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Cayley graphs

Definition
G = 〈S〉 is a group. The Cayley graph Γ(G,S) has vertex
set G with g,h connected if and only if gs = h or hs = g
for some s ∈ S.

By definition, Γ(G,S) is undirected.

Definition
The diameter of Γ(G,S) is

diam Γ(G,S) = max
g∈G

min
k

g = s1 · · · sk , si ∈ S ∪ S−1.

(Same as graph theoretic diameter.)
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Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even,
Goldreich 1981)

How large can be the diameter?

G = 〈x〉 ∼= Zn, diam Γ(G, {x}) = bn/2c

More generally, G with large abelian factor group may
have Cayley graphs with diameter proportional to |G|.
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Rubik’s cube

S = {(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)

(11,35,27,19), (9,11,16,14)(10,13,15,12)(1,17,41,40)

(4,20,44,37)(6,22,46,35), (17,19,24,22)(18,21,23,20)

(6,25,43,16)(7,28,42,13)(8,30,41,11), (25,27,32,30)

(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),

(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)

(1,14,48,27), (41,43,48,46)(42,45,47,44)(14,22,30,38)

(15,23,31,39)(16,24,32,40)}

Rubik := 〈S〉, |Rubik | = 43252003274489856000.

20 ≤ diam Γ(Rubik ,S) ≤ 29 (Rokicki 2009)
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The diameter of groups

Definition

diam (G) := max
S

diam Γ(G,S)

Conjecture (Babai, in [Babai,Seress 1992])
There exists a positive constant c:
G simple, nonabelian⇒ diam (G) = O(logc |G|).

Conjecture true for

PSL(2,p), PSL(3,p) (Helfgott 2008, 2010)
Lie-type groups of bounded rank (Pyber, E. Szabó
2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???
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Alternating groups: why is it difficult?

Attempt # 1: Techniques for Lie-type groups
Diameter results for Lie-type groups are proven by
product theorems:

Theorem (Pyber, Szabó)
There exists a polynomial c(x) such that if G is simple,
Lie-type of rank r , G = 〈A〉 then A3 = G or

|A3| ≥ |A|1+1/c(r).

In particular, for bounded r , we have |A3| ≥ |A|1+ε for
some constant ε.

Given G = 〈S〉, O(log log |G|) applications of the theorem
gives all elements of G.
Tripling length O(log log |G|) times gives diameter
3O(log log |G|) = (log |G|)c .
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Example
G = An, H ∼= Am ≤ G, g = (1,2, . . . ,n) (n odd).
S = H ∪ {g} generates G, |S3| ≤ 9(m + 1)(m + 2)|S|.

For example, if m ≈
√

n then growth is too small.

Powerful techniques, developed for Lie-type groups, are
not applicable.
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Attempt # 2: construction of a 3-cycle

Any g ∈ An is the product of at most (n/2) 3-cycles:

(1,2,3,4,5,6,7) = (1,2,3)(1,4,5)(1,6,7)

(1,2,3,4,5,6) = (1,2,3)(1,4,5)(1,6)

(1,2)(3,4) = (1,2,3)(3,1,4)

It is enough to construct one 3-cycle (then conjugate to
all others).
Construction in stages, cutting down to smaller and
smaller support.

Support of g ∈ Sym(Ω): supp(g) = {α ∈ Ω | αg 6= α}.
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One generator has small support

Theorem (Babai, Beals, Seress 2004)

G = 〈S〉 ∼= An and |supp(a)| < (1
3 − ε)n for some a ∈ S.

Then diam Γ(G,S) = O(n7+o(1)).

Recent improvement:

Theorem (Bamberg, Gill, Hayes, Helfgott, Seress,
Spiga 2011)
G = 〈S〉 ∼= An and |supp(a)| < 0.63n for some a ∈ S.
Then diam Γ(G,S) = O(nc).

The proof gives c = 78 (with some further work,
c = 66 + o(1)).
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How to construct one element with moderate
support?

Up to recently, only one result with no conditions on the
generating set.

Theorem (Babai, Seress 1988)
Given An = 〈S〉, there exists a word of length
exp(

√
n log n(1 + o(1))), defining h ∈ An with

|supp(h)| ≤ n/4. Consequently

diam (An) ≤ exp(
√

n log n(1 + o(1))).
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A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

diam (An) ≤ exp(O(log4 n log log n)).

Babai’s conjecture would require
diam (An) ≤ nO(1) = exp(O(log n)).

Corollary

G ≤ Sn transitive⇒ diam (G) ≤ exp(O(log4 n log log n)).

Corollary follows from

Theorem (Babai, Seress 1992)
G ≤ Sn transitive
⇒ diam (G) ≤ exp(O(log3 n)) · diam (Ak ) where Ak is the
largest alternating composition factor of G.

http://www.math.osu.edu/˜seress.1/Publications.html
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