Avoiding the Gorenstein-Walter theorem in the classification of regular maps of negative prime Euler characteristic

Jozef Širáň
STU and OU

Joint work with Marston Conder
SODO 2020

Introduction

Introduction

Breda, Nedela and Širáň (2005) classified the regular maps on surfaces of Euler characteristic $-p$ for each prime p up to isomorphism and duality.

Introduction

Breda, Nedela and Širáň (2005) classified the regular maps on surfaces of Euler characteristic $-p$ for each prime p up to isomorphism and duality.

Their classification relies on three key theorems, each proved using the highly non-trivial characterisation of finite groups with dihedral Sylow 2-subgroups, due to D. Gorenstein and J.H. Walter (1965).

Introduction

Breda, Nedela and Širáň (2005) classified the regular maps on surfaces of Euler characteristic $-p$ for each prime p up to isomorphism and duality.

Their classification relies on three key theorems, each proved using the highly non-trivial characterisation of finite groups with dihedral Sylow 2-subgroups, due to D. Gorenstein and J.H. Walter (1965).
Although the original 160-page proof of the Gorenstein-Walter theorem was later supplanted by an alternative 25-page argument by Bender and Glauberman (1981) and Bender (1981) using Brauer characters, the shorter proof still depends on a number of substantial facts, including the Odd Order Theorem.

Introduction

Breda, Nedela and Širáň (2005) classified the regular maps on surfaces of Euler characteristic $-p$ for each prime p up to isomorphism and duality.

Their classification relies on three key theorems, each proved using the highly non-trivial characterisation of finite groups with dihedral Sylow 2 -subgroups, due to D. Gorenstein and J.H. Walter (1965).
Although the original 160-page proof of the Gorenstein-Walter theorem was later supplanted by an alternative 25-page argument by Bender and Glauberman (1981) and Bender (1981) using Brauer characters, the shorter proof still depends on a number of substantial facts, including the Odd Order Theorem.

In the talk we briefly outline new proofs of those three facts (and hence the entire classification) using somewhat more elementary group theory, without referring to the Gorenstein-Walter theorem.

A summary of the elementary part of the classification

A summary of the elementary part of the classification

It is well known in our circles that a regular map M of type $\{m, k\}$ may be identified with $G=\operatorname{Aut}(M)$ in its a standard partial presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle
$$

where x, y, z are reflections of a fixed flag f in its sides and $r=y z, s=z x$ act as local rotations about the vertex and the 'centre' of the face $\sim f$.

A summary of the elementary part of the classification

It is well known in our circles that a regular map M of type $\{m, k\}$ may be identified with $G=\operatorname{Aut}(M)$ in its a standard partial presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle
$$

where x, y, z are reflections of a fixed flag f in its sides and $r=y z, s=z x$ act as local rotations about the vertex and the 'centre' of the face $\sim f$.
Such a map M has $|G| /(2 k)$ vertices, $|G| / 4$ edges and $|G| /(2 m)$ faces; its Euler characteristic is $\chi=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{m}-\frac{1}{2}\right)|G|$, assumed now to be $-p$. By Conder and Dobcsányi (2001) it was sufficient to consider $p \geq 29$.

A summary of the elementary part of the classification

It is well known in our circles that a regular map M of type $\{m, k\}$ may be identified with $G=\operatorname{Aut}(M)$ in its a standard partial presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle
$$

where x, y, z are reflections of a fixed flag f in its sides and $r=y z, s=z x$ act as local rotations about the vertex and the 'centre' of the face $\sim f$.
Such a map M has $|G| /(2 k)$ vertices, $|G| / 4$ edges and $|G| /(2 m)$ faces; its Euler characteristic is $\chi=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{m}-\frac{1}{2}\right)|G|$, assumed now to be $-p$. By Conder and Dobcsányi (2001) it was sufficient to consider $p \geq 29$.
Euler's formula implies $|G|=4 k m p /(k m-2 k-2 m)$. By Sylow theory (note: Sylow 2 -subgroups are dihedral) and a few elementary facts one concludes that $p \nmid|G|$. Hence $k m-2 k-2 m=c p$ and further arguments using non-orientability criterion $G=\langle r, s\rangle$ give $|G|=t k m$ for $t \in\{1,2,4\}$.

A summary of the non-elementary part of the classification

A summary of the non-elementary part of the classification

The classification then continues by proving the following three facts for $G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

A summary of the non-elementary part of the classification

The classification then continues by proving the following three facts for $G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. 1. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

A summary of the non-elementary part of the classification

The classification then continues by proving the following three facts for $G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

1. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
2. Let $|G|=2 k m$ with k odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4$, and G has a presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{m},\left(r s^{-1}\right)^{2} x\right\rangle
$$

A summary of the non-elementary part of the classification

The classification then continues by proving the following three facts for $G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

1. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
2. Let $|G|=2 k m$ with k odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4$, and G has a presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{m},\left(r s^{-1}\right)^{2} x\right\rangle
$$

3. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1$, ℓ odd and ≥ 3. Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}$, with j odd, and G has a presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{m}, r^{j} s^{\ell} z\right\rangle .
$$

A summary of the non-elementary part of the classification

The classification then continues by proving the following three facts for $G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

1. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
2. Let $|G|=2 k m$ with k odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4$, and G has a presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{m},\left(r s^{-1}\right)^{2} x\right\rangle .
$$

3. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1$, ℓ odd and ≥ 3. Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}$, with j odd, and G has a presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{m}, r^{j} s^{\ell} z\right\rangle .
$$

All these were proved with the help of the Gorenstein-Walter theorem: Let G have dihedral Sylow 2-subgroups. If O is the largest odd-order normal subgroup of G, then $G / O \cong$ either a Sylow 2-subgroup of G, or A_{7}, or a group K such that $\operatorname{PSL}(2, q) \leq K \leq \operatorname{P\Gamma L}(2, q)$ for some $q \geq 3$.

Avoiding the Gorenstein-Walter theorem, part 1

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

- Every two involutions in G are conjugate, and $x \sim y$ in $N_{G}(\langle x, y\rangle)$.

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

- Every two involutions in G are conjugate, and $x \sim y$ in $N_{G}(\langle x, y\rangle)$.

Why? Let u, v be two non-conjugate involutions in G. Then $g u g^{-1} \notin\langle v\rangle$ for any $g \in G$, so $\langle v\rangle g u \neq\langle v\rangle g$ for each $g \in G$. Right mult'n by u induces a fixed-point free involution on 2 km cosets $G:\langle v\rangle$. But $G^{\prime}=G!\square$

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

- Every two involutions in G are conjugate, and $x \sim y$ in $N_{G}(\langle x, y\rangle)$.

Why? Let u, v be two non-conjugate involutions in G. Then $g u g^{-1} \notin\langle v\rangle$ for any $g \in G$, so $\langle v\rangle g u \neq\langle v\rangle g$ for each $g \in G$. Right mult'n by u induces a fixed-point free involution on $2 k m$ cosets $G:\langle v\rangle$. But $G^{\prime}=G!\square$

- For $S=\langle x, y\rangle: N_{G}(S)=S \rtimes\langle g\rangle \cong A_{4} ; G$ has $|G| / 4$ involutions and every coset of S of G not in $N_{G}(S)$ contains exactly one involution.

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

- Every two involutions in G are conjugate, and $x \sim y$ in $N_{G}(\langle x, y\rangle)$.

Why? Let u, v be two non-conjugate involutions in G. Then $g u g^{-1} \notin\langle v\rangle$ for any $g \in G$, so $\langle v\rangle g u \neq\langle v\rangle g$ for each $g \in G$. Right mult'n by u induces a fixed-point free involution on $2 k m$ cosets $G:\langle v\rangle$. But $G^{\prime}=G!\square$

- For $S=\langle x, y\rangle: N_{G}(S)=S \rtimes\langle g\rangle \cong A_{4} ; G$ has $|G| / 4$ involutions and every coset of S of G not in $N_{G}(S)$ contains exactly one involution.

First, show that $C_{G}(S)=S$. Next, $N / S=N_{G}(S) / C_{G}(S)$ is isomorphic to a subgroup of $\operatorname{Aut}(S) \cong \operatorname{Aut}\left(C_{2} \times C_{2}\right) \cong S_{3}$ and so $|N: S| \leq 6$, but $|S|=4$ while $8 \nmid|G|$, so that $|N: S|$ cannot be even, $\Rightarrow|N: S|=3$ and $|N|=3|S|=12$. \# of involutions in G is $3\left|G: N_{G}(S)\right|=|G| / 4$.

Avoiding the Gorenstein-Walter theorem, part 1

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

- Every two involutions in G are conjugate, and $x \sim y$ in $N_{G}(\langle x, y\rangle)$.

Why? Let u, v be two non-conjugate involutions in G. Then $g u g^{-1} \notin\langle v\rangle$ for any $g \in G$, so $\langle v\rangle g u \neq\langle v\rangle g$ for each $g \in G$. Right mult'n by u induces a fixed-point free involution on 2 km cosets $G:\langle v\rangle$. But $G^{\prime}=G!\square$

- For $S=\langle x, y\rangle: N_{G}(S)=S \rtimes\langle g\rangle \cong A_{4} ; G$ has $|G| / 4$ involutions and every coset of S of G not in $N_{G}(S)$ contains exactly one involution.

First, show that $C_{G}(S)=S$. Next, $N / S=N_{G}(S) / C_{G}(S)$ is isomorphic to a subgroup of $\operatorname{Aut}(S) \cong \operatorname{Aut}\left(C_{2} \times C_{2}\right) \cong S_{3}$ and so $|N: S| \leq 6$, but $|S|=4$ while $8 \nmid|G|$, so that $|N: S|$ cannot be even, $\Rightarrow|N: S|=3$ and $|N|=3|S|=12$. \# of involutions in G is $3\left|G: N_{G}(S)\right|=|G| / 4$. \square

- For every involution $u \in G \backslash N$ one has $N \cap N^{u} \cong C_{3}$; conjugation by u inverts $N \cap N^{u}$. Elements of $N_{G}(S)$ of order 3 are self-centralising in G.

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

1. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

1. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.

Proof. Let $N=N_{G}(S)$ for $S=\langle x, y\rangle$, we know that $N \neq G$.

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

1. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
Proof. Let $N=N_{G}(S)$ for $S=\langle x, y\rangle$, we know that $N \neq G$.
For any involution $u \in G \backslash N: N \cap N^{u} \cong C_{3}$, inverted by conjugation by u. If u, v are any such involutions, then $N \cap N^{u}=N \cap N^{v}$ if and only if $u v$ centralises $J=N \cap N^{u} \cong C_{3}$, and by what was established earlier this happens if and only if $u v$ is an element of J.

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

1. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
Proof. Let $N=N_{G}(S)$ for $S=\langle x, y\rangle$, we know that $N \neq G$.
For any involution $u \in G \backslash N: N \cap N^{u} \cong C_{3}$, inverted by conjugation by u. If u, v are any such involutions, then $N \cap N^{u}=N \cap N^{v}$ if and only if $u v$ centralises $J=N \cap N^{u} \cong C_{3}$, and by what was established earlier this happens if and only if $u v$ is an element of J.

Hence the number of involutions of G lying outside N is equal to three times the number of subgroups of order 3 in N, namely $3 \cdot 4=12$.

Avoiding the Gorenstein-Walter theorem, part 1 (cont.)

1. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

If $|G|=4 k m$ for k, m odd, $(k, m)=1$, and $k, m \geq 3$, then $G \cong A_{5}$.
Proof. Let $N=N_{G}(S)$ for $S=\langle x, y\rangle$, we know that $N \neq G$.
For any involution $u \in G \backslash N: N \cap N^{u} \cong C_{3}$, inverted by conjugation by u. If u, v are any such involutions, then $N \cap N^{u}=N \cap N^{v}$ if and only if $u v$ centralises $J=N \cap N^{u} \cong C_{3}$, and by what was established earlier this happens if and only if $u v$ is an element of J.

Hence the number of involutions of G lying outside N is equal to three times the number of subgroups of order 3 in N, namely $3 \cdot 4=12$.

Further three involutions are in N, so G has exactly 15 involutions. But we saw that the number of involutions in G is equal to $|G| / 4$, and so $|G|=60$. Finally, since G is perfect, it follows that $G \cong A_{5}$. \square

Avoiding the Gorenstein-Walter theorem, part 2

Avoiding the Gorenstein-Walter theorem, part 2

2. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=2 k m, k$ odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4 ; G$ has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Avoiding the Gorenstein-Walter theorem, part 2

2. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=2 k m, k$ odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4 ; G$ has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Now $G=\langle r\rangle\langle x, z\rangle$, so that G is soluble (Huppert '53). For the Fitting subgroup F of G we then have $C_{G}(F)=Z(F) \leq F$, so that conjugation of F by G induces a hom $G \rightarrow \operatorname{Aut}(F)$ with kernel contained in F. Easy: $F=F_{1} \times F_{2}$ where F_{1} is cyclic of odd order and F_{2} is a 2-group or trivial.

Avoiding the Gorenstein-Walter theorem, part 2

2. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=2 k m, k$ odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4 ; G$ has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Now $G=\langle r\rangle\langle x, z\rangle$, so that G is soluble (Huppert '53). For the Fitting subgroup F of G we then have $C_{G}(F)=Z(F) \leq F$, so that conjugation of F by G induces a hom $G \rightarrow \operatorname{Aut}(F)$ with kernel contained in F. Easy: $F=F_{1} \times F_{2}$ where F_{1} is cyclic of odd order and F_{2} is a 2-group or trivial. If F_{2} is cyclic then so is F, so $\operatorname{Aut}(F)$ is abelian, and $F \leq C_{G}(F)$, which means $F=C_{G}(F)$. So $G / F=G / C_{G}(F)$ embeds in $\operatorname{Aut}(F)$ and hence is abelian. But then $G^{\prime} \leq F$ and so G^{\prime} is abelian, \times. Thus, F_{2} is not cyclic.

Avoiding the Gorenstein-Walter theorem, part 2

2. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=2 k m, k$ odd, m even, $k \geq 3, m \geq 4$, and $\operatorname{gcd}(k, m)=1$. Then $G=\langle r\rangle\langle x, z\rangle \cong C_{k} D_{8}$, with $3 \mid k, m=4 ; G$ has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Now $G=\langle r\rangle\langle x, z\rangle$, so that G is soluble (Huppert '53). For the Fitting subgroup F of G we then have $C_{G}(F)=Z(F) \leq F$, so that conjugation of F by G induces a hom $G \rightarrow \operatorname{Aut}(F)$ with kernel contained in F. Easy: $F=F_{1} \times F_{2}$ where F_{1} is cyclic of odd order and F_{2} is a 2-group or trivial. If F_{2} is cyclic then so is F, so $\operatorname{Aut}(F)$ is abelian, and $F \leq C_{G}(F)$, which means $F=C_{G}(F)$. So $G / F=G / C_{G}(F)$ embeds in $\operatorname{Aut}(F)$ and hence is abelian. But then $G^{\prime} \leq F$ and so G^{\prime} is abelian, \times. Thus, F_{2} is not cyclic.

The fact that F_{2} is characteristic in $G \Rightarrow F_{2}=\left\langle x, s^{2}\right\rangle$ of order m, with $G / F_{2} \cong\langle y, z\rangle \cong D_{k}$ of order $2 k$. Conjugation of F_{2} by $y \Rightarrow m=4$, and $F_{2}=\left\{1, x, s^{2}, x s^{2}\right\}$. Finally, conjugation of F_{2} by $r \Rightarrow r^{-3} x r^{3}=x$.

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Need to show that our presentation defines a group of order $2 k m=8 k$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Need to show that our presentation defines a group of order $2 k m=8 k$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Recalling $r=y z, s=z x$, consider a more general group U with presentation

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Thus $N=\left\langle r^{3}\right\rangle$ is a normal subgroup of G, with r^{3} centralised by x and inverted under conjugation by each of y and z.

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Need to show that our presentation defines a group of order $2 k m=8 k$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Recalling $r=y z, s=z x$, consider a more general group U with presentation

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Thus $N=\left\langle r^{3}\right\rangle$ is a normal subgroup of G, with r^{3} centralised by x and inverted under conjugation by each of y and z.
MAGMA: the quotient U / N (obtained from U by adding $\left.r^{3}=1\right) \cong S_{4}$.

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Need to show that our presentation defines a group of order $2 k m=8 k$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle .
$$

Recalling $r=y z, s=z x$, consider a more general group U with presentation

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Thus $N=\left\langle r^{3}\right\rangle$ is a normal subgroup of G, with r^{3} centralised by x and inverted under conjugation by each of y and z.

MAGMA: the quotient U / N (obtained from U by adding $r^{3}=1$) $\cong S_{4}$.
Moreover, by Reidemeister-Schreier theory implemented as the Rewrite command in Magma, the subgroup N is free of rank 1 (infinite cyclic).

Avoiding the Gorenstein-Walter theorem, part 2 (cont.)

Need to show that our presentation defines a group of order $2 k m=8 k$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{k}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Recalling $r=y z, s=z x$, consider a more general group U with presentation

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, s^{4},\left[r^{3}, x\right]\right\rangle
$$

Thus $N=\left\langle r^{3}\right\rangle$ is a normal subgroup of G, with r^{3} centralised by x and inverted under conjugation by each of y and z.
MAGMA: the quotient U / N (obtained from U by adding $r^{3}=1$) $\cong S_{4}$.
Moreover, by Reidemeister-Schreier theory implemented as the Rewrite command in Magma, the subgroup N is free of rank 1 (infinite cyclic).

It follows that for any positive integer j we can factor out the normal subgroup generated by $r^{3 j}$, to obtain a quotient of order $24 j=2 k m$ where $k=3 j$ (and $m=4$), with the required presentation.

Avoiding the Gorenstein-Walter theorem, part 3

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3.
Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle .
$$

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3. Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle .
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be s^{ℓ}

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's, $\left.(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3. Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle .
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be s^{ℓ}

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3. Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle .
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be $s^{\ell} \times$ or $z s^{t}$ for some t. The relation $r^{j} s^{\ell} z=1$ also implies that $\left[x, r^{2}\right]=\left[y, s^{2}\right]=\left[r^{2}, s^{2}\right]=1$.

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3.
Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be $s^{\ell} \times$ or $z s^{t}$ for some t. The relation $r^{j} s^{\ell} z=1$ also implies that $\left[x, r^{2}\right]=\left[y, s^{2}\right]=\left[r^{2}, s^{2}\right]=1$.
As in Case 2, the Fitting subgroup $F=F_{1} \times F_{2}$, where F_{1} is cyclic of odd order and F_{2} is a 2-group or trivial.

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3.
Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be $s^{\ell} \times$ or $z s^{t}$ for some t. The relation $r^{j} s^{\ell} z=1$ also implies that $\left[x, r^{2}\right]=\left[y, s^{2}\right]=\left[r^{2}, s^{2}\right]=1$.

As in Case 2, the Fitting subgroup $F=F_{1} \times F_{2}$, where F_{1} is cyclic of odd order and F_{2} is a 2 -group or trivial. If F_{2} was cyclic, then it would contain a unique involution, central in $G \Rightarrow \times$.

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$.

Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3.
Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be $s^{\ell} \times$ or $z s^{t}$ for some t. The relation $r^{j} s^{\ell} z=1$ also implies that $\left[x, r^{2}\right]=\left[y, s^{2}\right]=\left[r^{2}, s^{2}\right]=1$.
As in Case 2, the Fitting subgroup $F=F_{1} \times F_{2}$, where F_{1} is cyclic of odd order and F_{2} is a 2 -group or trivial. If F_{2} was cyclic, then it would contain a unique involution, central in $G \Rightarrow \times . F_{2}$ non-cyclic $\Rightarrow \times$. So $F_{2}=1$.

Avoiding the Gorenstein-Walter theorem, part 3

3. $G=\langle x, y, z|$ invo's $\left.,(x y)^{2},(y z)^{k},(z x)^{m}, \ldots\right\rangle=\langle r, s\rangle, r=y z, s=z x$. Let $|G|=k m, k=2 j \geq 4, m=2 \ell,(j, \ell)=1, \ell$ odd and ≥ 3.
Then $G=\left\langle r^{2}, y\right\rangle\left\langle s^{2}, x\right\rangle \cong D_{j} \times D_{\ell}, j$ odd, and G has presentation

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Again $G=\langle r\rangle\langle x, z\rangle=\langle y, z\rangle\langle s\rangle$; soluble (Huppert). The subgroups $\langle r\rangle$ and $\langle x, z\rangle=\langle s, z\rangle$, of orders k and $2 m$, intersect in a C_{2} generated by the involution $u=r^{k / 2}=r^{j}$, which must be $s^{\ell} \times$ or $z s^{t}$ for some t. The relation $r^{j} s^{\ell} z=1$ also implies that $\left[x, r^{2}\right]=\left[y, s^{2}\right]=\left[r^{2}, s^{2}\right]=1$.
As in Case 2, the Fitting subgroup $F=F_{1} \times F_{2}$, where F_{1} is cyclic of odd order and F_{2} is a 2 -group or trivial. If F_{2} was cyclic, then it would contain a unique involution, central in $G \Rightarrow \times . F_{2}$ non-cyclic $\Rightarrow \times$. So $F_{2}=1$.

In particular, $k / 2=j$ must be odd. The above relations and oddness + coprimality of $\ell=m / 2$ and $j=k / 2$ imply that G is the direct product of its dihedral subgroups $\left\langle r^{2}, y\right\rangle \cong D_{j}$ and $\left\langle s^{2}, x\right\rangle \cong D_{\ell}$, as required.

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Need to show that our presentation defines a group of order $k m=4 j \ell$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Need to show that our presentation defines a group of order $k m=4 j \ell$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Consider again a more general group U with presentation $(r=y z, s=z x)$

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},\left[x, r^{2}\right],\left[y, s^{2}\right]\right\rangle .
$$

Here, r^{2} and s^{2} generate a normal subgroup N of index 8 with quotient $U / N \cong C_{2} \times C_{2} \times C_{2}$.

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Need to show that our presentation defines a group of order $k m=4 j \ell$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Consider again a more general group U with presentation ($r=y z, s=z x$)

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},\left[x, r^{2}\right],\left[y, s^{2}\right]\right\rangle
$$

Here, r^{2} and s^{2} generate a normal subgroup N of index 8 with quotient $U / N \cong C_{2} \times C_{2} \times C_{2}$.

By Reidemeister-Schreier theory (used as in part 2), the subgroup N is free abelian, of rank 2 . So, for any j, ℓ we can factor out the normal subgroup $N^{(j, \ell)}=\left\langle r^{2 j}, s^{2 \ell}\right\rangle$ and obtain a quotient $U / N^{(j, \ell)}$ of order $8 j \ell$.

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Need to show that our presentation defines a group of order $k m=4 j \ell$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Consider again a more general group U with presentation ($r=y z, s=z x$)

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},\left[x, r^{2}\right],\left[y, s^{2}\right]\right\rangle
$$

Here, r^{2} and s^{2} generate a normal subgroup N of index 8 with quotient $U / N \cong C_{2} \times C_{2} \times C_{2}$.

By Reidemeister-Schreier theory (used as in part 2), the subgroup N is free abelian, of rank 2 . So, for any j, ℓ we can factor out the normal subgroup $N^{(j, \ell)}=\left\langle r^{2 j}, s^{2 \ell}\right\rangle$ and obtain a quotient $U / N^{(j, \ell)}$ of order $8 j \ell$.

In this quotient we then show by a direct calculation that if j and ℓ are odd, then the element $r^{j} s^{\ell} z$ is a central involution.

Avoiding the Gorenstein-Walter theorem, part 3 (cont.)

Need to show that our presentation defines a group of order $k m=4 j \ell$:

$$
G=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2}, r^{2 j}, s^{2 \ell}, r^{j} s^{\ell} z\right\rangle
$$

Consider again a more general group U with presentation $(r=y z, s=z x)$

$$
U=\left\langle x, y, z \mid x^{2}, y^{2}, z^{2},(x y)^{2},\left[x, r^{2}\right],\left[y, s^{2}\right]\right\rangle
$$

Here, r^{2} and s^{2} generate a normal subgroup N of index 8 with quotient $U / N \cong C_{2} \times C_{2} \times C_{2}$.

By Reidemeister-Schreier theory (used as in part 2), the subgroup N is free abelian, of rank 2 . So, for any j, ℓ we can factor out the normal subgroup $N^{(j, \ell)}=\left\langle r^{2 j}, s^{2 \ell}\right\rangle$ and obtain a quotient $U / N^{(j, \ell)}$ of order $8 j \ell$.

In this quotient we then show by a direct calculation that if j and ℓ are odd, then the element $r^{j} s^{\ell} z$ is a central involution.

Factoring out $\left\langle r^{j} s^{\ell} z\right\rangle$ we obtain a quotient of order $4 j \ell=k m$. \square

Remarks

Remarks

In the original papers of Breda, Nedela and Š (2005), Conder, Potočnik and Š (2010) and Conder, Nedela, Š (2012) the classification results for non-orientable regular maps with $\chi \in\left\{-p,-p^{2},-3 p\right\}$, respectively, rely on the Gorenstein-Walter theorem about groups with dihedral Sylow 2 -subgroups.

Remarks

In the original papers of Breda, Nedela and Š (2005), Conder, Potočnik and \check{S} (2010) and Conder, Nedela, \check{S} (2012) the classification results for non-orientable regular maps with $\chi \in\left\{-p,-p^{2},-3 p\right\}$, respectively, rely on the Gorenstein-Walter theorem about groups with dihedral Sylow 2-subgroups.

The Gorenstein-Walter result can be eliminated from the first classification (Conder and Š, 2020). We think that this kind of approach be useful for avoiding the use of G-W also in the other two classifications, and also in future projects involving classification of regular maps.

Remarks

In the original papers of Breda, Nedela and Š (2005), Conder, Potočnik and \check{S} (2010) and Conder, Nedela, \check{S} (2012) the classification results for non-orientable regular maps with $\chi \in\left\{-p,-p^{2},-3 p\right\}$, respectively, rely on the Gorenstein-Walter theorem about groups with dihedral Sylow 2-subgroups.

The Gorenstein-Walter result can be eliminated from the first classification (Conder and Š, 2020). We think that this kind of approach be useful for avoiding the use of G-W also in the other two classifications, and also in future projects involving classification of regular maps.

Thank you.

