The diameter of permutation groups

Ákos Seress

February 2011, Queenstown

Cayley graphs

Definition

$G=\langle S\rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set G with g, h connected if and only if $g s=h$ or $h s=g$ for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

Cayley graphs

Definition

$G=\langle S\rangle$ is a group. The Cayley graph $\Gamma(G, S)$ has vertex set G with g, h connected if and only if $g s=h$ or $h s=g$ for some $s \in S$.

By definition, $\Gamma(G, S)$ is undirected.

Definition

The diameter of $\Gamma(G, S)$ is

$$
\operatorname{diam} \Gamma(G, S)=\max _{g \in G} \min _{k} g=s_{1} \cdots s_{k}, s_{i} \in S \cup S^{-1}
$$

(Same as graph theoretic diameter.)

Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

Computing the diameter is difficult

NP-hard even for elementary abelian 2-groups (Even, Goldreich 1981)

How large can be the diameter?

$$
G=\langle x\rangle \cong Z_{n}, \quad \operatorname{diam} \Gamma(G,\{x\})=\lfloor n / 2\rfloor
$$

More generally, G with large abelian factor group may have Cayley graphs with diameter proportional to $|G|$.

Rubik's cube

Introduction

$$
S=\{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)
$$

$$
(11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40)
$$

$$
(4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20)
$$

$$
(6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30)
$$

$$
(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
$$

$$
(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)
$$

$$
(1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38)
$$

$$
(15,23,31,39)(16,24,32,40)\}
$$

Rubik : $=\langle$ S \rangle, \mid Rubik $\mid=43252003274489856000$.

Rubik's cube

$$
\begin{array}{r}
S=\{(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) \\
(11,35,27,19),(9,11,16,14)(10,13,15,12)(1,17,41,40) \\
(4,20,44,37)(6,22,46,35),(17,19,24,22)(18,21,23,20) \\
(6,25,43,16)(7,28,42,13)(8,30,41,11),(25,27,32,30) \\
(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24), \\
(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29) \\
(1,14,48,27),(41,43,48,46)(42,45,47,44)(14,22,30,38) \\
(15,23,31,39)(16,24,32,40)\}
\end{array}
$$

Rubik : $=\langle$ S \rangle, \mid Rubik $\mid=43252003274489856000$. $20 \leq \operatorname{diam} \Gamma($ Rubik, $S) \leq 29$ (Rokicki 2009)

The diameter of permutation groups
 Ákos Seress

Definition

$$
\operatorname{diam}(G):=\max _{S} \operatorname{diam} \Gamma(G, S)
$$

The diameter of groups

Definition

$$
\operatorname{diam}(G):=\max _{S} \operatorname{diam} \Gamma(G, S)
$$

Conjecture (Babai, in [Babai,Seress 1992])

There exists a positive constant c : G simple, nonabelian $\Rightarrow \operatorname{diam}(G)=O\left(\log ^{c}|G|\right)$.

The diameter of groups

Definition

$$
\operatorname{diam}(G):=\max _{S} \operatorname{diam} \Gamma(G, S)
$$

Conjecture (Babai, in [Babai,Seress 1992])

There exists a positive constant c :
G simple, nonabelian $\Rightarrow \operatorname{diam}(G)=O\left(\log ^{c}|G|\right)$.
Conjecture true for

- PSL(2, p), $\operatorname{PSL}(3, p)$ (Helfgott 2008, 2010)
- Lie-type groups of bounded rank (Pyber, E. Szabó 2011) and (Breuillard, Green, Tao 2011)

Alternating groups ???

Alternating groups: why is it difficult?

Attempt \# 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem (Pyber, Szabó)

There exists a polynomial $c(x)$ such that if G is simple, Lie-type of rank $r, G=\langle A\rangle$ then $A^{3}=G$ or

$$
\left|A^{3}\right| \geq|A|^{1+1 / c(r)}
$$

In particular, for bounded r, we have $\left|A^{3}\right| \geq|A|^{1+\varepsilon}$ for some constant ε.

Alternating groups: why is it difficult?

Attempt \# 1: Techniques for Lie-type groups Diameter results for Lie-type groups are proven by product theorems:

Theorem (Pyber, Szabó)

There exists a polynomial $c(x)$ such that if G is simple, Lie-type of rank $r, G=\langle A\rangle$ then $A^{3}=G$ or

$$
\left|A^{3}\right| \geq|A|^{1+1 / c(r)}
$$

In particular, for bounded r, we have $\left|A^{3}\right| \geq|A|^{1+\varepsilon}$ for some constant ε.

Given $G=\langle S\rangle, O(\log \log |G|)$ applications of the theorem gives all elements of G.
Tripling length $O(\log \log |G|)$ times gives diameter $3^{O(\log \log |G|)}=(\log |G|)^{c}$.

Introduction

Product theorems are false in A_{n}.

Example

$$
\begin{aligned}
& G=A_{n}, H \cong A_{m} \leq G, g=(1,2, \ldots, n)(n \text { odd }) . \\
& S=H \cup\{g\} \text { generates } G,\left|S^{3}\right| \leq 9(m+1)(m+2)|S| .
\end{aligned}
$$

For example, if $m \approx \sqrt{n}$ then growth is too small.

Introduction

Product theorems are false in A_{n}.

Example

$$
\begin{aligned}
& G=A_{n}, H \cong A_{m} \leq G, g=(1,2, \ldots, n)(n \text { odd }) . \\
& S=H \cup\{g\} \text { generates } G,\left|S^{3}\right| \leq 9(m+1)(m+2)|S| .
\end{aligned}
$$

For example, if $m \approx \sqrt{n}$ then growth is too small.
Powerful techniques, developed for Lie-type groups, are not applicable.

The diameter of permutation groups

Ákos Seress

Introduction

Alternating groups

Attempt \# 2: construction of a 3-cycle

Any $g \in A_{n}$ is the product of at most ($n / 2$) 3-cycles:
$(1,2,3,4,5,6,7)=(1,2,3)(1,4,5)(1,6,7)$
$(1,2,3,4,5,6)=(1,2,3)(1,4,5)(1,6)$
$(1,2)(3,4)=(1,2,3)(3,1,4)$

Attempt \# 2: construction of a 3-cycle

Any $g \in A_{n}$ is the product of at most $(n / 2) 3$-cycles:
$(1,2,3,4,5,6,7)=(1,2,3)(1,4,5)(1,6,7)$
$(1,2,3,4,5,6)=(1,2,3)(1,4,5)(1,6)$
$(1,2)(3,4)=(1,2,3)(3,1,4)$
It is enough to construct one 3-cycle (then conjugate to all others).
Construction in stages, cutting down to smaller and smaller support.

Support of $g \in \operatorname{Sym}(\Omega): \operatorname{supp}(g)=\left\{\alpha \in \Omega \mid \alpha^{g} \neq \alpha\right\}$.

One generator has small support

Theorem (Babai, Beals, Seress 2004)

$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<\left(\frac{1}{3}-\varepsilon\right) n$ for some $a \in S$. Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{7+o(1)}\right)$.

Recent improvement:
Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2011)
$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<0.63 n$ for some $a \in S$. Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{c}\right)$.

One generator has small support

Theorem (Babai, Beals, Seress 2004)

$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<\left(\frac{1}{3}-\varepsilon\right) n$ for some $a \in S$. Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{7+o(1)}\right)$.

Recent improvement:
Theorem (Bamberg, Gill, Hayes, Helfgott, Seress, Spiga 2011)
$G=\langle S\rangle \cong A_{n}$ and $|\operatorname{supp}(a)|<0.63 n$ for some $a \in S$.
Then $\operatorname{diam} \Gamma(G, S)=O\left(n^{C}\right)$.
The proof gives $c=78$ (with some further work, $c=66+o(1))$.

How to construct one element with moderate support?

Up to recently, only one result with no conditions on the generating set.

Theorem (Babai, Seress 1988)

Given $A_{n}=\langle S\rangle$, there exists a word of length $\exp (\sqrt{n \log n}(1+o(1)))$, defining $h \in A_{n}$ with $|\operatorname{supp}(h)| \leq n / 4$. Consequently

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp (\sqrt{n \log n}(1+o(1)))
$$

The diameter of permutation

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right) .
$$

Babai's conjecture would require $\operatorname{diam}\left(A_{n}\right) \leq n^{(1)}=\exp (O(\log n))$.

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right) .
$$

Babai's conjecture would require $\operatorname{diam}\left(A_{n}\right) \leq n^{(1)}=\exp (O(\log n))$.

Corollary

$G \leq S_{n}$ transitive $\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right)$.

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right) .
$$

Babai's conjecture would require $\operatorname{diam}\left(A_{n}\right) \leq n^{O(1)}=\exp (O(\log n))$.

Corollary

$G \leq S_{n}$ transitive $\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right)$.
Corollary follows from

Theorem (Babai, Seress 1992)

$G \leq S_{n}$ transitive
$\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{3} n\right)\right) \cdot \operatorname{diam}\left(A_{k}\right)$ where A_{k} is the largest alternating composition factor of G.

A quasipolynomial bound

Theorem (Helfgott, Seress 2011)

$$
\operatorname{diam}\left(A_{n}\right) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right) .
$$

Babai's conjecture would require $\operatorname{diam}\left(A_{n}\right) \leq n^{O(1)}=\exp (O(\log n))$.

Corollary

$G \leq S_{n}$ transitive $\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{4} n \log \log n\right)\right)$.
Corollary follows from

Theorem (Babai, Seress 1992)

$G \leq S_{n}$ transitive
$\Rightarrow \operatorname{diam}(G) \leq \exp \left(O\left(\log ^{3} n\right)\right) \cdot \operatorname{diam}\left(A_{k}\right)$ where A_{k} is the largest alternating composition factor of G.
http://www.math.osu.edu/seress.1/Publications.html

