mapping the flag @
to a flag in the other orbit of T(P).

Note that in the properly self-dual case, every duality of P preserves the two orbits of
['(P) on flags, while in the improperly self-dual case, every duality interchanges these two
orbits. For chiral 3-polytopes, this notion of duality is more general than that of topological
duality for orientably-regular maps: a chiral 3-polytope P is improperly self-dual whenever
the corresponding map M is isomorphic to its topological dual, and properly self-dual
whenever M is isomorphic to the topological dual of its mirror image. In particular (and
slightly at odds with what was suggested in [16]), the chiral map C7.2 of type {7, 7} listed
in [4, Table 2] is not topologically self-dual as a map, but is properly self-dual as a chiral
3-polytope. This example is discussed in more detail in the next Section.

3 Coxeter groups and small index subgroups

Let A = [p1, ..., pn_1] be the Coxeter group with Dynkin diagram consisting of a path with
n nodes and edges labelled py, ps, ..., p,—1 (in that order), as in Figure 1.

Pn—
o n O D2 O— —mmmmmmm - —O—IO

Fig.1: Dynkin diagram for the Coxeter group [p1, ..., Pn_1]
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This is the abstract group generated by n elements xg,x1,...,z,_1 subject to the
defining relations
wi=1, (vz)P=1forl<i<n, (zjo;%=1forl<i+1<j<n.
Also let AT = [py,...,ps—1]T be its ‘rotation subgroup’, generated by the elements z;x;
(and therefore consisting of all elements of [p1, ..., p,_1] expressible as words of even length

in the generators xg, x1,...,%,_1), of index 2 in A. By Reidemeister-Schreier theory, the
generators y; = x;_1x; of this subgroup satisfy the defining relations

=1, (Yyir-..y;)?=1for1<i<j<n-1

If I' = I'(P) is the automorphism group of a directly regular n-polytope P, generated by
the involutions pg, p1, - .., pn_1 as in Section 2, then there exists an epimorphism 6: A — I’
taking x; to p; for all i, and taking the subgroup A to the subgroup I'" = I'*(P) generated
by the ‘rotations’ o; = p;j_1p; for 1 < j < n. In this case, the kernel of [+ is a normal
subgroup N of A that coincides with ker §, and A/N = T'(P) while AT/N = T'*(P).

On the other hand, if I' = I'(P) is the automorphism group of a chiral n-polytope P,
generated by the elements oy, 09, ..., 0,1 as in Section 2, then there exists an epimorphism
¢ AT — T taking z;_;2; to o; for 1 < j < n, but this epimorphism ) does not extend
to an epimorphism 6 from A onto some larger group of automorphisms of P, since P is
chiral. In this case, the kernel of v is a normal subgroup K of A" that is not normal in
A; in fact its conjugate K is another normal subgroup of A" such that A*/K*° is the
automorphism group of the ‘mirror image’ of P.

It follows from these and earlier observations that chiral n-polytopes can be found by

seeking normal subgroups of At = [py,...,p,_1|T that are not normal in A = [py,...,p,_1].
In particular, if K is such a subgroup of A", and the natural images of the gener-
ators oy,09,...,0,_1 in the quotient AT/K satisfy the appropriate conditions, then a

chiral n-polytope P with automorphism group A™/K can be constructed by taking as 0-
faces the (right) cosets of the image of (09,...,0,_1), as (n—1)-faces the (right) cosets
of the image of (0109,03,...,0,_2), and as j-faces the (right) cosets of the image of
(01,00,...,0j_2,0;_10;,0j41,...,0,_2) for 1 < j < n—2, and defining the partial order
according to non-empty intersection of cosets; see [24, p. 226] for further details.

To illustrate this, let us consider the case n = 3. Here A = [py, po] is the full (2, py, ps)
triangle group (1, xq, 23 | 22 = 23 = 23 = (1122)"* = (wax3)P2 = (1123)? = 1), and
AT = [p1,pa]* is the ordinary (2, p1,ps) triangle group (y1, vz | 47" = ¥5” = (11y2)? = 1).
When (p1, p2) = (4,4) we have [4,4]" = (u,v | u* = v* = (uv)? = 1), which is an extension
of a free abelian group of rank 2 (generated by [u,v] and [u,v~!]) by an abelian group of
order 8. The non-degenerate quotients of this group are well understood, and give rise
to the family of maps denoted by Coxeter as {4,4}@.); see [9] for example. The maps
in this family are reflexible (and therefore regular) if and only if be(b — ¢) = 0. When
be(b — ¢) # 0, the automorphism group of the chiral map {4,4} ) is isomorphic to the



quotient [4,4]" /K of the ordinary (2,4, 4) triangle group [4,4]" by a subgroup K that is
normal in [4,4]" but not in [4,4].

The smallest chiral example is {4,4}(1,2), a map on the torus with 5 vertices, 10 edges
and 5 faces. Its automorphism group is a quotient of [4,4]" of order 20, isomorphic to an
extension of Cy by C4 (a Frobenius group). This is also the smallest chiral 3-polytope, and
(along with every other chiral map {4,4}.)) is improperly self-dual.

Every O-face (vertex) lies in four 1-faces (edges), and dually, each 2-face (map face)
contains four 1-faces. In particular, the number of flags is 5 x 4 x 2 = 40. Also, of course,
each 1-face contains two 0O-faces and lies in two 2-faces. These numbers can be depicted by
the following ‘link figure’:

5 1,4 2,7\ 2 4,\1 5
1 5 10 5 1
Q Kis O/ S(Ks) \ S(Ks) N K. O

Fig.2: Link figure for the smallest self-dual chiral 3-polytopes, of type {4, 4}

The 0-faces and 1-faces may be taken as the vertices and edges of the complete graph K,
with natural incidence between them, and then the 2-faces as five particular quadrilaterals
(4-cycles) in K3, as follows. Take a fixed cyclic ordering of the five vertices of K, say
(1,2,3,4,5). For any vertex a, if (a,b,c,d,e) is this ordering based at the vertex a, then
removing the ‘parallel’ edges {b,e} and {c,d} from the vertex-deleted subgraph K\ {a}
leaves a quadrilateral with edges {b,c}, {c, e}, {e,d} and {d,b}. There are five such
quadrilaterals, each containing four edges, and each edge lies in two of them, as required.

The between-layer incidence graphs are as indicated in the link figure, where K, g
denotes the complete bipartite graph having parts of size r and s, and S(K,,) denotes
the subdivision graph of K, (the graph on m + m(m—1)/2 vertices formed by adding a
new vertex to the middle of each edge of K,,).

The two smallest non self-dual chiral 3-polytopes come from a normal subgroup of index
42 in the ordinary (2, 3, 6) triangle group [3,6]" = (u,v | u® = v% = (uwv)? = 1) that is not
normal in the full (2,3, 6) triangle group [3,6]. One is a chiral map of type {3,6} on the
torus, with 7 vertices, 21 edges and 14 faces, and the other is its topological dual (of type
{6,3}, with 14 vertices, 21 edges and 7 faces). Each has automorphism group an extension
of C;7 by Cg (another Frobenius group). In the first one, every O-face (vertex) lies in six
1-faces (edges), while each 2-face (map face) contains three 1-faces, and the number of
flags is 7 x 6 x 2 =14 x 3 x 2 = 84. The link figure is as follows:

7 1,\6 2\ 2 3/\1 14
1 7 21 14 1
O Kis L/ S(K7) UG(QL 14)U Ky O

Fig.3: Link figure for the smallest non self-dual chiral 3-polytopes, of type {3,6}




Here the O-faces and 1-faces may be taken as the vertices and edges of the complete
graph K7, with natural incidence between them, and then the 2-faces as the 14 lines
of two complementary Fano planes (projective planes of order 2), such as those with
points 1,2,3,4,5,6,7, and lines {1,2,4}, {2,3,5}, {3,4,6}, {4,5,7}, {1,5,6}, {2,6,7} and
{1,3,7} for one, and {1,2,6}, {2,3,7}, {1,3,4}, {2,4,5}, {3,5,6}, {4,6,7} and {1,5,7}
for the other. Each edge lies in one line of each plane (and therefore in two of the 2-faces),
and correspondingly, each of the 2-faces contains three edges. The between-layer incidence
graphs are as indicated in the link figure, with G(21, 14) denoting the subdivision graph
of the Heawood graph.

The smallest properly self-dual example is the chiral map C7.2 of type {7, 7} listed in
[4, Table 2]. This lies on a surface of genus 7, and has 8 vertices, 28 edges and 8 faces.
Its automorphism group is an extension of an elementary abelian 2-group of order 8 by a
cyclic group of order 7. As such, the automorphism group is isomorphic to a quotient of
the ordinary (2,7,7) triangle group [7,7]% by a normal subgroup of index 56 that is not
normal in the full (2,7,7) triangle group [7,7]. The number of flags is 8 x 7 x 2 = 112, and
its link figure is as follows:

8 17 0\7 2/53\2 T\ 1 8
1 8 28 8 1
O Kig 2/ S(Ky) N S(Ky) N Ksi O

Fig.4: Link figure for the smallest properly self-dual chiral 3-polytopes, of type {7,7}

In this case the O-faces and 1-faces may be taken as the vertices and edges of the
complete graph Ky, with natural incidence between them, and then the 2-faces as the faces
of a ‘cycle double cover’ of Ky using eight cycles of length 7 (such that every edge lies in
exactly two of the cycles). One such example can be constructed from the group AGL(1,8)
of all affine transformations z — az + b of a field F' of order 8, by taking any element of
order 7 (regarded as a 7-cycle acting on the elements of F'), and letting the faces be given
by the eight conjugates of that element under the translation subgroup.

An obvious question is this: how does one find such examples and know they are the
smallest? One approach to take is to use a computational procedure or finding normal
subgroups of small index in a finitely-presented group, such as that described in [5] and
used in [4] to determine chiral maps of genus 2 to 15. This method is based on a systematic
enumeration of possible coset tables for the subgroups being sought. A much-improved
version (based on enumerating possibilities for a composition series of the quotient) has
been developed by Derek Holt and one of his students, and this has now been implemented
as the LowIndexNormalSubgroups command in MAGMA [1].

This approach allows the determination of all normal subgroups of up to a given index
N in the subgroup A" = [p1,...,p,_1|T of index 2 in the Coxeter group A = [py,...,pn_1]-
It is then not difficult to decide for each such subgroup K, whether K is normal in A. For
example, one can check whether each of the generators of A normalizes K. Alternatively,



one can use MAGMA to compute the order of the permutation group induced by A on
cosets of K; the latter group is isomorphic to A/(K N K?) for any x € A\A™, and hence its
order will be twice that of At /K if and only if K is normal in A. In cases where it is found
that K is not normal in A, one can then proceed with other computational checks to see
whether or not the diamond condition and intersection condition are satisfied. Note that
the diamond condition can be translated into an equivalent condition about intersections
of cosets of particular subgroups; again see [24] for further details.

In this way, it is theoretically possible to determine whether or not there exists a chiral
n-polytope of type {p1,...,p,_1} with automorphism group of order at most N, for any
given integer N > 0.

In practice, as in [4], one can do this without first specifiying the parameters py, ..., p,_1,
by working within the n-generator Coxeter group ¥ = [0, ..., 00|, which is generated by
elements g, z1,...,7,_1 subject to the defining relations z? = 1 for 0 <i < n and
(zjz;)> = 1 for 1 <i+1<j<n, and then determining the values of the parameters
P1y---,Pn_1 from the orders of the images of the elements y; = x;_1x; in the quotient
Y1t /K, for any subgroup K normal in X% but not in X.

Knowing the right value of N (the bound for the index [T : K|) is a challenge, but
this can be overcome by a little experimentation using the standard procedure for finding
subgroups of small index in X7, and checking the properties of the permutation groups
induced by Xt on the cosets. For example, the smallest chiral 5-polytope described in
Section 5 can be found from a subgroup of index 6 in X in the case n = 5, with the
permutations on cosets generating the group Sg of order 720, while the smallest non self-
dual example in Section 5 comes from the core of a non-normal subgroup of index 12.

4 Chiral 4-polytopes

Small chiral 4-polytopes can be found by searching for suitable subgroups of small index in
the group T = [00, 00, 00, 00]" = (071, 09,03 | (0102)* = (010203)* = (0903)*> = 1). The
smallest index of a normal subgroup that satisfies the diamond and intersection conditions,
but is not normal in the full Coxeter group ¥ = [00, 00, 00, 00, is 120. There are three pairs
of such normal subgroups, and in all cases, the quotient ¥ /K by the normal subgroup K
is isomorphic to the symmetric group Ss.

For one pair, one of the normal subgroups is the normal closure in X7 of the set {o*,
oyt, o3, 0109%01 %0907, 01037 0120903205}, or equivalently, the kernel of the epimorphism

: ¥t — S5 given by
o — (1,2,3,4), o9+ (1,3,2,5), o3+ (1,5,3,4).

In this case, the resulting 4-polytope has type {4,4,4}. It has six O-faces, fifteen 1-faces,
fifteen 2-faces and six 3-faces. The stabilizer of a 0O-face is the subgroup generated by
(1,3,2,5) and (1,5, 3,4), which is a Frobenius group of order 20, as is the stabilizer of a
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3-face, generated by (1,2,3,4) and (1,3,2,5). The stabilizer of a 1-face is the subgroup
generated by (1,5)(3,4) and (1,5, 3,4), which is dihedral of order 8, as is the stabilizer of
a 2-face, generated by (1,2,3,4) and (1,4)(2, 3).

The i-faces can be labelled as f7, such that ® = {f} : —1 < i < 4} is the base flag, and
the generators oy induce the following permutations:

or = (foo S5 16 SO AL 12, 12, SO 12 AL YU O AT A2 18 i)
(5,15 15, a3, 10, 122 122) (2, 13, 120, ) (FS 122 ) (£3, £5, 13, 15)

o2 = (f5: Jou 16, SO U 12, 05 SO A 2 FD U O A R )
(o 5 13 S USROS S5 05 1)Ut 127 132 1) (3 15 15, 1S)

o3 = (f6: 16, 16, SO U2 12, 0 U A2 A, DAL A A O U 1)
(o 5. 03, P S SO US 13, 135 B0 Ut 122, 12 1) (s 3 5 ).

Thus, for example, the orbit of f{ under the stabilizer of the 0-face f} is { f{, fZ, f7, f1, fi'},
and this is the set of all 1-faces containing fg.

In fact each O-face lies in five 1-faces, and dually, each 3-face contains five 2-faces.
Similarly each 1-face lies in four 2-faces, and each 2-face contains four 1-faces. In particular,
the number of flags is 6 x 5 x 4 x 2 = 240. These numbers can be depicted by the following
link figure:

6 1/\5 2,/ 2\4 4,72\2 5,\1 6©
1 6 15 15 6
® Kis = S(K¢) = G(15,15) ~ S(Ks) ~ K.

Fig.5: Link figure for the smallest self-dual chiral 4-polytopes, of type {4,4,4}

The symmetry (of both numbers and subgroups) suggests that this polytope is self-
dual, and indeed it is. For example, conjugation by the involution (1,3)(2,5) induces an
automorphism of S5 that interchanges the images of o and 037! and inverts the image of
o9. It follows that this chiral 4-polytope is properly self-dual, and has a polarity. (On the
other hand, the polytope is not directly regular because there is no such automorphism
inverting the image of o, and interchanging the images of oy and o,205.)

All the facets and vertex figures of this 4-polytope are isomorphic to the chiral 3-
polytope associated with the chiral map {4,4} o) (with 5 vertices, 10 edges and 5 faces).
In fact this is the universal 4-polytope having such facets and vertex figures, and may be
constructed by glueing together copies of {4,4} 2y and its enantiomorphic form {{4, 4} 1),
so is isomorphic to the universal {{4,4}@1), {4,4}@1,2)} 4-polytope; see [23].

The medial layer graph (incidence graph of 1- and 2-faces) is interesting, and can be
obtained as follows. First, the O-faces and 1-faces may be taken as the vertices and edges
of the complete graph Kjg, with natural incidence between them, and similarly the 3- and
2-faces as vertices and edges of a second copy of Kg. Now take any 1-factorisation of Kjg
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(consisting of a set of five 1-factors, each containing three edges than span the vertices of
Kg, such that every edge lies in exactly one of the 1-factors). Given any edge {a, b} of K,
if say {{a,b},{c,d},{e, f}} is the unique 1-factor of the given 1-factorisation containing
{a, b}, then there are exactly four edges of K¢ that do not contain the vertices a or b and
are different from the two edges {c,d} and {e, f} of that 1-factor, namely the edges {c, e},
{¢, [}, {d,e} and {d, f}, and these form a quadrilateral. There are 15 such quadrilaterals
(one for each edge of each 1-factor). The given 1-factorisation sets ups a one-to-four
correspondence between edges of one copy of Kg and the edges of the other copy of K,
and this correspondence defines the edges of the medial layer graph, denoted by G(15,15)
in Figure 5, and displayed in Figure 6.

Fig.6: Medial layer graph of a smallest self-dual chiral 4-polytope

For another pair of smallest chiral 4-polytopes, one of the normal subgroups is the
normal closure in ¥t of the set {03, oot o3t 0120903 20109%01 o371}, or equivalently,
the kernel of the epimorphism : X1t — S5 given by

o1 — (1,2,3), o9+ (1,3,2,4), o3~ (1,5,4,3).

In this case the resulting 4-polytope has type {3,4,4}, and is non self-dual. It has six
O-faces, fifteen 1-faces, twenty 2-faces and five 3-faces. The stabilizers of a 0O-face and
a 1-face are a Frobenius group of order 20 and a dihedral group of order 8, while the
stabilizer of a 2-face is dihedral of order 6, generated by (1,2,3) and (2,3)(4,5), and the
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stabilizer of a 3-face is Sy, generated by (1,2,3) and (1,3,2,4). The number of flags is
again 6 X 5 x 4 x 2 = 240, with numbers of inclusions depicted by the following link figure:

6 1/7\5 2/ 0\4 3750\ 2 8 1 5
1 6 15 20 5 ( )
Q Ky \_/ S(K6) 7 K6(K2,K3) \J S(KéQ)) Q Ks,

Fig.7: Link figure for the smallest non self-dual chiral 4-polytopes, of type {3,4,4}

As with the previous example, the vertex figures of this 4-polytope are isomorphic to the
chiral 3-polytope associated with the map {4,4} ), with 5 vertices, 10 edges and 5 faces.
On the other hand, the facets are all isomorphic to the regular 3-polytope of type {3,4}
associated with the regular embedding of the octahedron in the sphere, with 6 vertices, 12
edges and 8 faces. In fact this 4-polytope is isomorphic to the universal {{3,4},{4,4}u,2)}
4-polytope.

The 0-, 1- and 2-faces may may be identified with the vertices, edges and triangles
(3-cycles) of K¢ respectively, so that the medial layer graph of the polytope is given simply
by incidence of edges with triangles in K¢. This is denoted by Kg(K>, K3) in Figure 7. The
3-faces may be identified with the five 1-factors of a given 1-factorisation of K§, and then
incidence between 3- and 2-faces may be defined by making a 1-factor {{a, b}, {c,d},{e, f}}
incident to each of the eight triangles consisting of one vertex from each of the three edges
in {{a, b}, {c,d},{e, f}} (or equivalently, making a triangle {x,y, 2} incident to each of the
two 1-factors of the given 1-factorisation in which x, y and z lie in distinct edges). The
corresponding incidence graph is also isomorphic to the subdivision graph of a copy of Kj
with doubled edges, denoted by S(K, é2)) in Figure 7.

The final pair of admissible normal subgroups of index 120 in ¥ give the dual of this
polytope and its mirror image, of type {4,4, 3}.

We believe the smallest improperly self-dual chiral 4-polytopes are also of type {4, 4,4},
with automorphism group of order 400. One of a chiral pair of such polytopes is obtainable
from a transitive permutation of ¥ of degree 10, under which

— (1,2,3,4)(5,6,7,8), 02— (1,4,3,2)(5,7,9,6), o3+ (1,8,2,7)(3,6,10,9)(4,5).

Here the stabilizers of a 0-, 1-, 2- and 3-face have orders 40, 8, 8 and 40 respectively, and
there are 800 flags, with numbers of inclusions depicted by the following link figure:

Om 1/10\10 2754 47552 10(10\1 10
Ko 5D Y o050 2 SKD) Y foon

Fig.8: Link figure for an improperly self-dual chiral 4-polytope of type {4,4,4}

This chiral 4-polytope is a quotient of the universal {{4,4} 1), {4,4} 1)} 4-polytope.
As such, its vertex figures and facets are all isomorphic to the chiral 3-polytope associated
with the map {4,4} ) (which has 10 vertices, 20 edges and 10 faces).
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Its O-faces and 1-faces may be taken as the vertices and ordered edges of the complete
bipartite graph K 5, with natural incidence between them; the graph of incidence between
0- and 1-faces is isomorphic to the subdivision graph of a copy of K55 with doubled edges,
denoted by S(K, 5()25)) in Figure 8. The 2- and 3-faces may be identified similarly with the
vertices and ordered edges of a second copy of Kj 5, with natural incidence between them,
and then incidence between 1- and 2-faces can be described as follows.

Label the vertices of K55 as 1 to 10, with 1 to 5 in one part, and 6 to 10 in the other,
and let m be the permutation (1,2,3,4,5)(6,7,8,9,10). For any vertex u € {1,...,10},
let ut and v be the images of v under 7 and 72 respectively, and let ©~ and =~ be
the images of a under 7=! and 72 respectively. Now for any ordered edge (a,b) in Ks5
with a < b, let v be the unique vertex in {1,2,3,4,5} such that v = b—a+1 mod 5, and
let w be the unique vertex in {6,7,8,9,10} such that w = a+b mod 5. Now make the
1-face (a,b) from the first copy of K55 incident with each of the four 2-faces (v, w*™),
(wrt,v7), (v, w "), (w™~,v") from the second copy of Kj5, and make its reverse (b, a)
from the first copy incident with each of the four 2-faces (w*,v=7), (v ", w™), (w™,v" "),
(v, w™) from the second copy. This correspondence defines the edges of the medial layer
graph, denoted by G(50,50) in Figure 8.

The graph G(50,50) is too large for drawing a meaningful picture, but it is easily
described as a cover of the graph K§22) (a square with doubled edges), with voltage group
Zs X Zs, as indicated in Figure 9:

+(2,2)
® ©

+(3,1) +(1,2)

~ e
C/' +(1,1) \D

Fig.9: Construction of incidence graph G(50,50) as a (Zs x Zs)-cover of Kfz)

Specifically, the vertices may be taken as the 100 ordered triples (i, 7, k) with i, j € Zs
and k € Z,, with adjacency ~ defined by letting

(1,7,0) ~ (7,7, 1) whenever (¢,j") = (i,7) £ (1,1) mod 5
(1,7,0) ~ (¢, 7',3) whenever (i,j") = (i,7) £ (3,1) mod 5
(1,7,2) ~ (¢, 7',1) whenever (i,j") = (i,7) £ (1,2) mod 5
(1,7,2) ~ (7,7,3) whenever (¢,7") = (i,7) % (2,2) mod 5
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5 Chiral 5-polytopes

To find examples of chiral 5-polytopes, we can search for suitable subgroups of small index
in the group X1 = [00,00,00,00,00|" = (01,09,03,04 | (0109)* = (0903)? = (0304)* =
(010903)? = (090304)? = (01090304)> = 1).

We believe the smallest example comes from a normal subgroup K of index 720 in 3%,
with quotient X7 /K isomorphic to the symmetric group Sg, given by

o1— (1,2,3), o9+ (1,3,2,4), o3~ (1,5,4,3), o4+ (1,2,3)(4,6,5).

This normal subgroup K is the normal closure in Xt of the set {03, o2?, o3%, 043,
01_1030103_102_2, 03_202203_102, 04_1030220402_1}.

The resulting 5-polytope has type {3,4,4,3}. The stabilizer of a 0-face is the subgroup
generated by (1,3,2,4), (1,5,4,3) and (1,2,3)(4,6,5), which is isomorphic to Sy in its
representation as PGL(2,5) on 6 points, while the stabilizer of a 4-face is the natural Sj
generated by (1,2,3), (1,3,2,4) and (1,5,4, 3). The stabilizer of a 1-face is the subgroup
generated by (1,4), (1,5,4,3) and (1,2,3)(4,6,5), which is a wreath product Sy S5 of
order 2% x 3! = 48, while the stabilizer of a 3-face is the subgroup generated by (1,2, 3),
(1,3,2,4) and (1,4)(2,3)(5,6), which is isomorphic to Sy X S, also of order 48, and the
stabilizer of a 2-face is the subgroup generated by (1,2,3), (2,3)(4,5) and (1,2, 3)(4,6,5),
which is a subdirect product of two copies of S3 and has order (3!)2/2 = 18. Hence this
5-polytope has six O-faces, fifteen 1-faces, forty 2-faces, fifteen 3-faces and six 4-faces.

Each 0-face lies in five 1-faces, and dually, each 4-face contains five 3-faces. Similarly
each 1-face lies in eight 2-faces and each 3-face contains eight 2-faces, while each 2-face
lies in three 3-faces and also contains three 1-faces. In particular, the number of flags is
6 X 5 x 8x 3 x 2=1440. The corresponding link figure is as follows:

6 1,5 2,8 3,3 8 /N2 5,1 6
1 6 15 40 15 6 ( )
O Kis ~ S(Ks) = G(15,40) = G(40,15) = S(Ky) O Ko

Fig.10: Link figure for a self-dual chiral 5-polytope of type {3,4,4, 3}

Again the symmetry of these numbers suggests that this polytope is self-dual, although
the symmetry of subgroups is not quite so obvious. In fact the polytope is improperly
self-dual, and has a polarity given by an outer automorphism of Sg which takes the 3-
cycle (1,2,3) to the double 3-cycle (1,2,3)(4,6,5). (On the other hand, the polytope is
not directly regular because there is no automorphism of Sg inverting the image (1,2, 3)
of o1, and interchanging the images (1,3,2,4) and (1,2, 3,4) of o, and 0,205, while also
centralizing the images (1,5,4,3) and (1,2,3)(4,6,5) of o5 and 0y.)

The 0- and 1-faces may may be identified with the vertices and edges of Kg, and the
4- and 3-faces with the vertices and edges of a second copy of Kg. The forty 2-faces
can then be identified the triangles (3-cycles) from these two copies of Kg, with incidence
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defined as follows. Let 7 be any outer automorphism of Sg of order 2. This takes 3-cycles
of Sg to double 3-cycles and vice versa. Now make each edge of the second copy of K
(regarded as a 1-face of the polytope) incident to the four triangles containing it in that
copy and also to the four triangles containing its analogue in the first copy. In other words,
if {a,b,c,d, e, f} and {d',V/,c,d €, f'} are the two vertex-sets, then make {a’,t'} incident
with {a,b,c}, {a,b,d}, {a,b,e}, {a,b, f}, {a' b, }, {dV,d}, {a b, e} and {d,V, f'}.
On the other hand, for any edge {a,b} of the first copy of K¢, and any triangle {a, b, c}
containing it in the first copy, if the outer automorphism 7 of Sg takes the 3-cycle (a, b, ¢) to
the double 3-cycle (z,y, z)(u, v, w), where {z,y, z} contains two of the three points a, b, c,
and {u,v,w} contains the third, then make {a, b} incident with {x,y, z} and {u’, v, w'}.

The facets of this 5-polytope are all isomorphic to the universal {{3,4},{4,4}@21)} 4-
polytope, which is non self-dual and chiral of type {3,4,4} (like the example described in
the previous section), while the vertex-figures are all isomorphic to its dual (the universal
{{4,4}2,1), {4, 3}} 4-polytope, of type {4,4,3}). In fact this example is isomorphic to the
universal {{{3,4},{4,4}e1)}. {{4,4}21),{4,3}}} 5-polytope.

One of the smallest non self-dual chiral 5-polytopes we have been able to find is one
of type {3,4,4,6} that comes from a transitive permutation representation of 3% on 12
points, given by

o1+ (1,2,3)(4,5,6), 02— (1,3,2,7)(4,6,5,8), o3~ (1,9,7,3)(4,10,8,6),
oy — (1,5,3,4,2,6)(7,11,9,8,12,10).

These permutations generate a group of order 1440, isomorphic to the direct product

Sg x Cs, with the image of 04 as the central involution. The stabilizers of a 0-, 1-, 2-, 3-

and 4-face have orders 240, 96, 36, 48 and 120 respectively, and the numbers of inclusions
are depicted by the link figure below:

6 1,5 2,28 3,6 8,2 5,112
1 6 15 10 30 12
® Kig ~ S(Ks) = G(15,40)~ G(40,30)"~ G(30,12) Ko ®

Fig.11: Link figure for a non self-dual chiral 5-polytope of type {3,4,4,6}

The six 0-faces, fifteen 1-faces and forty 2-faces can be identified with the vertices, edges
and oriented triangles of Kg, with natural incidence between them. On the other hand,
the thirty 3-faces can be identified with ordered edges of K§, and the twelve 4-faces with
‘marked’ vertices at and a~ of Kg, such that every 3-face (u,v) is with the two 4-faces u™
and v~. In particular, the incidence graph G(30,12) between 3- and 4-faces is isomorphic
to S(DKgg), the subdivision graph of the Kronecker cover of K.

Incidence between 2- and 3-faces is the most difficult (but also the most interesting) to
define. One way is as follows:

For every unordered triple of vertices of Ky, define a ‘good’ and ‘bad’ orientation; for
example, if min({a, b, c}) = a then let (a,b, c) be good if @ < b < ¢ and bad if a < ¢ < b.
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As previously, let 7 be any outer automorphism of Sg of order 2. This takes 3-cycles of
Se to double 3-cycles and vice versa. Now let (a,b,c) be any oriented triangle in Kg, or
equivalently, a 3-cycle in Sg, and let (z,y, 2)(u, v, w) be the image of this 3-cycle under the
outer automorphism 7, where {x,y, z} contains two of the three points a, b, ¢, and {u, v, w}
contains the third. Let the 2-face (a,b, ¢) be incident with each of the six 3-faces naturally
associated with 2-element subsets of {z, y, z} if (a, b, ¢) is good, or with those of of {u, v, w}
if (a, b, c) is bad. This correspondence defines the edges of the incidence graph denoted by
(40, 30) in Figure 11.

The facets of this 5-polytope are again all isomorphic to the universal {{3,4}, {4,4}21)}
4-polytope, of type {3,4,4}, while on the other hand, the vertex-figures are all isomorphic
to a non self-dual chiral 4-polytope of type {4,4,6}, with five O-faces, twenty 1-faces,
thirty 2-faces and twelve 3-faces, and automorphism group of order 240. The latter is the
universal {{4,4} 1), {4,6]4,2}} 4-polytope, where {4,6]4,2} is a regular quotient of the
Petrie-Coxeter polyhedron {4, 6 | 4} having 3-holes of length 2. Accordingly, our 5-polytope
is isomorphic to the universal {{{3,4},{4,4} 1)}, {{4, 4} 1), {4,6]4,2}}} 5-polytope.

The smallest properly self-dual chiral 5-polytope we have been able to find is rather
larger than the above examples. This one has type {3,8, 8,3}, and can be obtained from
a transitive permutation representation of X% on 20 points, given by

o1 — (1,2,3)(4,5,6)(12, 14, 13)(15, 17, 16),
oo — (1,3,5,11,4,19,6,2)(7, 16, 10, 17, 14, 12, 13, 15)(8, 20)(9, 18),
o3 — (1,13)(2,17, 11, 16, 18, 20, 19, 15)(3, 12)(4, 10, 5, 14, 6,8,9,7),
o4 — (4,6,5)(7,9,8)(15, 16, 17)(18, 19, 20).

The automorphism group is the alternating group Asg. The polytope has 184,756 0-
faces, 1,810, 194, 946, 560, 000 (= | Ay |/672) 1-faces, 67,580,611, 338,240,000 (= |Ag|/18)
2-faces, 1,810,194, 946, 560,000 (= |Ag|/672) 3-faces, and 184,756 4-faces. Every 0-face
lies in 19, 595,520,000 1-faces, and dually, every 4-face contains 19, 595,520,000 3-faces;
also every 1-face lies in 112 2-faces, while every 2-face contains three 1-faces, and dually,
every 3-face contains 112 2-faces, and every 2-face lies in three 3-faces. Chirality follows
from the fact that there is no element of Aut(Asy) = Ss that centralizes the images of o3
and o4 and inverts the image of o;. On the other hand, there is an element of Sy that
takes the images of o1 and o5 to the inverses of the images of o3 and o4, and vice versa,
namely the permutation (1, 20)(2, 19)(3, 18)(4, 17)(5, 16)(6, 15)(7, 14)(8, 13)(9, 12), and
so this chiral 5-polytope is properly self-dual.

Note that there are many other interesting examples that can be found in this way.
One is non self-dual chiral 5-polytope of type {3,6,3,6} with three O-faces, 144 1-faces,
576 2-faces, 576 3-faces and 96 4-faces, and automorphism group of order 20736 (which
is representable as a subgroup of the symmetric group Sis); this has chiral vertex-figures
which are obtainable as proper quotients of the universal {{6, 3} ,0), {3, 6} (3,0)} 4-polytope,
and so this 5-polytope is not a universal one. Another example is a non self-dual chiral
5-polytope of type {3,8,8,3} with automorphism group A2, in which the stabilizers of

17



a 0-, 1-, 2-, 3- and 4-face are respectively groups of order 95040 (viz. the Mathieu group
Mis), 192, 18, 672 (viz. PGL(2,7) x Cy) and 19958400 (viz. A11). Another is an improperly
self-dual chiral 5-polytope of type {4,4,4,4} with automorphism group M.

Finally, a curious reader might ask whether or not there exists a finite chiral 6-polytope

with automorphism group S7, given the chiral 4 and 5-polytopes with automorphism groups
Ss and Sg presented here, but we have checked for the existence of one and found there is
no such chiral 6-polytope (with automorphism group S7).
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