Maths 190 Lecture 22

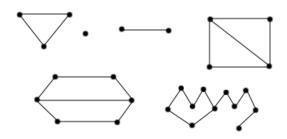
- ▶ **Topic for today**: Euler characteristic
- ▶ Question of the day: Why are there exactly 5 platonic solids?
- ▶ **Big idea**: The power of abstraction (again)

Graphs

Remember from the last lecture that a **graph** is a picture made from dots (called vertices) and lines between dots (called edges).

A graph is **connected** if there is a path between any two vertices.

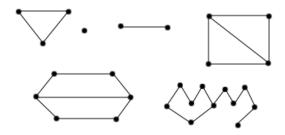
We will also restrict to graphs which can be **embedded on a sphere** without any edges crossing.



Graphs

Let E be the number of edges in a connected graph, and V the number of vertices.

We imagine the graph is drawn on a sphere (or balloon) with no edges crossing. Let F be the number of **faces** of the graph. A **face** is a region which is "enclosed" by edges. We include the "outside" face.



Euler characteristic

Determine V, E and F for these connected graphs. Put the results in a table.

V		F	V-E+F
α	ന	2	2

Euler characteristic

The **Euler characteristic** is the formula V - E + F = 2.

(Technically, it is the value 2 of the formula.)

We will show that this formula holds for any connected graph.

I remember this using the mnemonic VEryFun.

Proof of the Euler characteristic

- ► Every connected graph can be built by starting with the graph with a single vertex and no edges and either adding an edge between two existing vertices or adding a new vertex and an edge between it and a previously existing vertex.

 This is not surprising: It is exactly how one draws the picture.
- ▶ Graphs with a single vertex and no edges have V = 1, E = 0, F = 1 and so V E + F = 2. Hence, the Euler characteristic holds for them.
- ▶ If we have a graph for which the Euler characteristic holds then consider what happens when we add a new edge in either of the two ways mentioned above.

Proof of the Euler characteristic (continued)

▶ Let *E*, *V* and *F* be the number of vertices, edges and faces of the graph.

By assumption, V - E + F = 2.

Adding a new edge between two existing vertices leads to a new graph with V'=V, E'=E+1 and F'=F+1. Hence

$$V' - E' + F' = V - (E+1) + (F+1) = V - E + F = 2.$$

Adding a new vertex and a new edge leads to a new graph with V'=V+1, E'=E+1 and F'=F. Hence

$$V' - E' + F' = (V + 1) - (E + 1) + F = V - E + F = 2.$$

► Hence (by the principle of mathematical induction, to be precise) the Euler characteristic holds for every graph.

Platonic solids and graphs on spheres

- Consider a platonic solid made of rubber like a balloon.
- Draw lines along the edges.
- ▶ Blow it up so it is a sphere.
- We have is a graph on a sphere.
- ▶ Hence, the Euler characteristic does hold for platonic solids.

Solid	Vertices	Edges	Faces	Faces per Vertex	Sides per Face
				vertex	race
Tetrahedron	4	6	4	3	3
Cube	8	12	6	3	4
Octahedron	6	12	8	4	3
Dodecahedron	20	30	12	3	5
Icosahedron	12	30	20	5	3

- Suppose there is a hypothetical platonic solid called MYSTERAHEDRON.
 - Recall, a platonic solid has all faces the same, and the same number of faces meet at each vertex.
- ► The graph on the sphere corresponding to MYSTERAHEDRON satisfies V E + F = 2.
- Let p be the number of edges of each face and q the number of faces which meet at each vertex.
 (In our new language, q is the degree of each vertex.)
 Recall that pF = 2E and qV = 2E.
- ▶ Hence V = 2E/q and F = 2E/p and so

$$2 = V - E + F = E\left(\frac{2}{q} - 1 + \frac{2}{p}\right).$$

▶ Since 2 > 0 and E > 0 it follows that

$$\frac{2}{q} + \frac{2}{p} > 1.$$

- ▶ Now, $p \ge 3$ and $q \ge 3$.
- ▶ To have $\frac{2}{3} + \frac{2}{p} > 1$ it is necessary that $p \le 5$.
- ▶ Hence, the MYSTERAHEDRON must have $3 \le p, q \le 5$.

р	q	2/p + 2/q	Shape
3	3	4/3	Tetrahedron
3	4	7/6	Cube
3	5	16/15	Dodecahedron
4	3	7/6	Octahedron
4	4	1	Impossible
4	5	9/10	Impossible
5	3	16/15	Icosahedron
5	4	9/10	Impossible
5	5	4/5	Impossible

Graphs on other surfaces

The Euler characteristic does not necessarily hold for graphs which are drawn on another surface than a sphere.

See your assignment question 5.

Important ideas from today

Abstraction is a powerful tool for solving problems.

By studying a simple algebraic formula coming from the Euler characteristic we were able to prove that there are exactly 5 platonic solids.

A similar idea is used in Question 4 of the assignment.

Read Sections 5.4 of the book.