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Abstract. We investigate the solution structure and stability of a semiconductor laser receiving time-delayed
and frequency-filtered optical feedback (FOF) from two external filters. This system is referred to as the 2FOF
laser, and it has been used as pump laser in optical telecommunication and as light source in sensor applications.
The underlying idea is that the two filter loops provide a means of stabilizing and controling the laser output. The
mathematical model takes the form of delay differential equations for the (real-valued) population inversion of the
laser active medium and for the (complex-valued) electric fields of the laser cavity and of the two filters. There are
two time delays, which are the travel times of the light from the laser to each of the filters and back.

Our analysis of the 2FOF laser focuses on the basic solutions, known as continuous waves or external filtered
modes (EFMs), which correspond to laser output with steady amplitude and frequency. These solutions have been
studied for the case of a laser with only a single filtered optical feedback loop. Here, we demonstrate that the second
filter drastically modifies the overall structure and stability of the EFMs. A particular challenge for the analysis
of the EFMs lies in the need to cope with a considerable number of bifurcation parameters: the feedback phase
difference dCp which quantifies the level of interference between the two feedback signals, detunings ∆1 and ∆2

between the laser frequency and the peak frequencies of each filter, the common width Λ of the filters’ transmittance
profile, and two delay times τ1 and τ2.

To analyse the intricate geometric structure of the EFMs we consider the EFM-surface in the (ωs, Ns, dCp)-space
of steady frequency ωs, the corresponding steady population inversion Ns, and the feedback phase difference dCp.
The EFM-surface emerges as the natural object for the study of the 2FOF laser because it conveniently catalogues
information about its available frequency ranges. We identify five transitions, through four different singularities and
a cubic tangency, that change the type of the EFM-surface locally. These transitions determine the EFM-surface
bifurcation diagram in the (∆1, ∆2)-plane for different but fixed values of Λ, τ1 and τ2. In this way, we classify
the possible types of the EFM-surface, which consist of a combination of bands (covering the entire dCp-range) and
islands (covering only a finite range of dCp).

To investigate the stability of the EFMs, we compute curves of saddle-node and Hopf bifurcations, which interact
at Bogdanov-Takens, saddle-node Hopf and Hopf-Hopf bifurcation points. We focus on those bifurcation curves
that bound regions with stable EFMs on the EFM-surface, and we study how these stability regions evolve when
parameters are changed along a chosen path in the (∆1, ∆2)-plane. We identify potential sources of amplitude
instabilities and uncover interesting connections between changes to the EFM-surface itself and changes to the EFM
stability. From a viewpoint of practical interests, we find various bands and islands of stability on the EFM-surface
that may be accessible experimentally.

Beyond their relevance for the 2FOF laser system, the results presented here also showcase how advanced tools
from bifurcation theory and singularity theory can be employed to uncover and represent the complex solution
structure of a delay differential equation model that depends on a considerable number of input parameters, including
two time delays.

1. INTRODUCTION. Semiconductor lasers are very efficient in transforming electrical en-
ergy to coherent light. They consist of an optical cavity filled with semiconductor active medium
where electron-hole pairs (or population inversion) are generated by an electrical pump current. As
light passes through the active medium, it is amplified by stimulated recombination of electron-hole
pairs. Reflections from semitransparent mirrors ensure multiple light passages through the active
medium, leading to a build-up of high-intensity coherent light. A fraction of the light exits the
cavity through one (or both) of the semitransparent mirrors, and it forms the laser beam [33, 46].
Semiconductor lasers are small (about 1 millimetre long and several micrometres wide), can easily
be mass produced and are used in their millions in every day applications — most importantly, in
optical telecommunication and optical storage systems. On the down side, semiconductor lasers are
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known to be very sensitive to optical influences, especially in the form of external optical feedback
from other optical components (such as mirrors and lenses) and via coupling to other lasers. De-
pending on the exact situation, optical feedback may induce many different kinds of laser dynamics.
Examples include increased stability [6, 23] but also a period doubling cascade to chaos [76], torus
break-up [73], and a boundary crisis [72]. See, for example, [33, 38, 48, 63] as entry points to the
extensive literature on the possible nonlinear dynamics in lasers with optical feedback.

The simplest and now classical example of optical feedback is conventional optical feedback
(COF) where light is reflected on a normal mirror and then re-enters the laser [43]. However, other
types of laser systems with optical feedback have been considered, including lasers with two COF
feedback loops [56], with incoherent feedback [20], with optoelectronic feedback [44], with phase-
conjugate feedback (PCF) [7, 37] and with filtered optical feedback (FOF) [14, 28]. In all these
cases an external feedback loop, or external cavity, is associated with a delay time τ that arises
from the travel time of the light before it re-enters the laser. Due to the fast time scales within a
semiconductor laser (on the order of picoseconds), external optical paths of a few centimetres lead
to considerable delay times that cannot be ignored. As a consequence, an optical feedback created
by an external cavity allows the laser to operate at various compound-cavity modes. These modes
are referred to as continuous waves (CWs) because the laser emits light with steady amplitude and
a specific frequency. The CWs are the simplest nonzero solutions of the system and they form
the backbone for understanding the overall dynamics, even when they are unstable. For example,
the typical dynamics of a COF laser with irregular drop-outs of the power has been attributed to
trajectories that pass closely near several CWs of saddle type [25, 60].

In practical applications a main concern is to achieve stable, and possibly tunable, laser oper-
ation. One method of achieving this has been to use filtered optical feedback where the reflected
light is spectrally filtered before it re-enters the laser — one speaks of the (single-) FOF laser. As in
any optical feedback system, important parameters are the delay time and the feedback strength.
Moreover, FOF is a form of coherent feedback, meaning that the phase relationship between out-
going and returning light is also an important parameter. The interest in the FOF laser is due
to the fact that filtering of the reflected light allows additional control over the behaviour of the
output light by means of choosing the spectral width of the filter and its detuning from the laser
frequency. The basic idea is that the FOF laser produces stable output at the central frequency
of the filter, which is of interest, for example, for achieving stable frequency tuning of lasers for
telecommunications applications [9].

The single-FOF laser system has recently been the subject of a number of experimental and
theoretical studies [15, 18, 22, 23, 27, 28, 31, 52, 67, 77, 79, 80]. Here, we assume that a solitary
laser (i.e. without feedback) emits light of constant intensity and frequency Ω0. It has been shown
that feedback from a filter can improve the laser performance [6, 23], but it can also induce a
wide range of more complicated dynamics. Its CW solutions are called external filtered modes
(EFMs) [77], and they lie on closed curves, called EFM-components, in the (ωs, Ns)-plane of the
lasing frequency ωs (relative to the solitary laser frequency Ω0) and population inversion Ns of the
laser (the number of electron-hole pairs). The EFM-components are traced out by the EFMs as
the phase of the electric field of the filter (relative to the phase of the laser field), called here the
feedback phase Cp, is varied. An analysis in [28] into the dependence of the FOF laser on the filter
width Λ and the detuning ∆ between the filter central frequency and the solitary laser frequency
showed that there may be at most two EFM-components: one around the solitary laser frequency
and one around the filter peak-frequency. A stability and bifurcation analysis of EFMs in [17]
shows that the FOF laser is very sensitive to changes in feedback phase Cp. Furthermore, the filter
parameters Λ and ∆ have a big influence on the possible (non-steady amplitude) dynamics [16, 19].
Importantly, in a single-FOF laser one can observe not only the well-known relaxation oscillations,
but also so-called frequency oscillations where only the frequency of the laser field oscillates while
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Fig. 1. Sketch of a 2FOF semiconductor laser realized by coupling to an optical fiber with two fibre Bragg
gratings (a), and by two (unidirectional) feedback loops with Fabry-Pérot filters (b); other optical elements are beam
splitters (BS) and optical isolators (ISO).

its amplitude remains practically constant [24]. In light of the strong amplitude-phase coupling
of semiconductor lasers, the existence of frequency oscillations is somewhat surprising, and they
are due to an interaction with the flanks of the filter transmittance profile [16]. An experimental
study of the influence of feedback phase Cp and frequency detuning ∆ on the single-FOF laser
dynamics can be found in [19]. The limiting cases of small and large Λ and ∆ have been considered
in [28, 31, 77]. In all these studies the filter transmittance has a single maximum defining its central
frequency; the FOF problem for periodic filter transmittance with multiple maxima and minima
was considered in [67].

In a number of applications, such as the design of pump lasers for optical communication
systems, the requirements on stable and reliable laser operation at a specific frequency are so
stringent (especially when the device is on the ocean floor as part of a long-range fiber cable) that
other methods of stabilisation have been considered. One approach is to employ FOF from two
filtered feedback loops to stabilise the output of an (edge emitting) semiconductor laser [4, 9, 21, 53].
This laser system is referred to as the 2FOF laser for short, and it is the subject of the study
presented here. The main idea is that the second filter provides extra frequency control over the
laser output. In [4] it has been shown that a second filtered feedback loop may indeed improve
the beam quality. In [21] an experimental setup has been realized and it was shown that 2FOF
laser may show complicated dynamics as well; however, such dynamics have not been investigated
further. The recent 2FOF experiment in [54] uses two independent feedback loops with with
Fabry-Pérot filters, and it shows that the second feedback loop allows for precise control of the
frequency components of the single-FOF laser; a period-doubling route to chaotic dynamics was
also observed. With the focus on operational stability, industrial pump sources with enhanced
wavelength and power stability performance due to a 2FOF design are available today [53]. The
2FOF laser has also been considered recently for frequency switching [9] and for sensor applications
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Fig. 2. Spectrum of light transmitted (left scale) or reflected (right scale) by a Fabry-Pérot filter (black) and by
a fiber Bragg grating (grey). The peak is at the filter’s central frequency ∆, and the filter width Λ is defined as the
full width at half maximum.

[61, 62].

The filtered feedback of the 2FOF laser can be realized in two ways: either by reflection from
an optical fibre with two fiber Bragg gratings (periodic changes of the refractive index) at given
distances [62], or by transmission through two unidirectional feedback loops with Fabry-Pérot filters
[54]; see Fig. 1. The two setups are equivalent in the sense that the overall spectral characteristics
of the filtering is the same. More specifically, a fiber Bragg grating (FBG) has a peak in the
reflectance at its central frequency, while a Fabry-Pérot filter (FP) has a peak in the transmittance
at its central frequency; see Fig. 2. There are some important practical differences between the two
setups in Fig. 1 that are discussed in more detail in Sec. 2. Nevertheless, the 2FOF laser in either
form can be modelled by rate equations for the complex-valued electric field E inside the laser, for
the real-valued population inversion N inside the laser, and for the complex-valued electric fields
F1 and F2 inside the two filters. The 2FOF laser is hence described by a delay differential requation
(DDE) model, which describes the time evolution of seven real-valued variables in the presence of
two discrete time delays τ1 and τ2.

In this paper we perform an extensive study of the external filtered modes (EFMs) of the
2FOF laser as modelled by the DDE model (2.1)–(2.4), introduced in detail in Sec. 2 below. The
analysis shows that the second filter has a significant influence on the structure of the EFMs. As
was already mentioned, in the single-FOF laser one may find two (disjoint) EFM-components.
However, in the 2FOF system, the number of (disjoint) EFM-components depends on the exact
phase relationship between the two filters. When the filter loops have the same delay times, the
interference between the filter fields can give rise to at most three EFM-components — one around
the solitary laser frequency and one around the peak frequency of each filter. However, when the
two delay times are not the same, then the interference between the filter fields may lead to any
number of EFM-components.

The overall structure of the EFMs depends on a considerable number of system parameters
and is quite complicated. To deal with this difficulty we consider the EFM-surface in the three-
dimensional (ωs, Ns, dCp)-space, where dCp is the phase difference between the two filter fields.
The EFM-surface is a natural object for the study of basic solutions in the 2FOF laser because its
intersection curves with planes of constant dCp are the EFM-components, similar to those for the
single-FOF laser. In other words, the EFM-surface is a catalogue of all possible EFM-components
of the 2FOF laser that may be encountered for different, fixed value of dCp. Indeed, the EFM-
surface is rendered here via computing the EFM-components in a suitable number of cross sections
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for fixed dCp.
We first consider the EFM-surface for the case of two identical filter loops, but with nonzero

phase difference between the filters. Then we study the influence of the two filter detunings ∆1 and
∆2 (from the solitary laser frequency Ω0). This leads to a bifurcation diagram in the (∆1,∆2)-plane
whose open regions correspond to different types of the EFM-surface. In the spirit of singularity
theory, we present a classification where the rationale is to distinguish types of the EFM-surface
that induce different corresponding EFM-components. The boundary curves in the (∆1,∆2)-plane
are formed by singularity transitions (for example, through saddle points and extrema) of the EFM-
surface, and they can be computed as such. We also consider how the EFM-surface bifurcation
diagram in the (∆1,∆2)-plane changes with the spectral width Λ of the filters. This allows us to
investigate the transition of the FOF laser between the two limiting cases: the case of an infinitesi-
mally narrow filter profile, which corresponds to monochromatic optical injection at the filter peak
frequency, and the case of an infinitely wide filter profile, which corresponds to conventional (i.e.
unfiltered) optical feedback. Finally, we study effects of different delay times of the two filter loops
to demonstrate that, in contrast to the single-FOF laser, the 2FOF laser may have an arbitrary
number of EFM-components.

We also present an investigation of the stability of the EFMs. Its goal is limited, namely, to
determine whether the properties of the EFM-surface are reflected by the regions of EFM-stability
on it. As one might expect, there is no one-to-one correspondence between the two, as only a
part of the EFMs on the EFM surface is stable. Nevertheless, we find clearly differing types of
EFM-stability regions that are assocoated with certain types of the EFM surface.

Overall, the EFM-surface emerges as the natural object that one should consider to under-
stand the steady-state dynamics of the 2FOF laser. Our analysis reveals a complicated depen-
dence of the EFM-surface on several key parameters and provides a comprehensive and compact
way of understanding the EFM solutions. These results are obtained through the computation
of parameter-dependent surfaces of solutions of a DDE with two delays which, we believe, repre-
sents the state-of-the-art of numerical bifurcation analysis for DDEs with considerable numbers of
parameters.

The paper is organised as follows. In section Sec. 2 we introduce the rate equation model of
the 2FOF laser and discuss its properties. In Sec. 3 we define the EFMs and show how they can
be computed as solutions of a transcendental equation and its envelope; furthermore, we introduce
the EFM-components and the EFM-surface. Section 4 is devoted to the classification of the EFM
surface into different types, where the two delays are assumed to be equal. In (4.1) we consider
how the EFM-components for dCp = 0 depend on the detunings of the two filters. We then present
in Sec. 4.2 the types of EFM-surface for which the number of EFM components is independent of
the choice of dCp. In Sec. 4.3 we identify and study five transitions that change the number of
EFM-components and, hence, the type of the EFM-surface. Section 4.4 presents the EFM-surface
bifurcation diagram in the (∆1, ∆2)-plane for fixed and identical filter widths Λ, together with
representatives of the associated EFM-surface types. In Sec. 4.5 we show how the EFM-surface
bifurcation diagram changes as Λ is varied from zero to very large values. This involves a bifurcation
at infinity of the (∆1, ∆2)-plane, which it is discussed in Sec. 4.6. The stability of the EFMs is
the subject of Sec. 5. We first consider in Sec. 5.1 the EFM stability regions for two identical
undetuned filter loops and then present in Sec. 5.2 the EFM-stability regions for representative
types of the EFM-surface along a path in the (∆1, ∆2)-plane. Section 6 discusses the influence of a
nonzero difference dτ between the two delay times on the EFM surface structure and the associated
EFM-stability regions. We conclude in Sec. 7, where we also present an outlook on future work and
briefly discuss how (different types of) regions of stable EFMs of the 2FOF laser could be identified
experimentally. Finally, the Appendix gives more details of how the EFM-surface has been rendered
from data obtained from dedicated continuation runs with the packageDDE-BIFTOOL [11].
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2. MODEL OF THE 2FOF LASER. The 2FOF design with fiber Bragg gratings (FBG)
as in Fig. 1 (a) is the one that has been employed in industrial pump sources [53], and it is also the
one considered in [21, 61, 62]; see also the analysis of FOF from a FBG in [51]. Its main advantage
is that FBGs are simple and cheap to manufacture in a fiber at desired locations; furthermore,
apart from the need to couple the light into the fiber without any direct reflections (to avoid
COF), no additional optical elements are required so that the device is relatively simple; see Fig. 1
(a). The downside is that, once a FBG is imprinted into an optical fiber, it cannot be modified.
Furthermore, the two filters are not independent feedback loops. When the two FBGs operate at
different frequencies (as in the actual devices) then they are transparent to each other’s central
frequency, meaning that the first FBG only slightly weakens the light reflected from the second
FBG and one may assume that there are no direct interactions between these two filters. However,
when both FBGs operate very close to the same frequency then the feedback from the second FBG
is almost completely blocked, so that the laser receives feedback only from one filter. Another
issue is that the light reflected from a FBG is due to the interaction with the entire grating, which
means that the round-trip time of the reflected light is not so easy to determine. Furthermore, the
optical fiber and the FBGs are susceptible to mechanical strain and to thermal expansion. Such
perturbations result in a modifications of the filter peak frequency and the feedback phase via
changes of the feedback loop length at a sub-wavelength scale. For these reasons it is difficult to
perform controlled experiments with the FBGs setup over large ranges of parameters of interest.

The experimental setup in Fig. 1 (b) is less practical in industrial applications, but it allows for
exact and independent control of all relevant system parameters. More specifically, the FOF comes
from two independent unidirectional filter loops that do not influence one another. The two delay
times and feedback phases can easily be changed in the experiment as independent parameters.
Furthermore, the system can be investigated for any combination of filter frequencies and widths
(but note that every change of the filter properties requires a different FP filter). Finally, this
experimental setup has recently been used successfully in studies of the 2FOF laser [54], as well
as, with only a single FOF loop, in studies of the single-FOF laser [18, 19]. In particular, it has
been shown that the system is modelled very well by a rate equation model where the filters are
assumed to have a Lorentzian transmittance profile [28, 77].

In spite of the differences in terms of which parameter ranges can be explored in an experiment,
both realisations of the 2FOF laser in Fig. 1 can be modelled by the dimensionless rate equations

dE

dt
= (1 + iα)N(t)E(t) + κ1F1(t) + κ2F2(t), (2.1)

T
dN

dt
= P −N(t)− (1 + 2N(t))|E(t)|2, (2.2)

dF1

dt
= Λ1E(t− τ1)e−iC

1
p + (i∆1 − Λ1)F1(t), (2.3)

dF2

dt
= Λ2E(t− τ2)e−iC

2
p + (i∆2 − Λ2)F2(t). (2.4)

The well established assumptions here are that the delay times τ1 and τ2 are larger than the light
roundtrip time inside the laser cavity and that the filters have a Lorentzian transmittance profile
(Fig. 2); see [22, 28, 77] for more details. More specifically, one obtains Eqs. (2.1)–(2.4) as an
extension of the rate equations model of the single-FOF laser [28, Eqs. (1)–(3)] with an additional
equation for the field of the second filter.

Equation (2.1) describes the time evolution of the complex-valued slowly-varying electric field

6



Parameter Meaning Value

Laser
P pump parameter 3.5
α linewidth enhancement factor 5
T inversion decay rate / photon decay rate 100

Feedback loops
κ1 first loop feedback strength from 0.01 to 0.05
κ2 second loop feedback strength from 0.01 to 0.05
τ1 first loop round-trip time 500
τ2 second loop round-trip time 500 to 800
C1
p first loop feedback phase 2π-periodic

C2
p second loop feedback phase 2π-periodic

Filters
∆1 first filter central frequency detuning from -0.82 to 0.82
∆2 second filter central frequency detuning from -0.82 to 0.82
Λ1 first filter spectral width from 0.0 to 0.5
Λ2 second filter spectral width from 0.0 to 0.5

Table 1
System parameters and their values.

amplitude E(t) = Ex(t) + iEy(t) of the laser. Equation (2.2) describes the normalized population
inversion N(t) within the laser active medium. In (2.1)–(2.2) the material properties of the laser are
described by the linewidth enhancement factor α (which quantifies the amplitude-phase coupling
or frequency shift under changes in population inversion [32]), the ratio T between the population
inversion and the field decay rates, and the dimensionless pump parameter P . Time is measured in
units of the inverse photon decay rate of 10−11s. Throughout, we use values of the semiconductor
laser parameters from [17] that are given in table 1.

The two FOF loops enter equation (2.1) as feedback terms κ1F1(t) and κ2F2(t) with normalised
feedback strengths κ1 and κ2 [70, p. 93] of the normalised complex-valued fields F1(t) and F2(t) of
the two filters. In general, the presence of a filter in the system gives rise to an integral equation
for the filter field. However, in the case of a Lorentzian transmittance profile as assumed here,
derivation of the respective integral equation yields the description of the filter fields by DDEs (2.3)
and (2.4); see [77] for more details.

The two filter loops are characterised by a number of parameters. As for any coherent feedback,
we have the feedback strength κi, the delay time τi and the feedback phase Cip of the respective
filter field, which is accumulated by the light during its travel through the feedback loop, where
i = 1 or i = 2. Hence, Cip = Ω0τi. Owing to the large difference in time scales between the optical

period 2π/Ω0 and the delay time τi, one generally considers τi and Cip as independent parameters.
Namely, as has been justified experimentally [19, 30], changing the length of the feedback loop on
the optical wavelength scale of nanometres changes Cip, but effectively does not change τi. Two

different strategies for changing Cip have been used experimentally: in [19] this is achieved by
changing the length of the feedback loop on the optical wavelength scale with a piezo actuator, and
in [30] Cp is varied indirectly through very small changes in the pump current which, in turn, affect
Ω0.

The optical properties of the filters are given by the detunings ∆i of their central frequencies
from the solitary laser frequency, and by their spectral widths Λi, defined as the frequency width
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at half-maximum (FWHM) of the (Lorentzian) transmittance profile. In this paper we consider
the filter detunings ∆1 and ∆2 as independent parameters. Furthermore, we keep both feedback
strengths as well as both filter widths equal, so that throughout we use

κ := κ1 = κ2 and Λ := Λ1 = Λ2.

The values of the feedback parameters are also given in table 1.
We remark that system (2.1)–(2.4) contains as limiting cases two alternative setups that have

also been considered for the stabilisation of the laser output. First, when the spectral width of only
one filter is very large (so that there is no effective frequency filtering) then the laser effectively
receives feedback from an FOF loop and from a COF loop; see, for example, [3, 13]. Second, when
the spectral widths of both filters are very large then one is dealing with a laser with two external
COF loops; see, for example, [57, 66] and the discussion in Sec. 4.7.

System (2.1)–(2.4) shares symmetry properties with many other systems with coherent optical
feedback. Namely, the system has an S1-symmetry [29, 34, 40] given by simultaneous rotation over
any fixed angle of the laser field E and both filter fields F1 and F2. This symmetry can be expressed
by the transformation

(E,N,F1, F2) 7→
(
Eeiβ , N, F1e

iβ , F2e
iβ
)

(2.5)

for any 0 ≤ β ≤ 2π. In other words, solutions (trajectories) of (2.1)–(2.4) are not isolated but
come in S1-families. In particular, the EFMs introduced in the next chapter are group orbits under
this symmetry, and they typically take the form of circular limit cycles in the (E,N,F1, F2) phase
space [17, 34]. To facilitate numerical continuation and stability analysis with DDE-BIFTOOL,
we exploit the symmetry and study EFMs as isolated equilibria in a transformed system which
is obtained as follows. After substitution of

(
Eeibt, N, F1e

ibt, F2e
ibt
)

into (2.1)–(2.4) and dividing
through by an exponential factor we obtain a new system where the reference frequency b is an
additional unknown. A suitable choice of b ‘freezes’ motion along the group orbit but introduces
phase indeterminacy of E — an EFM becomes a circle of inifintely many equilibria. To remove the
phase indeterminacy we impose a suitable algebraic constraint which fixes the argument of E and,
thus, selects one of infinitely many equilibria; see [29, 58] and Appendix A for details.

There is also a rather trivial symmetry property: the feedback phases Cip are 2π-periodic
parameters, which means that they are invariant under the translation

Cip 7→ Cip + 2π. (2.6)

This property is quite handy, because results can be presented either over a compact fundamental
interval of width 2π or on the covering space R of Cip; see also [17].

3. EXTERNAL FILTERED MODES. l The simplest nonzero solutions of the 2FOF laser
correspond to the laser emitting monochromatic light with steady amplitude and specific frequency
ωs (relative to the solitary laser frequency Ω0). These solutions are the external filtered modes
or EFMs. Mathematically, an EFM is a group orbit of (2.1)–(2.4) under the S1-symmetry (2.5),
which means that it takes the form

(E(t), N(t), F1(t), F2(t)) =
(
Ese

iωst, Ns, F
1
s e
i(ωst+φ1), F 2

s e
i(ωst+φ2)

)
. (3.1)

Here, Es, F
1
s and F 2

s are steady and real-valued amplitudes of the laser and filter fields, Ns is the
corresponding steady population inversion, a constant ωs is the lasing frequency, and constants
φ1, φ2 are the phase shifts between the laser field and the two filter fields. To find the EFMs we
follow the method presented in [28, 29]. We substitute ansatz (3.1) into (2.1)–(2.4) and separate
real and imaginary parts to obtain

Ω(ωs)− ωs = 0 (3.2)
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Fig. 3. The graph of (3.3) (black curve) oscillates between its envelope (grey curve) given by (3.9). Frequencies
of EFMs (blue dots) are found from intersection points of the graph of Ω(ωs) with the diagonal; also shown are the
intersection points (black dots) with the envelope. Here C1

p = 0, C2
p = π/3, ∆1 = −0.1, ∆2 = 0.05, κ1 = 0.05,

κ2 = 0.025, Λ1 = Λ2 = 0.005, τ1 = 500 and τ2 = 400.

where

Ω(ωs) = −
√

1 + α2


κ1Λ1 sin

(
φ1 + tan−1(α)

)
√

Λ1
2 + (ωs −∆1)

2
+
κ2Λ2 sin

(
φ2 + tan−1(α)

)
√

Λ2
2 + (ωs −∆2)

2


 , (3.3)

and

φi = ωsτi + Cip + tan−1

(
ωs −∆i

Λi

)
. (3.4)

Equation (3.2) is a transcendental and implicit equation that allows one to determine all possible
frequencies ωs of the EFMs for a given set of filter parameters. More specifically, the sought
frequency values ωs of the 2FOF laser can be determined from (3.2) numerically by root finding;
for example, by Newton’s method in combination with numerical continuation. The two terms of
the sum in the parentheses of (3.3) correspond to the first and the second filter, respectively. If
one of the κi is set to zero, then (3.2) reduces to the transcendental equation from [28] for the
frequencies of EFMs of the single-FOF laser. The advantage of the formulation of (3.2) is that
it has a nice geometric interpretation: Ω(ωs) is a function of ωs that oscillates between two fixed
envelopes. More precisely, when C1

p or C2
p are changed over 2π the graph of Ω(ωs) sweeps out the

area in between the envelopes.

Figure 3 shows an example of the solutions of (3.2) as intersection points (blue dots) between
the oscillatory function Ω(ωs) and the diagonal (the straight line through the origin with slope 1);
see also [77]. Once ωs is known, the corresponding values of the other state variables of the EFMs
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can be found from

Ns = −


 κ1Λ1 cos(φ1)√

Λ1
2 + (ωs −∆1)

2
+

κ2Λ2 cos(φ2)√
Λ2

2 + (ωs −∆2)
2


 , (3.5)

Es =

√
P −Ns
1 + 2Ns

, (3.6)

F 1
s =

EsΛ1√
Λ1

2 + (ωs −∆1)
2
, (3.7)

F 2
s =

EsΛ2√
Λ2

2 + (ωs −∆2)
2
. (3.8)

This means that an EFM is, in fact, uniquely determined by its value of ωs. Furthermore, it is useful
to consider the envelope of Ω(ωs) (grey curves) so that Figure 3 represents all the relevant geometric
information needed to determine and classify EFMs. Note that in this specific example the EFMs
are separated into three groups. The diagonal intersects the region bounded by the envelope in
three disjoint intervals, in which the frequency ωs of the EFMs may lie; these intervals correspond
to three different EFM-components as is discussed in Sec. 3.1. As Fig. 3 suggests, EFMs are created
and lost in saddle-node bifurcations when an extremum of the (black) graph passes through one of
the boundary points (black dots) as a parameter (for example, C1

p) is changed.
This geometric picture is very similar to that for the single-FOF laser [28], but there is an

important difference. The envelope of Ω(ωs) for the FOF laser is found by considering the extrema
of the sine function (in (3.3) for, say, κ2 = 0). It turns out that the envelope for the single-FOF
laser is described by a polynomial of degree four, whose roots are the boundary points of at most
two intervals (or components) with possible EFMs [28]. However, for the 2FOF laser, considering
the extrema of the two sine functions in (3.3) is not sufficient since they appear in a sum. Hence,
we also need to consider mixed terms resulting from the summation. With the use of standard
trigonometric formulae, the equation for the envelope can be found as

Ωe(ωs) =±
√

1 + α2

[
κ2

1Λ2
1

Λ2
1 + (ωs −∆1)

2 +
κ2

2Λ2
2

Λ2
2 + (ωs −∆2)

2 +

2κ1κ2Λ1Λ2 cos
(
C2
p − C1

p + ωs (τ2 − τ1) + tan−1
(
ωs−∆2

Λ2

)
− tan−1

(
ωs−∆1

Λ1

))

√
Λ2

1 + (ωs −∆1)
2
√

Λ2
2 + (ωs −∆2)

2

]1/2

.

(3.9)

Indeed, when one of the κi is set to zero then (3.9) reduces to the fourth-order polynomial describing
the envelope of the single-FOF laser in [28]. However, for general values of the parameters, (3.9) is a
transcendental equation, and not a polynomial of degree six as one might have hoped; nevertheless,
by means of (3.9) the envelope Ωe(ωs) can be plotted readily.

The transcendental nature of (3.9) means that the study of the EFM structure of the 2FOF
laser is a considerable challenge. As is shown here, the key is to find a suitable geometric viewpoint
that allows one to understand the dependence of the EFMs on the different filter loop parameters.

10



A first observation is that (3.9) depends on the differences

dCp := C2
p − C1

p and dτ := τ2 − τ1,

which we will, hence, consider as parameters in what follows; note that dCp is 2π-periodic as well.

3.1. EFM-components of the 2FOF laser. It is well-known for the single-FOF laser that
its EFMs lie on closed curves in the (ωs, Ns)-plane. These curves are called EFM-components,
and they arise as the set of all EFMs found for different values of feedback phase Cp, whilst the
other parameters of the system are fixed. More specifically, when Cp is changed, EFMs are born
in a saddle-node bifurcation, then move over the respective EFM-component in the direction of
increasing ωs, and finally disappear again in another saddle-node bifurcation. From an experimental
point of view, EFM-components are quite natural objects that can be measured as groups of EFMs
whose frequencies vary with the feedback phase Cp; see [19]. For the single-FOF laser one finds
either one or two EFM-components, depending on the properties of the filter. Intuitively, one
expects one EFM-component centred around the solitary laser frequency and, if the detuning ∆
is large enough, a second EFM-component around the filter central frequency. As was already
mentioned, the exact dependence on the filter properties can be studied for the single-FOF laser by
considering the roots of a polynomial of degree four that arises from the equation for the envelope
of the EFMs; see [28] for details.

We now consider EFM-components of the 2FOF, which we define as the branches of EFMs
that one finds when the feedback phases, C1

p or C2
p are changed while the feedback phase difference

dCp is fixed. This definition is the appropriate generalisation from the single-FOF laser [28]. The
underlying idea is that the value of dCp determines the interference of the light from the two filtered
feedback loops and, hence, an important property of the overall feedback the laser sees.

For the 2FOF laser the structure of the EFM-components is quite a lot more complicated than
for the single-FOF laser. Intuitively, one may think that now up to three EFM-components may
occur in the (ωs, Ns)-plane: one centred around the solitary laser frequency and two more around
the peak frequencies of the two filters. However, this intuition is not correct, and we will show
that there may, in fact, be any number of EFM-components. Physically, the reason for this vastly
more complicated EFM structure of the 2FOF laser is the interference between the two filter fields,
which can be interpreted as giving rise to a complicated ‘effective’ filter profile. Mathematically,
the reason behind the more complicated EFM structure lies in the transcendental nature of the
envelope equation (3.9).

We now proceed with providing a geometrical representation of the EFM structure of the
2FOF laser in dependence on system parameters. Since the transcendental EFM equation (3.2)
is complicated and depends on all system parameters, its solutions can only be found numerically
(except for certain very special choices of the parameters). From the value of the EFM frequency ωs
one can compute the values of the other EFM quantities Es, Ns, F

1
s , F 2

s , φ1 and φ2. In particular,
the inversion Ns can be expressed as a function of ωs as

N2
s + (ωs − αNS)2 =

κ2
1Λ2

1

Λ1
2 + (ωs −∆1)

2 +
κ2

2Λ2
2

Λ2
2 + (ωs −∆2)

2 +

2κ1κ2Λ1Λ2 cos
(
dCp + ωs dτ + tan−1

(
ωs−∆2

Λ2

)
− tan−1

(
ωs−∆1

Λ1

))

√
Λ1

2 + (ωs −∆1)
2
√

Λ2
2 + (ωs −∆2)

2
.

(3.10)

From this quadratic expression we can conclude that for any ωs there are either no, one or two
solutions for Ns. In particular, any EFM-component is a smooth closed curve that consists of two
branches, one with a higher and one with a lower value of Ns, which connect at two points where
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(3.10) has exactly one solution. EFM-components in the (ωs, Ns)-plane can be computed from the
implicit transcendental equations (3.2) and (3.10) by root solving, ideally in combination with nu-
merical continuation. An alternative approach is to continue EFMs in parameters as periodic orbits
of the governing system (2.1)–(2.4) of delay differential equations or as equilibria of the transformed
system described in Appendix 1. Either can be achieved with the numerical continuation package
DDE-BIFTOOL; additionaly, the stability of the EFMs can be determined with DDE-BIFTOOL.

The starting point of our study of the EFM structure is the special case that the two filters are
identical, apart from having differing feedback phases C1

p and C2
p . Hence, we now set

∆1 = ∆2, and τ1 = τ2.

The EFMs for this special case are given by the EFMs of a corresponding single-FOF laser with
effective feedback strength

κeff = 2κ cos

(
dCp

2

)
(3.11)

and effective feedback phase

Ceff
p =

(
C1
p + C2

p

)
/2.

In other words, we obtain a non-trivial reduction of the 2FOF laser to the single-FOF laser, where
the feedback phase difference dCp arises as a natural parameter that controls the effective feedback
strength κeff as a result of interference between the two filter fields. One extreme case is that
of constructive interference when dCp = 0 so that κeff = 2κ. The other extreme is the case of
destructive interference when dCp = π and κeff = 0. Hence, by changing dCp we can ‘switch on’ or
‘switch off’ the overall filter field that the laser sees.

3.2. The EFM-surface of the 2FOF laser. To be able to study the EFM-components
of the 2FOF laser more comprehensively, we now consider the EFM-surface in (ωs, Ns, dCp)-
space. In other words, in this space, the EFM-surface is considered as the one-parameter fam-
ily (parametrised by dCp) of actual EFM-components themselves, which arise naturally as closed
curves in the (ωs, Ns)-plane by intersection with planar sections given by dCp = const. In prac-
tice, an EFM-component for a given dCp = const is computed by continuation of an EFM in the
parameters C1

p and ωs, while setting C2
p = C1

p + dCp; the EFM-surface is then rendered from a
sufficient number of EFM-components for fixed dCp; see Appendix A for details.

To illustrate the basic concept, Fig. 4 shows the EFM-surface for the simplest case of identical
filters that are also undetuned, that is, ∆1 = ∆2 = 0. For this special choice there is always
a single EFM-component of the correpsonding single-FOF laser with κeff given by (3.11). Panel
(a) shows the EFM-surface for dCp ∈ [−π, π] intersected with the two planes given by dCp = 0
and dCp = 0.9π, respectively. The corresponding EFM-components arise from the shape of the
envelope given by (3.9); it is shown in panels (b1) and (c1) together with the solution curve of (3.3)
for C1

p = 0. The EFM-components themselves, with these EFMs on them, are shown in panels (b2)
and (c2). Figure 4 illustrates that changing dCp results in a change in the EFM-component, as
well as the number of EFMs. For the shown case of two identical filters with equal delay times we
can say more: here the change of the EFM-component is entirely due to the effective feedback rate
κeff as described by (3.11). In other words, the EFM-surface is composed of the EFM-components
of the corresponding single-FOF laser with κeff as determined by dCp. The EFM-component is
maximal for the constructive-interference case dCp = 0, and it shrinks when dCp is changed. This
also means that fewer EFMs exist; compare Fig. 4 (b1) and (c1). Finally, as the case of entirely
destructive interference for dCp = π is approached, the EFM-component shrinks down to a point,
which is the degenerate EFM corresponding to the unique solitary laser mode.
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Fig. 4. EFM-components arising as sections through the EFM-surface. Panel (a) shows the EFM-surface in
(ωs, Ns, dCp)-space, intersected with the planes defined by dCp = 0 and dCp = 0.9π, respectively. Panels (b1)
and (c1) show the corresponding envelopes (grey curves) given by (3.9). The black solution curve of (3.3) inside
it is the one for C1

p = 0; it gives rise to the marked blue EFMs. Panels (b2) and (c2) show the two respective
EFM-components and individual EFMs (blue dots) in the (ωs, dCp)-plane. Shown is the case of two identical filters
with ∆1 = ∆2 = 0.
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We conclude from this section that the EFM-surface in (ωs, Ns, dCp)-space has emerged as the
main object of study. It represents the EFM structure of the 2FOF laser in a convenient geometric
way; in particular, EFM-components can easily be obtained as planar slices for fixed dCp.

4. CLASSIFICATION OF THE EFM-SURFACE FOR dτ = 0. So far we have only
considered the special case that the two filters are identical and not detuned from the laser; further-
more, the two delay times are equal. We now address the question how the EFM-surface changes
as the system is moved away from this special point in the space of parameters. In this section we
consider the case that the two filter loops have the same delay time, that is, dτ = 0. The influence
of a difference in delay times is the subject of Sec. 6.

We start by considering in Sec. 4.1 how the EFM-components depend on the detunings ∆1

and ∆2 for fixed dCp = 0. We then proceed to study how the EFM-surface itself changes with
∆1 and ∆2. This can be represented for a fixed filter width Λ of both filters by an EFM-surface
bifurcation diagram in the (∆1,∆2)-plane, where each open region corresponds to a different type
of EFM-surface. In Sec. 4.2 we first consider the case that the EFM-surface gives rise to a dCp-
independent number of EFM-components. We then introduce in Sec. 4.3 five codimension-one
singularity transitions — through extrema and saddle points, and through a cubic tangency (with
respect to dCp = const) — that change the EFM-surface in terms of how many EFM-components
it induces when sliced for fixed dCp. These five singularity transitions induce a division of the
(∆1,∆2)-plane into open regions of different EFM-surface type. In Sec. 4.3.1 we discuss EFM-
surface types that arise due to transitions through extrema and saddle points, and in Sec. 4.3.2 we
discuss EFM-surface types that arise due to the cubic tangency. Finally, Sec. 4.5 shows how the
EFM-surface bifurcation diagram in the (∆1,∆2)-plane changes with the filter width Λ.

Throughout this section we make use of the fact that the EFM-surface can be represented by its
projection onto the (ωs, dCp)-plane. This is the case because, due to (3.10), this surface consists of
two sheets in (ωs, dCp, N)-space over the (ωs, dCp)-plane, except at the boundary of its projection.
The boundary itself is given by (real-valued) solutions of

dCp =± cos−1

[√
Λ2

1 + (ωs −∆1)
2
√

Λ2
2 + (ωs −∆2)

2

2κ1κ2Λ1Λ2

×
(

ω2
s

(1 + α2)
− κ2

1 Λ2
1

Λ2
1 + (ωs −∆1)

2 −
κ2

2 Λ2
2

Λ2
2 + (ωs −∆2)

2

)]

− ωs dτ − tan−1

(
ωs −∆2

Λ2

)
+ tan−1

(
ωs −∆1

Λ1

)
.

(4.1)

This equation is derived from (3.9), and it has the advantage that it does not depend on any of
the state variables of (2.1)–(2.4). Hence, in contrast to computing the EFM-surface itself, which
requires the continuation of EFMs in parameters, its projection onto the (ωs, dCp)-plane can be
computed directly from (4.1). Note also that the projection in the (ωs, dCp)-plane is independent
of the choice of the additional state variable (here Ns) that one chooses for visualisation of the
EFM-surface.

4.1. Dependence of the EFM-components for fixed dCp = 0 on the detunings. We
now fixed dCp = 0 and consider the detunings ∆1 and ∆2 as free parameters. We first consider
an intermediate fixed filter width Λ = Λ1 = Λ2 = 0.015 of both filters; moreover, τ1 = τ2 = 500
and the other parameters are as given in Table 1. In this situation, one may find one, two or three
EFM-components in the FOF laser. Because both the top and the bottom part of the envelope
given by (3.9) intersect the diagonal, the EFM-component around a solitary laser frequency ωs = 0
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Fig. 5. EFM-components and EFMs (blue dots) of the 2FOF laser for dCp = 0, ∆1 = 0.08, ∆2 = −0.027
(a), ∆1 = 0.14, ∆2 = −0.027 (b), ∆1 = 0.21, ∆2 = 0.013 (c) and ∆1 = 0.21, ∆2 = −0.13 (d); here κ = 0.05,
Λ1 = Λ2 = 0.01, τ1 = τ2 = 500 and the other parameters are as given in Table 1.

is always present; this also means that there is a pair of saddle-node bifurcation points where EFMs
are born or lost. In the presence of the two filters, one may find additional EFM-components, which
exist around the peak frequencies of the filters as given by ∆1 and ∆2; note that (3.9) has two
obvious extrema for ωs = ∆1 and ωs = ∆2. Each additional EFM-component comes with its own
pair of saddle-node bifurcation points, given geometrically by the condition that an extremum of
(3.9) intersects the diagonal ωs = Ω(ωs); see Fig. 3.

Figure 5 shows EFM-components for nonzero detunings and fixed dCp = 0; more specifically,
∆1 = 0.08, ∆2 = −0.027 (a), ∆1 = 0.14, ∆2 = −0.027 (b), ∆1 = 0.21, ∆2 = 0.013 (c) and
∆1 = 0.21, ∆2 = −0.13 (d). In panels (a) and (b) the frequency of the second filter is detuned so
much from the solitary laser frequency that the influence of the second filter is negligible and one
observes only up to two EFM-components, as for a single-FOF laser. In Fig. 5 (c) and (d) we fix
∆1 = 0.21, and change ∆2 from ∆2 = 0.13 (c) to ∆2 = −0.13 (d). In both panels there are three
EFM-components. The central one near ωs = 0, as well as one around the peak frequency of each
filter. Observe that the change of location of the EFM-component around the peak frequency of
the second filter almost does not affect the EFM-component around the first filter peak frequency
∆1 = 0.21.

Note that the filters are quite narrow (Λ1 = Λ2 = 0.01), namely much narrower than the
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detunings ∆1 and ∆1 between the laser and the filters. As a result, in Fig. 5 (b), (c) and (d)
the EFM-component around the solitary laser frequency has an elliptical shape, as known from
COF systems [64, 46]. This is the case because the flanks of both filters’ transmittance profile
near ωs = 0 are quite flat, meaning that all frequencies around the solitary laser frequency are
fed back with approximately the same low feedback strength. Therefore, this situation resembles
the effect of weak COF [46]. In Fig. 5 (a) for ∆1 = 0.08 and ∆2 = −0.027, on the other hand,
the EFM-component around the solitary laser frequency has a ‘bulge’ which is the result of the
frequency selective feedback from the first filter.

For a fixed value of the spectral width Λ = Λ1 = Λ2 of both filters, one obtains curves in
the (∆1, ∆2)-plane that bound regions where the 2FOF laser system has one, two or three EFM-
components for dCp = 0. The regions are bounded by curves that can be computed by means of
numerical continuation. Namely, the number of EFM-components changes when two saddle-node
points (black dots in Fig. 3) come together. This happens when the envelope given by Ωe(ωs) from
(3.9) is tangent to the diagonal. Hence, the conditions that are continued in ∆1 and ∆2 to obtain
the boundary curves are,

Ω(ωs) = ωs and
dΩe(ωs)

dωs
= 1.

Figure 6 shows these boundary curves in the (∆1, ∆2)-plane for six different values of Λ. Open
regions are labelled with the number of EFM-components that one finds for dCp = 0 for the
respective values of the detunings ∆1 and ∆2. Note the two symmetries of the panels of Fig. 6,
given by reflection across the diagonal ∆1 = ∆2, and reflection across the anti-diagonal ∆1 = −∆2.
The boundary curves are coloured grey and orange for presentation purposes, depending on whether
they are symmetric with respect to the diagonal or antidiagonal. Figure 6 (a) shows the limiting
special case of Λ = 0, which corresponds to an infinitely narrow filter so that EFM-components
consist of single EFMs. The boundary curves in the (∆1, ∆2)-plane for this case can be obtained
analytically by substituting in Eq. (3.9) ωs = ∆1 and ωs = ∆2 respectively. The coordinates of the
vertical and horizontal lines in Fig. 6 (a) are given by κ

√
1 + α2 and the end points at the diagonal

by 2κ
√

1 + α2; compare with [28]. Figure 6 (b) for Λ = 0.001 shows how the limiting case unfolds
for Λ > 0. The black parts of curves in Fig. 6 (a) open up to reveal new open regions. As Λ is
increased, the boundary curves deform, but initially there is no qualitative change; see Fig. 6 (c)
for Λ = 0.01. However, as Λ is increased further, the bifurcation diagram does change qualitatively
because the different curves move sufficiently relative to one another to ‘disentangle’; see Fig. 6 (d)
for Λ = 0.06, where there are now no longer regions with three EFM-components near the diagonal.
For larger values of Λ, the curves cease to extend to infinity and are now confined to a compact
region of the (∆1, ∆2)-plane; as Fig. 6 (e) for Λ = 0.12 illustrates. This implies that there is now a
single large and connected region with one EFM-component. For even larger values of Λ, there are
six non-overlapping curves, each bounding a small region where one finds two EFM-components;
see Fig. 6 (f) for Λ = 0.14. When Λ is increased even further, the small regions disappear and one
finds a single EFM-component for any point in the (∆1, ∆2)-plane. Physically the filters are now
so wide that they do not provide sufficient differentiation of the feedback light in frequency; hence,
the 2FOF laser is effectively a COF laser.

Figure 7 (a) is a three-dimensional plot in (∆1, ∆2,Λ)-space that represents the entire transition
of the boundary curves in the (∆1, ∆2)-plane for dCp = 0 as the filter spectral width Λ is changed.
Shown are surfaces (coloured orange and grey as in Fig. 6) that divide this parameter space into
regions with one, two or three EFM-components. The bifurcation diagrams in Fig. 6 are horizontal
cross sections through Fig. 7 (a); the shown (semitransparent) cross section for Λ = 0.01 yields
Fig. 6 (c). Note that the grey surfaces in Fig. 7 (a) extend to higher values of ∆ than the orange
surfaces, which can be explained as follows. For dCp = 0 the two filter fields interfere constructively,
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Fig. 6. Regions in the (∆1, ∆2)-plane with a one, two or three EFM-components of the 2FOF laser for dCp = 0.
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Fig. 7. Panel (a) shows surfaces (orange and grey) that divide the (∆1, ∆2, Λ)-space into regions with one,
two and three EFM-components of the 2FOF laser for dCp = 0; in the shown (semitransparent) horizontal cross
section for Λ = 0.01 one finds the bifurcation diagram from Fig. 6 (c) . Panel (b) shows the bifurcation diagram in
the (∆1, Λ)-plane for fixed ∆2 = 0.82; the light grey curve is the boundary curve for the limiting single-FOF laser
for ∆2 = ∞. Panel (c) shows the projection onto the (∆1, Λ)-plane of the section along the diagonal ∆1 = ∆2

through the surfaces in panel (a).

so that for ∆1 ≈ ∆2 the amplitude of the solution curve of (3.3) is larger than that around a single
filter. Hence, a second EFM-component around the peak frequencies of both filters may exist for
higher values of Λ, and the maximum of the grey surfaces is exactly at the diagonal where ∆1 = ∆2.
Above all surfaces (for sufficiently large Λ) the 2FOF laser is effectively a COF laser and only one
EFM-component exists for any choice of ∆1 and ∆2.

Figures 7 (b) and (c) show that the three-dimensional bifurcation diagram in panel (a) brings
out important special cases where the 2FOF laser reduces to the single-FOF laser in a nontrivial way.
Figure 7 (b) shows the two-dimensional bifurcation diagram in the (∆1, Λ)-plane for ∆2 = 0.82.
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name Cmin Cmax panel ∆1 ∆2 Λ

B̂ 1 1 Fig. 9 (a) 0.080 -0.270 0.01

B̂B 2 2 Fig. 9 (b) 0.140 -0.270 0.01

B̂BB 3 3 Fig. 9 (c) 0.210 0.130 0.01

BB̂B 3 3 Fig. 9 (d) 0.210 -0.130 0.01

Table 2
Notation and parameter values for the types of EFM-surface in Fig. 9. The second and third column show the

minimal number Cmin and the maximal number Cmax of EFM-components (for suitable fixed dCp) of the type; note
that in all cases the number of EFM-components is independent of dCp .

Also shown in light grey is the corresponding bifurcation diagram of the single-FOF laser (with
detuning ∆1) that one obtains for the limit that ∆2 =∞ (when the second filter does not influence
the system any more); compare with [28, Fig. 3(a)]. The closeness of the two bifurcation diagrams
in Fig. 7 (b) shows that for ∆2 ≥ 0.82 the influence of the second filter is already so small that
it does not influence the number of EFM-components. Figure 7 (c) shows the projection onto the
(∆1, Λ)-plane of the diagonal section for ∆1 = ∆2 through the surfaces in Fig. 7 (a). Along the
diagonal the 2FOF laser reduces to the single-FOF laser with the effective parameters as given
by (3.11); in fact, the boundary curve in Fig. 7 (c) is exactly that from [28, Fig. 3(a)] for the
corresponding effective parameters, namely κeff = 2κ1 for dCp = 0. Since this curve scales linearly
with κ [28], it is exactly twice the size as the light grey curve in Fig. 7 (b).

4.2. EFM-surface types with dCp-independent number of EFM-components. We
now turn to the question of where in the (∆1,∆2)-plane the corresponding EFM-surface is such that
it has a dCp-independent number of EFM-components. To investigate this question, we consider
how the bifurcation diagram in Fig. 6 (c), for the representative value of Λ = 0.01, with regions of
one, two or three EFM-components in the (∆1,∆2)-plane for a fixed dCp = 0 changes when dCp
is varied over the interval [−π, π]. In the process the boundary curves between regions move in
the (∆1,∆2)-plane and then return to their original positions. Figure 8 shows the resulting curves
(again in orange and grey) in the (∆1,∆2)-plane for Λ = 0.01, where the dCp-interval [−π, π] is
covered in 60 equidistant steps. As a function of dCp the curves now cover overlapping (orange and
grey) regions in the (∆1,∆2)-plane, meaning that in these regions the number of EFM-components
depends on the value of dCp.

By contrast, in the open white regions in the (∆1,∆2)-plane of Fig. 8 the number of EFM is
independent of the value of dCp. This means that the projection of the EFM-surface consists of
either one, two or three bands that extend over the entire dCp-interval [−π, π]. In total there are
four such types (up to symmetry) of EFM-surface, and their representatives in terms of projections
of the EFM-surface onto the (ωs, dCp)-plane are shown in Fig. 9; for the respective values of ∆1

and ∆2 see Table 2. Each such band in the projection is represented in Figs. 8 and 9 by the letter B.
Furthermore, B̂ denotes the band around the frequency of the solitary laser, ωs = 0, and is referred
to as the central band. It plays a special role because it corresponds to a part of the EFM-surface
that always extends over the entire dCp-interval [−π, π]. Moreover, B̂ can be found for any value
of detuning of the two filters, even in the COF limit of an infinitely wide filter; see the discussion
of Fig. 7 (a) in Sec. 4.1.

The notation we use here is more specific than simply counting the number of EFM-components;
for example, it distinguishes the case BB̂B, where the filters are detuned to both sides of the laser
frequency ωs = 0, from the cases B̂BB and BBB̂ (which are related by symmetry), where both

filters are detuned on the same side of the laser frequency. Note also that type B̂B differs physically
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Fig. 8. Boundary curves (orange or grey) in the (∆1, ∆2)-plane for Λ = 0.01 for 60 equidistant values of dCp

from the interval [−π, π]; compare with Fig. 6 (c). In the white regions the 2FOF laser has one, two or three EFM-

components independently of the value of dCp, as is indicated by the labelling with symbols B̂ and B; representatives
of the four types of EFM-components can be found in Fig. 9.

from type BB̂ in terms of whether the second band B is towards higher or lower frequencies with
respect to the laser frequency (that is, for negative or positive ω). Nevertheless, these two types
are related to each other mathematically, because they are each other’s images under the symmetry
transformation (∆1, ∆2) 7→ (−∆1, −∆2). Indeed any type that is not symmetric itself comes as a
symmetric pair, and it is sufficient to show only one type of such a pair in Fig. 9.

4.3. Transitions of the EFM-surface. Consider a path in the (∆1, ∆2)-plane that takes
one from a white region to another white region, where the number EFM-components does not
depend on the value of dCp. It is clear from Fig. 8 that any such path necessarily leads through
(at least one) (grey or orange) region where the EFM-surface is such that the number of EFM-

20



(a)

B̂

(b)

B̂B

(c)

B̂BB

(d)

BB̂B

.

.

Fig. 9. The four simple banded types of EFM-surface of the 2FOF laser in the labelled regions of Fig. 8,
represented by the projection (shaded) onto the (ωs, dCp)-plane; the blue boundary curves are found directly from
(4.1). For notation and the corresponding values of ∆1 and ∆2 see Table 2; in all panels ωs ∈ [−0.3, 0.3] and
dCp ∈ [−π, π]. Examples of corresponding EFM-components for dCp = 0 are presented in Fig. 5.

components does actually depend on the value of dCp. For example, a single band B̂ may change

into two bands B̂B, and the question arises what changes of the EFM-surface itself are involved in
this transition.

The point of view we take here is that the classification of the EFM-surface into different
types is generated by five (local) transitions of codimension one, which we introduce in Sec. 4.3.1
below. Each such transition changes the nature of the associated EFM-components one encounters
when dCp is changed over [−π, π]. More specifically, we find four generic singularity transitions
that change the EFM-surface topologically as a surface in three-dimensional space; as a result,
the number of EFM-components changes locally. Furthermore, we consider a cubic tangency of
the EFM-surface with respect to a plane dCp = const, which also changes the number of EFM-
components locally. These five transitions generate what we refer to as the EFM-surface bifurcation
diagram in the (∆1,∆2)-plane, whose open regions correspond to different EFM-surface types with
a dCp-dependent number of EFM-components; they are introduced in Secs. 4.4 and 4.5.

The classification of the EFM-surface as generated by the five transitions considered here strikes
a good balance between mathematical detail and physical relevance. On the one hand, the analysis
of possible changes in the EFM-surface with dependence on parameters is complete with regard to
the five different singularity transitions and their interactions. On the other hand, the five tran-
sitions considered are physically relevant in the sense that they distinguish between EFM-surface
types that could be identified experimentally, for example, by mapping out the corresponding
EFM-components for a sequence of different values of dCp.

4.3.1. The four singularity transitions. The codimension-one singularity transitions are
characterised by the fact that an isolated singularity of the parametrised EFM-surface is crossed at
an isolated point of a curve in the (∆1, ∆2)-plane. These transitions define topological changes of
the EFM-surface, and will be referred to as bifurcations of of the EFM-surface. To be more specific,
let δ be the bifurcation parameter that parametrises a curve in the (∆1, ∆2)-plane, where we assume
that the respective bifurcation curve is crossed transversely at δ = 0. We can then view the EFM-
surface in (ωs, dCp, Ns)-space locally near δ = 0 as given by level sets F (ωs, dCp, Ns) = δ of a
function F : R3 → R. The singularity is then given by the condition that grad(F ) = 0; generically,
the Hessian at this point is nonsingular, which means that the singularity is of codimension one
[1, 26, 55]. In this case, the surface is locally quadratic and has the normal form

F (u, v, w) = ±u2 ± v2 ± w2 = δ, (4.2)

where the signs are given by the signs of the eigenvalues of the Hessian at the singularity. If all signs
are the same then one is dealing with the transition through an extremum of the surface, that is,
a minimum or a maximum; we speak of a minimax transition [41]. Otherwise, the singularity is a
saddle. The unfolding of such a saddle on a two-dimensional surface is well know; see, for example,
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[2]. It is the transition form a one-sheeted hyperboloid via a cone to a two-sheeted hyperboloid; we
speak of a saddle transition [41]. Different cases in our context arise depending on how the cone
associated with the saddle point is aligned in (ωs, dCp, Ns)-space.

There are four distinct singularity transition of the EFM-surface in (ωs, dCp, Ns)-space.

M the minimax transition through an extremum (a local minimum or maximum). The min-
imax transition M of the EFM-surface is illustrated in Fig. 10, where, in terms of the
projection onto the (ωs, dCp)-plane, it results in the creation or disappearance of an is-
land. The locus of M in the (∆1, ∆2)-plane is represented by orange curves in what follows.

SC the saddle transitions in the direction of the dCp-axis. The saddle transition SC of the
EFM-surface is illustrated in Fig. 11, where, in terms of the projection onto the (ωs, dCp)-
plane, it results in a transition between an island and a band. The locus of SC in the
(∆1, ∆2)-plane is represented by blue curves in what follows.

Sω the saddle transitions in the direction of the ωs-axis. The saddle transition Sω of the
EFM-surface is illustrated in Fig. 12, where, in terms of the projection onto the (ωs, dCp)-
plane, it results for example, in a transition between a band with a hole and two separate
bands. The locus of Sω in the (∆1, ∆2)-plane is represented by green curves in what follows.

SN the saddle transitions in the direction of the Ns-axis. The saddle transition SN of the
EFM-surface is illustrated in Fig. 13, where, in terms of the projection onto the (ωs, dCp)-
plane, it results in the creation or disappearance of a hole in a band. The locus of SN in
the (∆1, ∆2)-plane is represented by red curves in what follows.

Figures 10–13 illustrate how the minimax transition M and the three saddle transitions SC , Sω
and SN lead to changes in the EFM-surface. In each of these figures, we show in the left column
the relevant local part of the EFM-surface in (ωs, dCp, Ns)-space before, (approximately) at and
(in Figs. 11–13) after the bifurcation. The right column shows how the projection of the EFM-
surface onto the (ωs, dCp)-plane (shown over a dCp-interval of 4π) changes accordingly; the local
regions where the change occurs are highlighted. In Figs. 10–13 all the presented surfaces have been
rendered from continuations of the EFMs as solutions of equations (2.1)–(2.4); the projections, on
the other hand, were obtained directly from (4.1).

Figure 10 illustrates the minimax transition M , where a compact piece of the EFM-surface in
(ωs, dCp, Ns)-space shrinks to a point. Panel (b1) is very close to the bifurcation; note that after
the bifurcation the piece is simply gone, which is why we do not present a separate illustration for
this situation. In projection onto the (ωs, dCp)-plane, the local, compact piece of the EFM-surface
is an ‘island’ that shrinks and then disappears in a minimax transition of the projection; note that
there are infinitely many such islands due to the translational symmetry in dCp; see panels (a2)
and (b2).

Figure 11 illustrates the saddle transition SC . The local mechanism for this change of the
EFM-surface in (ωs, dCp, Ns)-space is shown in panels (a1)–(c1). The surface in Fig. 11 (a1) is
a one-sheeted hyperboloid. It develops a pinch point and, hence, becomes a cone at the moment
of bifurcation in Fig. 11 (b1); note that the cone (more precisely its axis of rotation) is aligned
with the dCp-axis. After the bifurcation, the EFM-surface is a two-sheeted hyperboloid so that it
consists locally of two parts; see Fig. 11 (c1). As the projections onto the (ωs, dCp)-plane in panels
(a2)–(c2) show, the overall result is the division of a ‘band’ into a ‘string of islands.’ Note that
the saddle transition SC manifests itself as a saddle transition of the projection, where the relevant
(shaded) part of the surface is aligned with the dCp-axis.

Figure 12 illustrates the saddle transition Sω. Locally near the point of bifurcation we again
find that the EFM-surface in (ωs, dCp, Ns)-space changes from a one-sheeted hyperboloid in panel
(a1), via a cone in panel (b1) to a two-sheeted hyperboloid in panel (c1). However, now the cone’s
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Fig. 10. Minimax transition M of the EFM-surface in (ωs, dCp, Ns)-space, where a connected component of
the EFM-surface (a1) shrinks to a point (b1). Panels (a2) and (b2) show the corresponding projection onto the
(ωs, dCp)-plane of the entire EFM-surface; the local region where the transition M occurs is highlighted by dashed
lines and the projections of the part of the EFM-surface in panels (a1) and (b1) is shaded grey. Here Λ = 0.01,
∆1 = 0.4, and ∆2 = 0.28 in (a) and ∆2 = 0.28943 in (b).

axis of rotation is aligned with the ωs-axis. As the projections onto the (ωs, dCp)-plane in panels
(a2)–(c2) show, overall we find that a single band with a ‘string of holes’ changes into two separate
bands. The saddle transition Sω also manifests itself as a saddle transition of the projection.

Figure 13 illustrates the saddle transition SN . In panel (a1) there are two sheets of the EFM-
surface in (ωs, dCp, Ns)-space with different and separate values of Ns. At the bifurcation point the
two sheets connect locally at a single point. In the process, a ‘hole’ is created in the EFM-surface,
which then grows in size; see panels (b1) and (c1). If one considers a small neighbourhood of the
emerging hole, then one realises that the transition is locally that from a two-sheeted hyperboloid
in panel (a1), via a cone aligned along the Ns-axis in panel (b1) to a one-sheeted hyperboloid in
panel (c1). The projections onto the (ωs, dCp)-plane in panels (a2)–(c2) clearly show how a string
of holes appears in the saddle transition SN . Note that this bifurcation is a minimax transition of
the projection but, in contrast to transition M , the projection of the surface is now ‘on the outside’
so that locally a hole is created instead of an island.

It is an important realisation that the loci of the four singularity transitions M , SC , Sω and SN
can be computed effectively, because they can be expressed as an implicit formula by considering
a suitable derivative of the envelope equation (3.9) with respect to the parameter in question.
More specifically, one follows a fold with respect to dCp of the boundary curve of the projection
of the EFM-surface onto the (ωs, dCp)-plane. Such a dCp-fold bounds an interval of dCp-values,
which is either an island or a hole of the projection. When the dCp-fold is continued along a
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Fig. 11. Saddle transition SC of the EFM-surface in (ωs, dCp, Ns)-space, where locally the surface changes
from a one-sheeted hyperboloid (a1) to a cone aligned in the dCp-direction (b1) to a two-sheeted hyperboloid (c1).
Panels (a2)–(c2) show the corresponding projection onto the (ωs, dCp)-plane of the entire EFM-surface; the local
region where the transition SC occurs is highlighted by dashed lines and the projections of the part of the EFM-
surface in panels (a1)–(c1) is shaded grey. Here Λ = 0.01, ∆1 = 0.4, and ∆2 = 0.23 in (a), ∆2 = 0.232745 in (b)
and ∆2 = 0.24 in (c).

curve (parametrised by δ) in the (∆1, ∆2)-plane, say, ∆2 for fixed ∆1, then a singularity transition
corresponds to a fold with respect to the continuation parameter δ. Such a fold with respect to
the parameter δ can be detected and then followed as a boundary curve in the (∆1, ∆2)-plane.
Note that this continuation approach makes no difference between the cases M , SC , Sω and SN of
singularity transitions. However, which of the singularity transitions one is dealing with can readily
be identified by checking the (projections of the) EFM-surface at nearby parameter point in the
(∆1, ∆2)-plane. In this way, the loci of the singularity transitions can be computed numerically as
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Fig. 12. Saddle transition Sω of the EFM-surface in (ωs, dCp, Ns)-space, where a connected component (a1)
pinches (b1) and then locally disconnects (c1); here the associated local cone in panel (b1) is aligned in the ωs-
direction. Panels (a2)–(c2) show the corresponding projection onto the (ωs, dCp)-plane of the entire EFM-surface;
the local region where the transition Sω occurs is highlighted by dashed lines and the projections of the part of the
EFM-surface in panels (a1)–(c1) is shaded grey. Here Λ = 0.01, ∆1 = 0.4, and ∆2 = 0.13 in (a), ∆2 = 0.133535
in (b) and ∆2 = 0.135 in (c).

bifurcation curves in the (∆1, ∆2)-plane that form boundaries between regions of different EFM-
surface types.

4.3.2. The cubic tangency. Due to the special role of the parameter dCp we also consider
here a fifth local mechanism that changes the type of the EFM-surface.

C the cubic tangency C of the EFM-surface; it is defined by the condition that the first and
second derivatives with respect to ωs of equation (3.9) for the envelope of Ω(ωs) both
vanish at an isolated point, and the third derivative is nonzero. The cubic tangency C
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Fig. 13. Saddle transition SN of the EFM-surface in (ωs, dCp, Ns)-space, where two sheets that lie on top
of each other in the Ns direction (a1) connect at a point (b1) and then create a hole in the surface (c1); here the
associated local cone in panel (b1) is aligned in the N-direction. Panels (a2)–(c2) show the corresponding projection
onto the (ωs, dCp)-plane of the entire EFM-surface; the local region where the transition SN occurs is highlighted by
dashed lines and the projections of the part of the EFM-surface in panels (a1)–(c1) is shaded grey. Here Λ = 0.01,
∆1 = 0.4, and ∆2 = 0.0.11 in (a), ∆2 = 0.11085 in (b) and ∆2 = 0.1115 in (c).

of the EFM-surface is illustrated in Fig. 14, where, in terms of the projection onto the
(ωs, dCp)-plane, it results in the creation of a pair of local extrema of dCp that form a
bulge of the EFM-surface. The locus of C in the (∆1, ∆2)-plane is represented by black
and grey curves in what follows.

Figure 14 illustrates the cubic tangency C. Before the transition the EFM-surface in (ωs, dCp, Ns)-
space is such that it does not feature dCp-folds of the boundary curve in projection onto the
(ωs, dCp)-plane; see panels (a1) and (a2). At the moment of transition the EFM-surface is such
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Fig. 14. Cubic tangency C of the EFM-surface in (ωs, dCp, Ns)-space, where a part of the surface (a1) becomes
tangent to a plane {dCp = const} (b1) and then develops a bulge (c1). The unfolding of the cubic tangency into
two dCp-folds can be seen clearly in the projections onto the (ωs, dCp)-plane in panels (a2)–(c2). Here Λ = 0.015,
and (∆1,∆2) = (−0.03,−0.0301) in (a), (∆1,∆2) = (−0.04,−0.0401) in (b) and (∆1,∆2) = (−0.05,−0.051).

that the boundary curve of the envelope has a cubic tangency with a curve dCp = const; see panels
(b1) and (b2). This cubic tangency of the boundary curve unfolds into a pair of a local minimum
and a local maximum of dCp for nearby values of ωs; see panels (c1). This pair of extrema cor-
responds to a ‘bulge’ of the EFM-surface; see panels (c1). As a result, there is now an interval of
dCp-values where one finds two distinct EFM-components. The locus C of cubic tangency can be
computed by numerical continuation of the condition that the first two derivatives with respect to
ωs of the envelope equation (3.9) are zero.

4.4. The EFM-surface bifurcation diagram in the (∆1, ∆2)-plane for fixed Λ. For a
fixed value of Λ the five transitions M , SC , Sω, SN and C of codimension one give rise to boundary
curves that divide the (∆1, ∆2)-plane into a finite number of regions. Each such region defines a
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Fig. 15. EFM-surface bifurcation diagram in the (∆1, ∆2)-plane for Λ = 0.01 with regions of different types
of the EFM-surface; see Fig. 16 for representatives of the labelled types of the EFM-surface and Table 3 for the
notation. The main boundary curves are the singularity transitions M (orange curves), SC (blue curves), Sω (green
curves) and SN (red curves). The locus of cubic tangency (black curves) can be found near the diagonal; also shown
is the anti-diagonal.

type of the EFM-surface, and we speak of the EFM-surface bifurcation diagram in the (∆1, ∆2)-
plane.

We first consider in Fig. 15 the EFM-surface bifurcation diagram for the case Λ = 0.01. As
in Fig. 8, the white regions correspond to the band-like types of the EFM-surface from Sec. 4.2
with a dCp-independent number of EFM-components. In the grey and orange regions, on the other
hand, one finds new EFM-surface types. In Fig. 15 we labelled those types that are associated
with transitions between the band-like EFM-surface types; there are a total of 15 additional types,
and their representatives are shown in Fig. 16; for notation and parameter values of the individual
panels see Table 3. As before, the symbol B denotes a connected component of the EFM-surface
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Fig. 16. Additional types of EFM-surface of the 2FOF laser in the labelled regions of Fig. 15, represented
by the projection (shaded) onto the (ωs, dCp)-plane; the blue boundary curves are found directly from (4.1). For
notation and the corresponding values of ∆1 and ∆2 see Table 3; in all panels ωs ∈ [−0.3, 0.3] and dCp ∈ [−π, π].

in the form of a band in projection onto the (ωs, dCp)-plane that extends over the entire Cp-range
[−π, π].

There are two noteworthy features of the EFM-surface types in Fig. 16. First of all, there are
connected components of the EFM-surface that do not extend over the entire Cp-range [−π, π];
we use the symbol I to refer to them because their projection onto the (ωs, dCp)-plane consists
of an ‘island’ when dCp ∈ R/2πZ (infinitely many islands in the covering space when dCp ∈ R).
Owing to the underlying symmetry (∆1, ∆2) 7→ (−∆1, −∆2), we again represent in the notation

the position of an island with respect to the central band B̂. As second new feature is the fact that
a band may have up to two (periodically repeated) holes. Similarly to the islands, we reflect in the
notation the position of a hole with respect to the laser frequency (at ωs = 0). Namely, we indicate
with left and right subscripts whether a hole is to the left or to the right of {ωs = 0}; for example,

we distinguish the case B̂hh from hB̂h. We observe that islands never have holes for any values of
the parameters as considered here; this means that the symbol I does never have a subscript.

In Fig. 16 we again show only one representative for any pair that is related by symmetry.
Obtaining a representative of the symmetric counterpart corresponds to a reflection of the respective
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name Cmin Cmax panel ∆1 ∆2 Λ

B̂I 1 2 Fig. 16 (a) 0.255 -0.270 0.01

B̂II 1 3 Fig. 16 (b) 0.260 0.210 0.01

IB̂I 1 3 Fig. 16 (c) 0.254 -0.251 0.01

B̂h 1 2 Fig. 16 (d) 0.100 -0.270 0.01

IB̂h 1 3 Fig. 16 (e) 0.100 -0.250 0.01

IhB̂ 1 3 Fig. 16 (f) -0.100 0.250 0.01

B̂hh 1 3 Fig. 16 (g) 0.160 0.110 0.01

hB̂h 1 3 Fig. 16 (h) 0.095 -0.110 0.01

B̂BI 2 3 Fig. 16 (i) 0.250 0.190 0.01

BB̂I 2 3 Fig. 16 (j) 0.250 -0.130 0.01

B̂hB 2 3 Fig. 16 (k) 0.210 0.100 0.01

B̂Bh 2 3 Fig. 16 (l) 0.180 0.130 0.01

hB̂B 1 3 Fig. 16 (m) 0.210 -0.100 0.01

Table 3
Notation and parameter values for the types of EFM-surface in Fig. 16; the second and third column show the

minimal number Cmin and the maximal number Cmax of EFM-components (for suitable fixed dCp) of the type.

image in the line ωs = 0; this operation is mirrored in the notation by reversing the symbol string
representing the EFM-surface type. In Fig. 15 this symmetry operation corresponds to reflection
in the antidiagonal of the (∆1, ∆2)-plane. Note also the symmetry of the EFM-surface bifurcation
diagram given by reflection in the diagonal; it corresponds to an exchange of the two filters and,
hence, does not change the EFM-surface type.

The outer part of the EFM-surface bifurcation diagram in Fig. 15, away from the diagonal, is
characterised by grey and orange intersecting strips, which are each bounded by a pair of curves of
singularity transitions. These strips must be crossed in the (∆1,∆2)-plane to move between different
white regions of band-like types of the EFM-surface. As an example, consider a sufficiently large
fixed value of one of the detunings, say, of ∆1, while the other detuning, ∆2, is allowed to change.
The grey strip bounded by the pair of curves M and SC is responsible for the transition from a
single band B̂ to two bands B̂B via the appearance of a string of islands that then merge into the
new band B. The pair SN and Sω, on the other hand, also results in a transition from B̂ to B̂B,
but via the appearance of a string of holes in B̂ that then merge to form a gap that splits off the
new band B. Note that the illustrations of the singularity transitions in Figs. 10–13 are all for
∆1 = 0.4; hence, they also illustrate the transition from B̂ to B̂B via SN and Sω and back to B̂
via SC and M as ∆2 is increased from, say, ∆2 = 0.

The grey and orange strips in Fig. 15 are unbounded and extend all the way to infinity. This
follows from the fact that the limit ∆i → ±∞ reduces to the single-FOF laser in a nontrivial way,
as was discussed in Sec. 4.1. More specifically, for the chosen value of Λ = 0.01 the curve in the
(∆1,Λ)-plane of Fig. 7 (b) is intersected four times, and this accounts for the four stripes one finds
for ∆2 → ±∞ (and similarly for ∆1 → ±∞).

The anti-diagonal is shown in Fig. 15 because along it one finds special, degenerate cases of the
EFM-surface. There are two different cases, and they are shown in Fig. 17. Along the red part of
the anti-diagonal we find a degenerate saddle transition SN . At the moment of transition the upper
and lower sheets of the EFM-surface touch at a single, isolated point (and its 2π-translates in dCp);
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Fig. 17. Projection of the EFM-surface onto (ωs, dCp)-plane for Λ = 0.01. Panel (a) is for ∆1 = −∆2 = 0.003
and panel (b) is for ∆1 = −∆2 = 0.08.

see Fig. 17 (a). However, as Fig. 15 shows, on either side of the red part of the anti-diagonal we

find the symmetrically related pair hB̂ and B̂h, which each features a hole. Hence, when the red
part of the anti-diagonal is crossed, the hole shrinks and then re-appears on the other side of the
line ωs = 0; physically, the hole is on the side of the filter profile that is detuned furthest from the
solitary laser frequency. From a bifurcation point of view, along the red part of the anti-diagonal the
EFM-surface changes locally from a two-sheeted hyperboloid to a cone and back to a two-sheeted
hyperboloid, rather than to a one-sheeted hyperboloid; compare with Fig. 13 of the non-degenerate
saddle transition SN .

Along the grey part of the anti-diagonal, on the other hand, we find a degenerate saddle
transition SC . Note that the EFM-surface type on either side of this grey curve is the same and
invariant under the symmetry operation ∆1 7→ −∆2. Figure 17 (b) shows the moment of transition

for the case that the anti-diagonal bounds the two regions of EFM-surface type hB̂h in Fig. 15.
In this transition the two holes (and their 2π-translates in dCp) touch to form a lemniscate in
Fig. 17 (b). This means that the EFM-surface is connected (locally) at isolated points with ωs = 0.
We also found this degenerate type of connection of the EFM-surface at such isolated points in
Fig. 4 — for the case that the surface is of type B̂. In effect, along the grey part of the anti-
diagonal the EFM-surface changes locally from a one-sheeted hyperboloid to a cone and back to
a one-sheeted hyperboloid, rather than to a two-sheeted hyperboloid; compare with Fig. 11 of the
non-degenerate saddle transition SC .

4.4.1. The locus of cubic tangency in the (∆1, ∆2)-plane. In Fig. 15 one finds (black)
curves of cubic tangency near the diagonal in the central region of the (∆1, ∆2)-plane. To under-
stand their role for the EFM-surface bifurcation diagram, we show in Fig. 18 an enlargement of the
(∆1, ∆2)-plane near the central (white) region where the EFM-surface is of type B̂. Recall that this
central region must exist as a perturbation of the special case of the EFM-surface for ∆1 = ∆2 = 0
in Fig. 4 (a); from the physical point of view, this type of EFM-surface exists (for κ 6= 0) as the
continuation of the solitary laser mode for κ = 0. Note that for Λ = 0.01, as in Figs. 15 and 18,
this central region is quite small; however, as we will see in Sec. 4.5, it may grow considerable when
the filter spectral width Λ is increased.

The central (white) region of EFM-surface type B̂ in Fig. 18 is bounded entirely by curves
of cubic tangency. Therefore, as the filters are detuned away from the solitary laser frequency,
the first transformation of the EFM-surface that gives rise to an additional EFM-component is a
cubic tangency. We find it convenient to distinguish two different types of cubic tangency. The
(black) curves Ca are invariant under reflection in the anti-diagonal; they correspond to cusp points
of the orange curves in Figs. 6 and 8. The (grey) curves Cd are invariant under reflection in the
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Fig. 18. Enlargement near the center of the (∆1, ∆2)-plane of Fig. 15 with (blue) curves of SC transition, (red)
curves of SN transition, and (black) curves Ca and (grey) curves Cd of cubic tangency; see Fig. 19 for representatives
of the labelled types of the EFM-surface and Table 4 for the notation.

anti-diagonal; they correspond to cusp points of the grey curves in Figs. 6 and 8. The (black)
cubic tangency locus Ca consists of two elongated and self-intersecting closed curves, one above
and one below the diagonal; see Fig. 15. The (grey) cubic tangency locus Cd also consists of two
self-intersecting closed curves, but they cross the diagonal and one lies above and the other below
the anti-diagonal; see Fig. 18 and note that the locus Cd is too small to be visible in Fig. 15.

Crossing either of the boundary curves Ca and Cd from inside the central (white) region labelled

B̂ in Fig. 18 results in the appearance of a bulge of the EFM-surface. We represent this in our
notation of this region as B̂b by a superscript b; as before, whether the superscript appears on
the left or on the right of the central band B̂ indicates its position with respect to the solitary
laser frequency given by ωs = 0. As Fig. 18 shows, we find a complicated EFM-surface bifurcation
diagram consisting of an interplay of cubic tangency curves Ca and Cd with saddle-transition curves
SC and SN . The four sets of curves divide the (∆1, ∆2)-plane into regions of additional EFM-
surface types, which are all characterised by a certain number of bulges as represented in the
notation. The corresponding EFM-surface types are shown in projection onto the (ωs, dCp)-plane
in Fig. 19 (a), (b), (d), (k) and (m); for notation and parameter values of the individual panels
see Table 4. Note that near the central region of the (∆1, ∆2)-plane the EFM-surface is subject to
the interaction of both filters near the frequency of the laser, which means that there are no other
bands or islands.

Figure 18 also shows that crossing the saddle-transition curve SC may result in the creation of
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Fig. 19. Additional types of EFM-surface of the 2FOF laser that feature bulges, represented by the projection
(shaded) onto the (ωs, dCp)-plane; the blue boundary curves are found directly from (4.1). Where necessary, insets
show local enlargements. The corresponding regions in the (∆1, ∆2)-plane can be found in Figs. 18, 23 and 27; for
notation and the corresponding values of ∆1, ∆2 and Λ see Table 4. In all panels ωs ∈ [−0.3, 0.3] and dCp ∈ [−π, π].

a hole, which happens, for example, in the transition from B̂bbb to B̂bh. This new mechanism for

the creation of a hole is illustrated in Fig. 20 for the simpler case of a transition from B̂bb to B̂h;
see also Fig. 19 (b) and Fig. 16 (d). In Fig. 20 (a1) and (a2) there are two bulges; one of the bulges
is rather small, indicating that it has just been created in a nearby cubic tangency. At the saddle
transition SC in Fig. 20 (b) we find that the two bulges connect locally in the central point of a
cone that is aligned in the dCp-direction. In contrast to the case shown in Figure 11, the geometry
of the EFM-surface is now such that this bifurcation leads to the creation of a hole; see panels (c1)
and (c2). This hole can then disappear again when the (red) curve SN in Fig. 18 is crossed; for

example, this happens in the transition from B̂bh to B̂b.
The connection between cubic tangency and the singularity transitions is given by codimension-

two points on the locus of cubic tangency. This feature is prominent in Fig. 18, where curves SN
(red) and SC (blue) of saddle transition end at (purple) points on the (grey) curve Cd. In Fig. 21 we
present a local unfolding of such a codimension-two point, which is characterised by the fact that the
envelope curve given by (3.9) has a cusp point. When making a circle around the codimension-two
point DCNC on the curve C, starting at region 1, one finds that a hole appears near the boundary
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name Cmin Cmax panel ∆1 ∆2 Λ

B̂b 1 2 Fig. 19 (a) -0.0200 0.2000 0.098

B̂bb 1 2 Fig. 19 (b) 0.1320 0.1300 0.010
bB̂b 1 3 Fig. 19 (c) -0.2400 0.2300 0.098

B̂bbb 1 3 Fig. 19 (d) 0.1400 0.1300 0.010
bB̂bb 1 3 Fig. 19 (e) -0.2300 0.2170 0.098
bbB̂bb 1 3 Fig. 19 (f) -0.2140 0.2150 0.098

B̂bbbb 1 3 Fig. 19 (g) -0.2350 0.1780 0.020

B̂Ib 1 3 Fig. 19 (h) 0.2100 0.1900 0.010

B̂Ibb 1 3 Fig. 19 (i) 0.2150 0.1850 0.098

hB̂
b 1 3 Fig. 19 (j) -0.2120 0.2400 0.098

B̂bh 1 3 Fig. 19 (k) 0.1300 0.1161 0.010

hB̂
bb 1 3 Fig. 19 (l) -0.2120 0.2200 0.098

B̂bbh 1 3 Fig. 19 (m) 0.1337 0.1161 0.010

B̂Bb 2 3 Fig. 19 (n) 0.2100 0.1600 0.010

B̂Bbb 2 3 Fig. 19 (o) 0.1530 0.1355 0.010

Table 4
Notation and parameter values for the types of EFM-surface in Fig. 19; the second and third column show the

minimal number Cmin and the maximal number Cmax of EFM-components (for suitable fixed dCp) of the type.

of EFM-surface in the saddle transition SN ; compare with Fig. 20. The hole then disappears in
the saddle transition SC . As a result, there are now two bulges, that is, pairs of local maxima and
minima with respect to dCp, which disappear one after the other when the cubic tangency curve C
is crossed twice to complete the circle back to region 1. This unfolding can indeed be found locally
in Fig. 18, but note that it involves the EFM-surface of type B̂b as that corresponding to region 1
in Fig. 21; hence, region 2 corresponds to B̂bh, region 3 to B̂bbb, and region 4 to B̂bb.

A second case of a codimension-two point on the curve of cubic tangency can be found in Fig. 15,
where the curves M (orange) and Sω (green) end at (golden) points on the (black) curve Ca. The
local unfolding of such a codimension-two point is presented in Fig. 22; it is again characterised by
a cusp point on the envelope curve given by (3.9), but this time the cusp points the other way with
respect to the EFM-surface. When making a circle around the codimension-two point DCNC on
the curve C, starting at region 1, an island is created when the minimax transition M is crossed;
this island then merges with the remainder of the EFM-surface in the saddle transition Sω. As a
result, there are again two bulges, which disappear one after the other when the curve C is crossed
twice to complete the circle back to region 1. This unfolding can be found locally in Fig. 15, where
the EFM-surface of type B̂I corresponds to region 1 in Fig. 21; hence, region 2 corresponds to B̂II,
region 3 to B̂Ibb, and region 4 to B̂Ib. Note that, in terms of the envelope curve (3.9), the unfolding
in Fig. 22 is topologically equivalent to that in Fig. 21. However, the two unfoldings differ in where
(the projection of) the EFM-surface lies with respect to the boundary; hence, the respective panels
of Fig. 21 and Fig. 22 (where the EFM-surface is always on the left) can be transformed into one
another by exchanging the colours blue and white in the regions, followed by a reflection.

Note that Fig. 19 shows the comprehensive list, in order of increasing complexity, of EFM-
surface types that feature bulges — of which there are quite a few more than we identified in
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Fig. 20. Global manifestation of local saddle transition SC of the EFM-surface where two bulges connect to
form a hole. Panels (a1)–(c1) show the relevant part of the EFM-surface and panels (a2)–(c2) the corresponding
projection onto the (ωs, dCp)-plane. Here Λ = 0.015 and ∆2 = −0.02, and ∆1 = −0.0248 in (a), ∆1 = −0.02498
in (b) and ∆1 = −0.0252 in (c).

Fig. 18. Additional EFM-surface types can be found near the diagonal of the (∆1, ∆2)-plane, but
further away from the central point ∆1 = ∆2 = 0. Figure 23 (a) shows the respective enlargement of
the EFM-surface bifurcation diagram from Fig. 15, which features an interaction of cubic tangency
curves Ca with saddle-transition curves SC and Sω. We find five additional EFM-surface types
with bulges, representatives of which in the (ωs, dCp)-plane are also shown in Fig. 19 (h), (i), (k),
(n) and (o); for notation and parameter values of the individual panels see again Table 4. Note,
in particular, that crossing the saddle-transition curve Sω may lead to secondary bands or islands
with bulges.

To obtain the remaining cases of EFM-surface types with bulges in Fig. 19 it is necessary to
change the filter width parameter Λ. As an example of how new regions of EFM-surface types are
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Fig. 21. Sketch of the local bifurcation diagram in the (∆1, ∆2)-plane near the (purple) codimension-two point
DCNC on the curve C of cubic tangency, from which the (red) curve SN and the (blue) curve SC of saddle transition
emanate; compare with Figs. 18 and 27 (a) and (b).
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Fig. 22. Sketch of the local bifurcation diagram in the (∆1, ∆2)-plane near the (golden) codimension-two point
DCMω on the curve C of cubic tangency, from which the (orange) curve M and the (green) curve Sω of saddle
transition emanate; compare with Figs. 15 and 26.
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Fig. 23. Enlargement near the diagonal of the (∆1, ∆2)-plane with (blue) curves of SC transition, (green)
curves of Sω transition, and SC transition, and (black) curves Cd of cubic tangency; see Fig. 19 for representatives
of the labelled types of the EFM-surface and Table 4 for the notation. Panel (a) is for Λ = 0.01 as Fig. 15, and
panel (b) is for Λ = 0.02

created in a subtle way with changing Λ, Fig. 23 (b) shows a similar enlargement as panel (a),
but now for Λ = 0.02. Note that the relative position of the curve Sω has changed in such a way
that one finds a region where the EFM-surface is of type B̂bbbb; see Fig. 19 (g). The location in
(∆1,∆2,Λ)-space of all EFM-surface types in Fig. 19 can be found in Table 4; we will encounter
more types in the next section.

4.5. Dependence of the EFM-surface bifurcation diagram on the filter width Λ.
We now consider more globally how the EFM-surface bifurcation diagram in the (∆1, ∆2)-plane
changes with the common filter width Λ. Figure 6 already indicated that substantial changes to the
regions of band-like EFM types must be expected. In particular, for sufficiently large Λ the grey
and orange curves in Fig. 6 do not extend to infinity in the (∆1, ∆2)-plane any longer. To study
this phenomenon we compactify the (∆1, ∆2)-plane by the stereographic change of coordinates

∆̃i =
∆i

|∆i|+ η
, η > 0. (4.3)

Note that (4.3) transforms the (∆1, ∆2)-plane to the square [−1, 1]× [−1, 1] in the (∆̃1, ∆̃2)-plane,

where ∆̃i = ±1 corresponds to ∆i = ±∞; we speak of the (∆̃1, ∆̃2)-square from now on. The

parameter η is the value of ∆i that is mapped to ∆̃i = 0.5, and we chose η = 0.4 to ensure that the
main structure of the EFM-surface bifurcation diagram in the (∆1, ∆2)-plane is represented well

in the (∆̃1, ∆̃2)-square.

Figure 24 shows the EFM-surface bifurcation diagram in the (∆̃1, ∆̃2)-square in the style of
Fig. 15. The (white) regions of band-like EFM-surface types are labelled; see Table 1. Also shown
are the singularity transitions curves M (orange), SC (blue), Sω (green), SN (red) and the cubic
tangency curves Ca (black) and Cd (grey).

Figure 24 (a) for Λ = 0.01 is simply the compactified version of Fig. 15 in the (∆̃1, ∆̃2)-square.
Note that the (orange and grey) stripes now end at discrete points at the sides of the square.
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Fig. 24. EFM-surface bifurcation diagram in the compactified (∆̃1, ∆̃2)-square, [−1, 1]×[−1, 1], showing regions
of band-like EFM-surface types; compare with Fig. 15. The boundary of the square corresponds to ∆i = ±∞; from
(a) to (e) Λ takes values Λ = 0.01, Λ = 0.015, Λ = 0.06, Λ = 0.098131, Λ = 0.1 and Λ = 0.13. The boundary
curves are the singularity transitions M (orange curves), SC (blue curves), Sω (green curves), SN (red curves) and
locus of cubic tangencies Ca (black curves) and Cd (grey curves); also shown are codimension-two points (purple
and golden), points on the bounduary and the anti-diagonal.
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Namely, for ∆i = ±∞ the respective filter does not influence the laser any longer, so that the
system reduces to single-FOF laser on the sides of the (∆̃1, ∆̃2)-square. Hence, the end points
of the stripes are exactly the four intersection points of the line Λ = 0.01 with the light grey
limiting curve in Fig. 7 (b). As Λ is increased, the grey and orange areas of other EFM-surface

types expands and four (symmetry-related) smaller regions of band-like EFM-surface types BBB̂

and B̂BB disappear; see Fig. 24 (b). As Λ is increased further, additional regions of band-like
EFM-surface types disappear; see Fig. 24 (c). In the process the pairs of (orange and grey) stripes
move closer together, owing to the fact that the four intersection points with the light grey curve
in Fig. 7 (b) do the same. Moreover, the (black and grey) cubic tangency curves extend over a

much larger region of the (∆̃1, ∆̃2)-square; hence, the region near ∆̃1 = ∆̃2 = 0 where one finds

EFM-surface type B̂ opens up considerably.
Figure 24 (d) is for Λ = 0.098131, which is the approximate value of Λ where one finds the

cusp points of the grey limiting curve in Fig. 7 (c). This value can be computed analytically as

ΛC =
2

3
√

3
κ
√

1 + α2 (4.4)

from the formula in [28] for the single-FOF laser. In the context of the EFM-surface bifurcation
diagram, this values corresponds to a bifurcation at infinity of the (∆1, ∆2)-plane and, hence, a

bifurcation at the boundary of the (∆̃1, ∆̃2)-square. More specifically, for Λ = ΛC the pairs of
orange and grey stripes now end at single points. the cubic tangency curves Ca (black) and Cd
(grey) extend all the way to the boundary of the square. Note further that the central region of

EFM-surface type B̂ is no longer bounded by curves of cubic tangency but is now joined up with
four, previously separated regions of the same type. For Λ > ΛC the stripes no longer extend
to the boundary of the square. As a result, one now finds orange and grey pairs of islands that
are bounded almost entirely by (black and grey) cubic tangency curves. The complement of these

islands is a single connected (white) region of EFM-surface type B̂; see Fig. 24 (e). When Λ is
increased further, these islands become smaller; see Fig. 24 (f).

4.6. Unfolding of the bifurcation at infinity. As we know from Sec. 4.4, the boundaries
of the orange and grey regions are formed not only by the curves Ca and Cd of cubic tangency,
but also by the singularity transitions M , SC , Sω and SN . Figure 25 shows how these boundary
curves interact in the transition through Λ = ΛC in a neighbourhood of the respective point on the
boundary of the (∆̃1, ∆̃2)-square. There are two cases: one for the orange regions and one for the
grey regions in Fig. 24.

Row (a) of Fig. 25 shows the transition for the grey regions, which involves the (grey) cubic
tangency curve Cd; labels in the regions indicate the respective EFM-surface type. Before the
bifurcation, that is, when Λ < ΛC , the grey region extends to two points on the boundary of the
(∆̃1, ∆̃2)-square. As we have seen in Fig. 15, these points are the limits of the pair of curves M
and SC and of the the pair of curves Sω and SN , respectively; see Fig. 25 (a1). Note further that
the singularity transition curves SN and SC end at a (purple) codimension-two point DCNC on the
cubic tangency curve Cd; compare with Fig. 21. The EFM-surface types in the respective regions
are also shown. When ΛC is approached, the two limit points of the pairs of curves M and SC and
Sω and SN approach each other. At the same time, the codimension-two point, and the curve Ca
with it, approach the boundary of the (∆̃1, ∆̃2)-square; as a result, the curves SN and SC become
shorter. At the moment of transition at Λ = ΛC , shown in Fig. 25 (a2), the grey region is bounded
by the minimax transition curve M and by one branch of the cubic tangency curve Cd, which both
end at a single point on the boundary. The curve Sω and a second branch of Cd also end at this
point on the boundary. For Λ > ΛC , as in Fig. 25 (a3), all curves detach from the boundary of

the (∆̃1, ∆̃2)-square; furthermore, the singularity transition curves M and Sω are now attached to
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Fig. 25. Sketch of EFM-surface bifurcation diagram near the boundary {∆̃2 = −1} of the (∆̃1, ∆̃2)-square
in the transition through Λ = ΛC . Panels (a1)–(a3) show the transition involving the (black) curve Ca of cubic
tangency that bounds the orange islands, and panels (b1)–(b3) show the transition involving the (grey) curve Cd of
cubic tangency that bounds the grey islands; compare with Fig. 24 (c)–(e).

the cubic tangency curve Cd at a (golden) codimension-two point DCMω; compare with Fig. 22.
Hence, the grey island created in this transition, which is invariant under reflection in the diagonal,
is bounded by the curves Cd and M .

Row (b) of Fig. 25 shows the transition for the orange regions, which involves the (black) cubic
tangency curve Ca; again, the respective EFM-surface types are indicated. This transition is very
similar to that in Fig. 25 (a), but note that it now involves a (golden) codimension-two point DCMω

on the curve Ca for Λ < ΛC , and a (purple) codimension-two point DCNC for Λ > ΛC . As a result
of this transition the orange island created in this transition, which is invariant under reflection in
the anti-diagonal, is bounded by the curves Ca and SN .

4.7. Islands of non-banded EFM-surface types. The grey islands are associated with the
diagonal where ∆1 = ∆2, along which the 2FOF laser reduces to the single-FOF laser with effective
feedback rate given by (3.11). Hence, the width of the grey islands along the diagonal is determined
by the intersection points of the horizontal line for the given value of Λ with the curve in Fig. 7 (c).
A grey island for Λ = 0.1 is shown in Fig. 26. It contains regions of (non-banded) EFM-surface

types B̂b, B̂bb and B̂I, which are bounded by the cubic tangency curve Cd and singularity transition
curves M (orange) and Sω (green); the latter curves end at two (golden) points DCMω on the curve
Cd. When Λ is increased, the grey islands remain topologically the same and simply shrink down
to a point. This happens when Λ has the value of the cusp points of the curve in Fig. 7 (c), which
can again be computed analytically from the formula in [28] for the single-FOF laser as

ΛI = 2 ΛC =
4

3
√

3
κ
√

1 + α2 ≈ 0.196261. (4.5)
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Fig. 26. Grey island for Λ = 0.1 in the (∆̃1, ∆̃2)-plane with regions of non-banded EFM-surface types; compare
with Fig. 24 (e).

Furthermore, we can conclude from the single-FOF limit along the diagonal that the two symmetric
grey islands disappear at

∆1 = ∆2 = ∆Id =
8
√

2

3
√

3
κ
√

1 + α2 ≈ 0.555111. (4.6)

For Λ > ΛI the EFM-surface bifurcation diagram in the (∆̃1, ∆̃2)-square — and, hence, also in
the (∆1, ∆2)-plane — does no longer contain (grey) islands that are symmetric with respect to the
diagonal.

The orange islands that exist for Λ > ΛC are associated with the anti-diagonal where ∆1 =
−∆2. Figure 27 (a) shows an orange island for Λ = 0.1 with regions of (non-banded) EFM-surface
types; see also the enlargement in the inset panel. Apart from the cubic tangency curve Ca, we find
curves SC (blue) and SN (red) of singularity transition. Two curves SC emerge from a boundary
point of the island on the anti-diagonal where four branches of Ca connect in a pair of cusps. The
two curves SC follow two branches of Ca closely and end at two (purple) points DCNC on the curve
Ca. The two curves SN emerge from a different point on the anti-diagonal and also follows Ca closely
to the same two end points. The (red) section of the anti-diagonal in between the two points from
which the curves SC and SN emerge, respectively, corresponds to a degenerate saddle transition
SN . The remainder of the anti-diagonal corresponds to a degenerate saddle transition SC ; see the
discussion in Sec. 4.4. Overall, we find a quite complicated but consistent structure of the orange
island. It features the (non-banded) EFM-surface types B̂h, hB̂h, B̂b, B̂bb, hB̂

b, bB̂b, hB̂
bb, bB̂bb and

bbB̂bb, of which the last five EFM types with bulges are new; compare with Fig. 19.
As Λ is increased, the orange island undergoes topological changes. First, the (purple) end

points of the curves SC and SN move across a branch of the cubic tangency locus Ca. As a
result, the entire island is now bounded by Ca and the regions B̂h and B̂bb (and their symmetric
counterparts) disappear; see Fig. 27 (b). The next qualitative change concerns the cubic tangency
locus Ca, which loses two intersection points, resulting in the loss of two (symmetrically related)

regions of EFM types bB̂ and B̂b; see Fig. 27 (c). When Λ is increased further, two intersection
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Fig. 27. Orange island in the (∆̃1, ∆̃2)-plane with regions of non-banded EFM-surface types; the inset in panel
(a) shows the details of curves and regions. From (a) to (d) Λ takes the values Λ = 0.1, Λ = 0.145, Λ = 0.166 and
Λ = 0.179; compare panel (a) with Fig. 24 (e).

points of curves Ca on the anti-diagonal come together and merge into a point where four branches
of Ca connect. The result is the loss of region bB̂b; see Fig. 27 (d). We found that the orange island
does not undergo further qualitative changes, but rather shrinks down to a point and disappears.
This happens at Λ =≈ 0.196261, and this numerical value agrees up to numerical precision with
that for ΛI from (4.5). In fact, consideration of (3.9) for ∆1 = −∆2 confirms this observation;
furthermore, the position of where the islands disappear can be computed as

∆1 = −∆2 = ∆Ia = ∆Id/4 =
2
√

2

3
√

3
κ
√

1 + α2 ≈ 0.138778. (4.7)

We can now conclude that for Λ > ΛI there are no islands at all, so that the entire (∆1, ∆2)-

plane consists of a single region of EFM type B̂. Physically, this means that the transmittance
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profiles of both filters are so wide that the filters reflect the laser light of different frequencies
effectively in the same way. In other words, for sufficiently large Λ the feedback is no longer
frequency selective within the laser spectral range and the 2FOF laser is effectively a 2COF laser.

5. EFM-stability regions for dτ = 0. The rationale for the classification of the EFM-surface
presented in the previous section is to provide the backbone of the dynamics of the 2FOF laser.
From this point of view, knowledge of the EFMs is important even when they are not stable, that
is, when they are of saddle type. Indeed, it has been demonstrated that continuous waves (CWs) of
saddle type may play an important role in organising the dynamics of a laser with delayed feedback.
Best known is the discovery that saddle CWs of the COF laser play an important role for observed
repeated and irregular power drop-outs known as low-frequency fluctuations and coherence collapse
[25, 30, 56, 57, 60]. More specifically, saddle CWs are approached along their stable direction during
the build-up of the laser power, until the trajectory is finally reinjected along an unstable direction
of a CW to a region of low-power and the process of build-up repeats, but towards a different CW;
one also speaks of itinerancy with a drift or of the Sisyphus effect [25, 46].

On the other hand, stable continuous-wave solutions, with their steady-state laser power and
given fixed frequency, are of interest in many applications and can indeed be observed experimentally
in lasers with delayed feedback. In the context of the 2FOF laser, these CWs are EFMs and, hence,
we now address the question which of the EFMs that we found and classified are actually stable. In
Sec. 4 we showed that the EFM-surface depends strongly on the parameters of the filtered feedback
loop, and the goal now is to investigate the connection between changes to the surface itself and
changes to the EFM stability. To this end, we consider representative choices of the EFM-surface in
(ωs, Ns, dCp)-space and determine the regions of EFM stability on it. First, we consider in Sec. 5.1

the case of two identical undetuned feedback loops, where the EFM surface is always of type B̂,
and we study the changes to the EFM stability region as the common filter width Λ approaches
the limit of COF. We then perform a case study in Sec. 5.2 of how changes of the EFM stability
regions are associated with changes of type of the EFM-surface as the detunings of the filters are
changed. Throughout this section we consider a zero delay difference dτ = 0 as in Sec. 4. The effect
of a nonzero dτ on the EFM surface and the EFM stability regions is discussed in Sec. 6.

Stability regions on the EFM surface in (ωs, Ns, dCp)-space can also be found by numerical
continuation with the package DDE-BIFTOOL. More specifically, we compute curves of EFMs for
fixed dCp, but now together with the relevant (largest) eigenvalues of their linearization. The result
of these much more expensive calculations is a set of curves (for suitably many fixed values of dCp)
that are then rendered into a surface with EFM stability information on it. Throughout, regions
of stable EFMs are marked as hatched green patches on the semitransparent grey EFM-surface;
in fact, we use computed data for the hatching: each green curve is the actual stable part of the
respective computed EFM branch; see Appendix A for more details. The remaining grey area
of EFM-surface represents saddle EFMs. The boundary of a region of stable EFMs on the EFM-
surface in (ωs, Ns, dCp)-space involves loci of saddle-node bifurcations and of Hopf bifurcations, and
they are computed directly as curves with DDE-BIFTOOL. Throughout, saddle-node bifurcation
curves are depicted as blue curves and Hopf bifurcation curves as red curves. For the purpose of
this stability analysis we calculate only the saddle-node and Hopf bifurcation curves that bound
the EFM-stability regions. These boundary curves meet at codimension-two Bogdanov-Takens,
saddle-node Hopf and Hopf-Hopf bifurcation points.

To explain and illustrate our EFM stability results, we not only show the stability regions
on the EFM-surface in (ωs, Ns, dCp)-space, but also in projections of the EFM-surface onto the
(ωs, dCp)-plane. This is the representation that was used in Sec. 4 for the classification of the
different topological types of the EFM-surface. As before, white regions of the (ωs, dCp)-plane
are regions where no EFM exist. The blue region that represented the projection in Sec. 4 is now
divided into regions of stable and unstable EFMs that are coloured green and grey, respectively.
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This colouring of the (ωs, dCp)-projections is in agreement with the colouring of the EFM-surface
itself. For clarity, we use solid green filling to indicate the stable EFM regions in the projections,
instead of hatching. As in section Sec. 4, both the top and the bottom sheet of the EFM-surface
are projected onto the (ωs, dCp)-plane; this means that each typical (non-boundary) point in the
(ωs, dCp)-projection of the EFM-surface corresponds to two EFMs with different Ns values. As we
will see, most EFM stability regions extend only over the bottom sheet of the EFM-surface, which
corresponds to higher optical field amplitudes; however, for some parameter values stable EFMs
can also be found on the top sheet of the EFM-surface.

5.1. EFM-stability for two identical undetuned filters. As we have shown in Sec. 4.5,
the 2FOF laser approaches the COF laser in the limit of large filter width Λ → ∞. In particular,
for sufficiently large Λ (and any value of the detunings ∆1 and ∆2) the EFM-surface is of type B̂.

For this reason we first consider the stability region on the EFM-surface of B̂ for ∆1 = ∆2 = 0.
Figure 28 shows the fundamental 2π interval of the EFM-surface. (Recall that the EFM-surface

is connected at the points (ωs, Ns, dCp) = (0, 0, (2n+1)π) with n ∈ Z; compare with Sec. 4.) More
specifically, shown is the stability region on the EFM-surface for Λ = 0.001 (a1), Λ = 0.005 (b1),
and Λ = 0.025 (c1); the insets (a2)–(c2) show the corresponding projections onto the (ωs, dCp)-
plane. Because the EFM-surface grows considerably with Λ, the three sets of panels in Fig. 28 are
presented over different range of ωs and Ns.

The EFMs are stable inside an annular region around the point (0, 0) of the (ωs, dCp)-plane.
The inner boundary of the EFM stability region formed by a (red) single closed curve of Hopf bifur-
cation. The outer boundary of the EFM stability region, on the other hand, changes considerably
with Λ. For Λ = 0.001 as in Fig. 28 (a), it is formed by a pair of (red) curves of Hopf bifurcations
and two segments of the (blue) curve of saddle-node bifurcations; this means that stable EFMs can
be found only over a certain range of ωs. For Λ = 0.005 as in Fig. 28 (b), two different pairs of
Hopf bifurcation curves are involved in forming the outer stability boundary; moreover, more of
this boudary is now formed by the curve of saddle-node bifurcations. Finally, for Λ = 0.025 as in
Fig. 28 (c), the outer boundary of the stable EFM regions consist entirely of the (single) saddle-node
bifurcation curve; more importanly, stable EFMs can now be found over the entire available range
of ωs.

Figure 28 shows only the most important changes of the EFM stability region, with increasing
Λ. Indeed, the transition between the two limiting cases involves quite a number of changes to the
curves that form the boundary of the EFM stability region. First of all, there are changes to the
types and the numbers of codimension-two bifurcation points on the boundary of stable EFM region,
which are associated with transitions through different kinds of codimension-three bifurcation points
(including degenerate Bogdanov-Takens and degenerate saddle-node Hopf bifurcations). Moreover,
there may be local rearrangements of curves of Hopf bifurcations that are associated with the
transition through critical points on the surface of Hopf bifurcation; see [17, 27] for examples.
In the spirit of this section, the detailed description of the transitions through codimension-three
points is beyond the scope of this paper.

Note that Fig. 28 illustrates the transition with Λ between two limiting cases of a laser with
monochromatic optical injection and the laser with COF. For Λ = 0.001 our findings are in qual-
itative agreement with results for the semiconductor laser subject to optical injection [75], whose
locking region is bounded by curves of saddle-node and Hopf bifurcations. On the other hand,
for Λ = 0.25 our results are in agreement with the findings for the COF laser [30, 38, 43, 47, 59].
Namely, stable EFMs appear in a saddle-node bifurcation and become unstable in a Hopf bifurcation
that gives rise to light-amplitude oscillations known as relaxation oscillations [43, 47, 65].
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Fig. 28. Dependence of the stability region on the EFM-surface of type B̂ for two identical and undetuned
filters on their common filter width Λ (as indicated in the panels); here ∆1 = ∆2 = 0, κ = 0.01 and dτ = 0.
Panels (a1)–(c1) show the EFM-surface in (ωs, Ns, dCp)-space (semitransparent grey) with a stability region (green
hatching) that is bounded by (blue) saddle-node bifurcation curves and by (red) Hopf bifurcation curves. Panels
(a2)–(c2) show the corresponding projections onto the (ωs, dCp)-plane.
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Fig. 29. The EFM-surface with stability information, of type B̂h for ∆1 = 0.0065 and ∆2 = 0. Here κ = 0.01,
Λ = 0.005 and dτ = 0; curves and regions are coloured as in Fig. 28.

5.2. Dependence of EFM-stability on the filter detunings. Figure 28 shows that the
stability region may undergo physically relevant changes, while the EFM surface type remains
unchanged. The question that we address now is what changes to the EFM stability region ensue
when the type of the EFM surface changes with the filter detunings ∆1 and ∆2. To this end, we
fix the filter width to the intermediate value Λ = 0.005 as in Fig. 28(b); moreover, as before we
fix κ = 0.01 and dτ = 0. Our goal is to present what the EFM stability regions looks like for
several representative types of the EFM surface along a suitable path through the EFM-surface
bifurcation diagram in the (∆1, ∆2)-plane. Specifically, we consider the transition of the EFM

surface from type B̂ through types B̂h, hB̂h, hB̂, BB̂, BB̂h, BB̂B and IB̂B to type IB̂I. When
the detuning is changed, one encounters transitions through bifurcation points of codimension-three
as well as through extrema and saddle points of the surfaces of saddle-node and Hopf bifurcations
in (C1

p , dCp, ∆1)-space and (C1
p , dCp, ∆2)-space. In these transitions boundary curves of the EFM

stability regions emerge, disappear or connect differently, and this results in transformations of the
stable EFM regions.

The starting point of our considerations is the EFM-surface in Fig. 28 (b), for κ = 0.01, Λ =
0.005, ∆1 = 0, ∆2 = 0 and dτ = 0. Recall that in (ωs, Ns, dCp)-space this surface has infinitely

many copies that connect at the point (dCp, ωs, Ns) = (kπ, 0, 0) to form a surface of type B̂. Hence,
its stability region is also connected and it has holes centred around the solitary laser frequency,
represented here by dCp = 2kπ. We first fix ∆2 = 0 and increase ∆1; in this way we move along
the horizontal line ∆2 = 0 in the EFM-surface bifurcation diagram in the (∆1, ∆2)-plane. When
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∆1 is increased slightly, the EFM-surface remains a single band of type B̂, and its stability region
is a band with holes around the points dCp = 2kπ.

With increasing ∆1, we first observe that a hole appears in the EFM-surface when the saddle
transition SC is crossed so that its type changes from B̂ to B̂h; compare Fig. 20 and Sec. 4.4.1.
Figure 29 shows the EFM-surface of type B̂h for ∆1 = 0.0065 and ∆2 = 0 in (ωs, Ns, dCp)-space
over a 4π-interval of dCp; the inset is its (ωs, dCp)-projection of a 2π-interval of dCp. Figure 29
clearly shows that there is a quite wide band of EFM-stability; the holes in the EFM-stability region
near dCp = 2kπ are now smaller and they have shifted when compared with those for ∆1 = 0 as in
Fig. 28 (b). More importantly, there are now additional holes in the EFM-stability region around
the hole of the EFM-surface. Clearly, there cannot be any stable EFMs if no EFMs exist, but
notice that the hole in the stability region is considerably bigger than the hole in the EFM surface
itself, which is actually quite small. The boundary of the EFM stability region near the hole in the
EFM-surface is formed by curves of Hopf bifurcations that appeared in minimax transitions.

When ∆1 is increased further, the curve of Hopf bifurcations around the small holes in the
EFM-stability region near dCp = 2kπ shrink to a point and disappear. At the same time, the
hole in the EFM surface becomes larger, and so does the corresponding hole in the EFM-stability
region. In fact, for sufficiently large ∆1 the latter join up to form a band of instability, and this is
shown in Fig. 30(a) where the EFM-surface for ∆1 = 0.024 and ∆2 = 0 is still of type B̂h. The
EFM-stability region is no longer connected and now effectively consists of two disjoint bands (plus
two much smaller region and their synmetric copies, near the edge of the hole in the EFM surface
and for negative ωs). Note that the splitting of the single stable EFM region into two regions of
stable EFMs that form bands expanding over the whole range of dCp does not involve a topological
change of the EFM-surface itself, but rather minmax tranistions and saddle connections of the
saddle-node and Hopf bifurcation curves that bound the EFM stability regions.

We now fix ∆1 = 0.024 and decrease ∆2 so that the EFM-surface type changes to hB̂h, as
is shown in Fig. 30(b) for ∆1 = 0.024 and ∆2 = −0.025. The creation of a second hole in the
EFM-surface is due to crossing the saddle transition SN ; see Fig. 13 in Sec. 4.3. Notice that the
second hole does not really influence the nature of the EFM-stability region, which still consists
mainly of two clearly separated band, one for positive and one for negative ωs, which are bounded
on both sides by a single curve of Hopf bifurcations. Additionally, there are small stable EFM
regions near the edges of the two holes.

When ∆2 is decreased further, the hole in the EFM surface for positive ωs disappears and its
type changes to hB̂. As Fig. 31(a) for ∆1 = 0.024 and ∆2 = −0.035 shows, the EFM stability
region is unaffected and still exists of two bands and smaller stability regions at the boundary of
the holes. When the saddle transition Sω is crossed the EFM-surface type changes to BB̂, as in
Fig. 31(b) for ∆1 = 0.024 and ∆2 = −0.037. Notice that this topological change occurs outside the
region of EFM-stability, which does not change qualitatively. However, the regions of stable EFMs
near ωs = 0 is expanding.

We now fix ∆2 = −0.037 and again increase ∆1. This initially leads to a transition of the
EFM-surface to type BB̂h as in Fig. 32(a) for ∆1 = 0.035 and ∆2 = −0.037. We find that, as
the extra hole in the EFM surface grows, it is also associated with the boundary of the expanding
regions of stable EFMs near ωs = 0. As Fig. 32(a) shows, these regions grow so much towards one
another that they then form a third, central band of EFM stability. The expansion of the stable
EFM region around the central laser frequency can be explained by the observation that, as the
detuning of the filters increases, the frequencies close to the central laser frequency are subject to
weaker feedback from the flanks of the filter’s transmittance profiles. As ∆1 is increased further,
the saddle transition Sω is encountered and the EFM-surface type changes to type BB̂B. As
Fig. 32(b) for ∆1 = 0.036 and ∆2 = −0.037 shows, the EFM stability region is not affected by this
transition. As a result, there are now three bands of the EFM surface and each of them features
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Fig. 30. The EFM-surface with stability information, of type B̂h for ∆1 = 0.024 and ∆2 = 0 (a), and of type

hB̂h for ∆1 = 0.024 and ∆2 = −0.025 (b). Here κ = 0.01, Λ = 0.005 and dτ = 0; curves and regions are coloured
as in Fig. 28.

a band of EFM stability. Notice that the central EFM-stability band has quite large holes around
(dCp, ωs) = (2kπ, 0).
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Fig. 31. The EFM-surface with stability information, of type hB̂ for ∆1 = 0.024 and ∆2 = −0.035 (a), and

of type BB̂ for ∆1 = 0.024 and ∆2 = −0.037 (b). Here κ = 0.01, Λ = 0.005 and dτ = 0; curves and regions are
coloured as in Fig. 28.

We now decrease ∆2 to ∆2 = −0.049 and then increase ∆1 so that EFM-surface undergoes
saddle transitions SC that lead to the creation of islands. Figure 33(a) shows the EFM-surface
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Fig. 32. The EFM-surface with stability information, of type BB̂h for ∆1 = 0.035 and ∆2 = −0.037 (a), and

of type BB̂B for ∆1 = 0.036 and ∆2 = −0.037 (b). Here κ = 0.01, Λ = 0.005 and dτ = 0; curves and regions are
coloured as in Fig. 28.

of type IB̂B for ∆1 = 0.044. Notice that the EFM-stability region covers practically the entire
(dCp, ωs)-range of the islands for negative ωs. Similarly, the EFM-stability region covers practically
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Fig. 33. The EFM-surface with stability information, of type IB̂B for ∆1 = 0.044 and ∆2 = −0.049 (a), and

of type IB̂I for ∆1 = 0.050 and ∆2 = −0.049 (b). Here κ = 0.01, Λ = 0.005 and dτ = 0; curves and regions are
coloured as in Fig. 28.

the entire (dCp, ωs)-range of the band for positive ωs. The central EFM-stability band, on the other
hand, still features holes around (dCp, ωs) = (2kπ, 0), but they are now considerably smaller when
compared to Fig. 32(b). Moreover, near the narrow necks of the central component of the EFM-
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surface the stable EFM region extends over the bottom as well as the top sheet of the EFM-surface.
When ∆1 is increased further the EFM-surface changes to type IB̂I, as in Fig. 33(a) for ∆1 = 0.050.
Practically the entire (dCp, ωs)-range of the new islands for positive ωs is again covered by the EFM-
stability region. Notice that the other islands and the central band of EFM-stability are unaffected
by this transition.

Overall we found EFM-stability regions for different detunings ∆1 and ∆2 whose characterizing
features are so clearly distinguished that they may be identified experimentally. The EFM-stability
regions agree with the properties of the EFM-surface type, but there is no one-to-one correspon-
dence. More specifically, for the realistic and experimentally feasible feedback rate κ = 0.01 and
filter width Λ = 0.005 we find for a 2FOF laser with two feedback loops of equal length (dτ = 0)
that the EFM-stability region’s large-scale components are: a single central band, two bands, three
bands, two bands with a string of islands, or a single central band with two strings of islands.
Moreover, the central band of EFM-stability features holes that are often so large that they may
be detectable.

6. The effect of a nonzero delay difference. So far we considered the EFM structure of
the 2FOF laser only for the case that the two delay times are equal, that is, for a delay difference
dτ = τ2 − τ1 = 0. As the final part of our analysis of the dependence of EFM-surface and EFM
stability regions on the filter and feedback loop parameters, we now discuss the effect of nonzero
dτ = τ2 − τ1, which we take to be positve without loss of generality.

Equation (4.1) for the boundary of the projection of the EFM-surface onto the (ωs, dCp)-plane
expresses dCp as a function of ωs. In this equation the delay time difference dτ appears only as
the coefficient of the linear term of ωs; hence, a nonzero value of dτ introduces a shearing of the
EFM-surface with shear of exactly dτ .

This shearing of the EFM-surface can be made explicit for the special case that ∆1 = ∆2,
while still considering a common filter width Λ. Namely, we can then define the center line of the
projection of the EFM-surface as the line through the points where the inverse cosine term in (4.1)
vanishes. The equation for this center line is then simply

dCp(ωs) = −dτωs, (6.1)

which is the line with slope dτ through the origin of the (ωs, dCp)-plane. Since the ωs-range of
the EFM-surface does not change with dτ , the shear is equal to the slope of the center line of the
projection of the EFM-surface.

We conclude that an EFM-surface for dτ 6= 0 can be obtained by considering the corresponding
EFM-surface for dτ = 0 and applying a shear of dτ . As a result of this shearing, EFM-components
may be present for dτ 6= 0 that are not present for dτ = 0. Figure 34 illustrates this effect with the
example of the EFM-surface in (ωs, Ns, dCp)-space for ∆1 = ∆2 = 0 and Λ = 0.005 with τ1 = 500
and τ2 = 850, so that the shear is dτ = 350. Note that this EFM-surface is the sheared version of
the corresponding EFM-surface for dτ = 0 in Fig. 28 (b), which is of type B̂. The EFM-surface in
Fig. 34 still consists of all 2π-translates of a basic unit, which are connected at the points where
dCp = π+2kπ for k ∈ Z; however, now the basic unit of the EFM-surface extends over a dCp-range
of more than 2π. While there is always a single EFM-component for any value of dCp for the case
that dτ = 0, due to the shear for dτ = 350, we now find up to three EFM-components in Fig. 34.
Each of those EFM-components belongs to a different 2π-translated copy of the basic unit of the
EFM-surface. Physically, this is due to beating between two frequencies that are associated with
the two feedback loops of different round trip times; see Eqs. (3.2)–(3.4).
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Fig. 34. Panel (a) shows the EFM-surface with stability information for κ = 0.01, ∆1 = ∆2 = 0, Λ = 0.005,
τ1 = 500 and τ2 = 850 so that dτ = 350, and its intersection with the grey plane defined by dCp = 0; compare
with Fig. 4. Curves and regions are coloured as in Fig. 28. Panels (b)–(e) show the EFM-components for different
values of dCp (as indicated in the panels); stable segments of the EFM-components (green) are bounded by the Hopf
bifurcations (red dots) or by the saddle-node bifurcation (blue dots). The actual stable EFMs for C1

p = 0 are the
black full circles; open circles are unstable EFMs.
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As is shown in Fig. 34 (b)–(e), the exact number of EFM-components depends on the value of
dCp. More specifically, for dCp = 0 there are three EFM-components, owing to the fact that the
corresponding plane in (ωs, Ns, dCp)-space intersects three copies of the basic unit of the EFM-
surface; see Fig. 34 (a) and (b). As dCp is changed the EFM-components change. For dCp = π/2
as in panel (c), there are still three EFM-components (the right and central EFM-components
are not connected), and the left-most has become smaller and the right-most larger. When dCp
is increased further, the left-most EFM-component disappears (in a minimax transition when the
plane dCp = const passes through the end point of the respective part of the EFM-surface). For
dCp = π as in Fig. 34 (d), the two remaining EFM-components connect at the origin of the (ωs, Ns)-
plane to form a single EFM-component in the shape of a figure eight. We remark that, because
for dCp = π equation (3.9) is equal to 0 at ωs = 0, this case for the 2FOF laser corresponds to the
single-FOF laser described in [67] where the laser is resonant with the peak of the Fabry-Pérot filter
transmittance profile. The single EFM-component then splits up again into two EFM-components
for dCp > π. A new EFM-component appears (again in a minimax transition) on the right, that
is, for positive ωs, so that there are again three EFM-components; see Fig. 34 (e) for dCp = 3π/2.

Since the detunings of both filters are equal, the EFM-surface in Fig. 34 (a) is invariant under
the anti-diagonal symmetry operation (ωs, dCp, Ns) 7→ (−ωs, −dCp, −Ns). As a result, panel (b)
and (d) are invariant under rotation over π of the (ωs, Ns)-plane, while panels (c) and (e) are
symmetric counterparts.

Figure 34 (a) shows that the EFM-stability region is sheared concurrently with the EFM-
surface. Stable regions of different 2π-translated copies of the basic unit of the EFM-surface coexist
for chosen fixed dCp. Hence, as is illustrated in Fig. 34 (b)–(e), one may find stable segments on
any of the EFM-components. In fact, the actual number of stable EFMs — the full black circles
within the green segments — strongly depends on the feedback phases. For example, in Fig. 34 (b)
for C1

p = 0 and dCp = 0 there is no actual stable EFM in the green segments, while in panel (e) for
C1
p = 0 and dCp = 3π/2 a stable EFM exists in each of the stable segments of the EFM-components.

Any number of EFM-components can be found for sufficiently large dτ . Figure 35 illustrates
this for the EFM-surface of type B̂ from Fig. 34 with up to five EFM-components for dτ = 700 in
panel (a) and up to seven for dτ = 1000 in panel (b). Here the effect of shearing of the EFM-surface
is illustrated with the (ωs, dCp)-projection of the EFM-surface (left column) and by showing the
respective EFM-components in the (ωs, Ns)-plane for dCp = 0 (right column). Moreover, Fig. 35
shows that the shearing of the EFM-surface results in the possibility of finding an arbitrary number
of bands of stable EFMs — stable EFM regions extending over the fundamental 2π dCp-range — in
the (ωs, dCp)-plane. Such stable EFM bands translate to an arbitrary number of stable segments
of the EFM-components for any value of fixed dCp. Note that the EFM-stability region in Fig. 35
(a1) and (b1) it is not simply a sheared version of the stability region for dτ = 0. Rather, its
outer boundary changes, so that it extends over a wider and wider range of ωs. The hole of the
EFM-stability region surrounding the points (ωs, dCp) = (0, 2nπ) with n ∈ Z, on the other hand,
does not appear to change much apart from being sheared; compare with Fig. 28.

We finish this section by showing in Fig. 36 the effect of shearing the more complicated EFM-
surface of type BB̂h for ∆1 = 0.035 and ∆2 = −0.037. Panels (a1) and (b1) shows the (ωs, dCp)-
projection of the EFM-surface and panels (a2) and (b2) the EFM-components in the (ωs, Ns)-plane
for dCp = −0.5π. Note that panel (a) for dτ = 0 is for the EFM-surface of Fig. 32 (a), which may
give rise to up to three EFM-components. However, when it is sheared with a sheer of dτ = 500
one may find up to seven EFM-components; see Fig. 36 (b1) and (b2). Note that this increase
in the number of possible EFM-components is due to the shearing of the undulating boundary of
the bands, as well as to the shearing of the hole, which now extend over a dCp-range of more than
2π. Moreover, Fig. 36 (a2) and (b2) indicates high level of multistability. Notice that the outer
EFM-stability bands for dτ = 500 are effectively sheared versions of the outer EFM-stability bands
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Fig. 35. The (ωs, dCp)-projection of the EFM-surface for dτ = 700 (a1), and for dτ = 1000 (b1). Here
κ = 0.01, ∆1 = Delta2 = 0, Λ = 0.005, and τ1 = 500. Curves and regions are coloured as in Fig. 28. Panels (a2)
and (b2) the EFM-components for dCp = 0 with actual EFMs for C1

p = 1.7π (a2) and for C1
p = 0.7π (a2); curves

and points are coloured as in Fig. 34.

for dτ = 0. The central region of EFM-stability, on the other hand, does not simply shear, but
there are some additional changes to its boundary. As in Fig. 35, we find a larger central region of
EFM-stability in Fig. 36 (b1).

In conclusion, the shearing due to nonzero dτ is an effect that is independent of the changes
of the geometry and topology of the EFM-surface due to variation of the other parameters that
characterize the filter loops. Indeed, to find the EFM-surface of the 2FOF laser with two different
delay times, it is sufficient to find the respective EFM-surface for dτ = 0 and then consider its
shearing with the shear dτ . This justifies our choice in Sec. 4 to classify the EFM surface for
dτ = 0. When it comes to the regions of EFM stability, the effect of shearing is more subtle, as
it may lead to some changes of EFM-stability boundaries. Nevertheless, in first approximation
the EFM-stability region on the sheared EFM-surface is ‘near’ the sheared EFM-stability region.
In fact, for the examples we considered, the EFM-stability region on the sheared EFM-surface
increases slightly with dτ . We therefore suggest that the EFM-stability results for dτ = 0 in Sec. 5
give a good indication of the expected EFM-stability for dτ 6= 0. In particular, for sufficiently large
dτ one may find, for given fixed dCp, any number of EFM-components with segments of stable
EFMs.
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Fig. 36. The (ωs, dCp)-projection of the EFM-surface of type hB̂B for dτ = 0 (a1), and the corresponding
sheared EFM-surface for dτ = 500 (b1). Here κ = 0.01, ∆1 = 0.035, ∆2 = −0.037, Λ = 0.005, and τ1 = 500.
Curves and regions are coloured as in Fig. 28. Projection in panel (a1) correspond to the EFM-surface in Fig. 30.
Panels (a2) and (b2) show relevant EFM-components for dCp = −0.5π with actual EFMs for C1

p = 2.7π; curves
and points are coloured as in Fig. 34.

7. Conclusions. We presented a comprehensive study of how the external filtered modes
of the 2FOF laser depend on the parameters that characterize the two filtered feedback loops.
This study was motivated by the application of this laser system as a pump laser for optical
communication systems and as a light source for sensor applications. The general idea behind the
2FOF laser is that the second feedback loop provides additional control over the laser’s output
with the ultimate goal of stable operation. This is why our analysis focused on the EFMs, which
physically correspond to constant-intensity monochromatic laser output.

Mathematically, the EFMs are solutions of the governing delay differential equation with steady
population inversionNs, steady amplitudes of the electric fields of the laser and of the two filters, and
a constant lasing frequency ωs. The well established way of analysing the structure of the solutions
of the single-FOF laser is the investigation of its EFM-components, which are closed curves of
EFMs in the (ωs, Ns)-plane that are traced out with a changing phase of the feedback field. The
relevance of the EFM-components is that they correspond to the disjoint ωs frequency ranges that
are available for stable laser operation. For the 2FOF laser one also finds EFM-components, but
now they depend on the difference dCp between the feedback phases of the two filtered fields.
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In other words, the number and nature of the EFM-components for the 2FOF laser depends on
additional parameters, in particular, on dCp and the difference dτ between the two delay times.
This motivated us to consider the EFM-surface in (ωs, Ns, dCp)-space as the key object of study.
This point of view provided a useful framework for the analysis of how the structure and stability
of the EFMs of the 2FOF laser depends on the different parameters of the two feedback loops.

Importantly, we found that the influence of the difference dτ between the two delay times of the
filters is a simple shearing of the EFM-surface for dτ = 0. This allowed us to classify the possible
types of EFM-surface in dependence on the filter detunings ∆1 and ∆2 and the common filter width
Λ. More specifically, we distinguished five different mechanisms through which the EFM-surface can
change locally: four singularity transitions and a cubic tangency of the EFM-surface with respect
to a plane dCp = const. This choice was motivated by the fact that these transitions change the
number of EFM components one encounters in different slices of fixed dCp. We presented the EFM-
surface bifurcation diagram in the (∆1, ∆2)-plane, which consists of open regions corresponding
to different types of the EFM-surface, bounded by the loci of the five transitions between them.
Moreover, we showed how the EFM-surface bifurcation diagram in the (∆1, ∆2)-plane changes with
the common filter width Λ, and presented the comprehensive list of 32 representative EFM-surface
types. The different EFM-surface types are characterized by a certain number of bands, with or
without holes, that extend over the entire dCp-range, and islands that extend only over a bounded
dCp-range.

We also performed a limited study of the stability of the EFMs, which showed that important
features of the EFM surface are reflected in the properties of the regions of EFM-stability on the
EFM surface. While there is no one-to-one correspondence between the EFM surface type and the
nature of the EFM-stability regions on it, nevertheless, it is possible to find different constellations
of stability regions in the form of bands and islands that are losely associated with the EFM
surface type. The stability boundaries of the EFM-stability regions are formed by curves of saddle-
node and Hopf bifurcations. As parameters change, these boundary curves undergo complicated
transitions when passing through codimension-three bifurcations (degenerate Bogdanov-Takens and
degenerate saddle-node-Hopf points), as well as through saddle points and extrema in the surface
of Hopf bifurcations (in the respective three-dimensional parameter space). Similar changes of the
boundary of stable EFMs have also been found in the single-FOF laser [17, 27]. Studying them in
more detail for the 2FOF laser would be quite a task.

From a conceptual point of view, the influence of the two filter loops on the laser can be thought
of as the feedback from a single feedback loop with a complicated filter profile. This effective filter
profile is generated by the interference between the two filter fields and it consists of a pattern of
maxima and minima of the transmittance as a function of the frequency of the light. This point of
view provides a connection to studies that considered the output of a laser subject to feedback from
a non-Lorentzian, more complicated (that is, non-Lorentzian) filter profile, such as the periodic
filter profiles studied in [51, 67]. In [67] feedback from a Fabry-Pérot cavity is considered but it
is not restricted to being very close to the transmittance maximum, but rather provides feedback
over a large spectral range that encompasses several maxima and minima of the transmittance. In
[51], on the other hand, filtered feedback with several maxima and minima of the transmittance
arise due to side “bumps” of a fibre Bragg grating filter profile. We found that the observed EFM
structure in [51] and [67] corresponds in the 2FOF laser to a change from constructive to destructive
interference between the two filter fields for dτ 6= 0 via a variation of the filter phase difference dCp.
Furthermore, we showed that the 2FOF laser has non-obvious connections with other laser systems
with optical feedback. The 2FOF laser reduces to the single-FOF laser for ∆1 = ∆2. Moreover,
for sufficiently large filter width Λ the 2FOF laser becomes a 2COF laser with two conventional
optical feedback loops. It is also possible to increase the width of only one of the filters, and this
will result in a laser system with FOF and COF branches. A further analysis of the connections
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between the 2FOF laser and feedback from other types of filters is an interesting subject for future
research.

A logical next step in the analysis of the 2FOF laser would be to perform a numerical bifurcation
study into stable oscillations that may arise from the Hopf bifurcations that bound the EFM-
stability regions. Any semiconductor laser with external input or feedback may display a type of
oscillation, known as relaxation oscillations, where the electric field and the inversion exchange
energy periodically at a frequency of a few gigaHertz. Moreover, a laser with FOF may also display
so-called frequency oscillations, where the frequency of the light oscillates while its amplitude
remains virtually constant [24]. In light of the strong amplitude-phase coupling given by nonzero
α, this type of oscillation is quite surprising and it has been attributed to dynamics involving the
flanks of the filter transmittance profile [16]. Given the complexity of the EFM-surface types and
the associated EFM-stability regions, it appears more feasible to perform a targeted study into
oscillating output of the 2FOF laser in a region of parameter space of interest, for example, as
suggested by an actual experiment.

An experimental investigation of the EFM structure of the 2FOF laser remains a very inter-
esting challenge indeed. Measurements of the EFM-components of the single-FOF laser have been
performed in [19] for a laser with a single open air (unidirectional) feedback loop with a Fabry-Pérot
filter, and an experiment with a second Fabry-Pérot feedback loop has been implemented recently in
[54]. In such an experiment, stable EFMs manifest themselves as plateaux of the feedback intensity
(where a different feedback intensity also means a different frequency ωs of the laser light). Our
theoretical investigation showed that the bands and islands of EFM-stability may be quite wide in
the ωs-direction. Therefore, it may be feasible to follow a stable EFM experimentally by varying
dCp to determine whether it exists over an entire period of 2π or not. In this way, it might be
possible to identify and distinguish experimentally some types of EFM-stability regions in terms of
their numbers of stability bands and islands.
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Appendix A. How to find the EFM-surface.
We employ a number of numerical techniques to compute the EFMs and render them as sur-

faces. This is done in a number of steps. First, for the chosen parameter values, we compute a
sufficient number of constant dCp-sections through the EFM-surface by means of numerical con-
tinuation. In Sec. 3 we showed that the EFMs can be calculated as solutions of the transcendental
equations (3.3)–(3.8). Hence, these equations could be used to continue EFMs in parameters with
any numerical continuation package. However, this approach has the disadvantage that it does not
provide information on the stability of the EFMs. To overcome this difficulty we find and continue
the EFMs directly as isolated equilibria of the transformed DDE system (A.2)–(A.6) with the Mat-
lab package DDE-BIFTOOL [11]. We then use this computed data to render the EFM-surface in
(ωs, Ns, dCp)-space. Finally, we add computed stability information to the EFM-surface and its
two-dimensional projection. We developed a set of interactive Matlab scripts and functions to
automate these steps as much as is practical.

We now describe our strategy to deal with the mathematical and numerical challenges associated
with the analysis of the EFM structure of Eqs. (2.1)–(2.4).

A.1. Dealing with the S1-symmetry of the 2FOF laser model. The DDE (2.1)–(2.4)
shares an S1-symmetry with many other systems with coherent optical feedback. Namely, since
each term in equations (2.1) and (2.3)–(2.4) is linear in E, F1 and F2, and since E enters Eq. (2.2)
only as its modulus |E|, the DDE is equivariant under any element Bβ ∈ S1 of the form

Bβ =




eiβ 0 0 0
0 1 0 0
0 0 eiβ 0
0 0 0 eiβ


 ,
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which is physically a rotation of the vector (E,N,F1, F2) by an angle β [29, 34, 40]. As a conse-
quence, solutions of Eqs. (2.1)–(2.4) come as group orbits under the S1-symmetry, meaning that
any phase shift of the solutions is also a solution. For example, the simplest nonzero solutions or
EFMs are circular limit cycles and they could be studied as such. However, to facilitate numerical
continuation and stability analysis of EFMs, we would like to exploit the symmetry and study these
limit cycles as isolated equilibria in some transformed system.

The symmetry cannot simply be divided out from the equations using a constant β, as is the
case for an injected laser [75]. Instead, we substitute the ansatz

(E, N, F1, F2(t)) =
(
Eeibt, N, F1e

ibt, F2e
ibt
)

(A.1)

into (2.1)–(2.4) and divide through by an exponential factor, which results in

dE

dt
= (1 + iα)N(t)E(t)− ibE(t) + κ1F1(t) + κ2F2(t), (A.2)

T
dN

dt
= P −N(t)− (1 + 2N(t))|E(t)|2, (A.3)

dF1

dt
= Λ1E(t− τ1)e−iC

1
p + (i∆1 − Λ1 − ib)F1(t), (A.4)

dF2

dt
= Λ2E(t− τ2)e−iC

2
p + (i∆2 − Λ2 − ib)F2(t). (A.5)

where b is an extra free parameter. A suitable choice of b ‘freezes’ motion along the group orbit
so that an EFM becomes a circle of inifintely many equilibria. This phase indeterminacy of E
appears because system (A.2)–(A.5) is underdetermined: one has to solve for a suitable b for each
group orbit so there are more unknowns than equations. In practice, to analyse the system with
DDE-BIFTOOL, it is helpful to resolve the phase indeterminacy by considering the intersection of
the group orbits with the fixed six-dimensional half space

S = {(E, N, F1, F2) | Im(E) = 0 and Re(E) ≥ 0} . (A.6)

These intersections are also called the trace of the solution [34, 40]. In this way, a continuous wave
or an EFM of Eqs. (2.1)–(2.4) can be represented by a unique equilibrium in a six-dimensional
sub-space and by the associated unique value of b. This numerical approach also has a physical
interpretation: the free parameter b is equivalent to the frequency ωs of an EFM; see Sec. 3. Note
that solutions of system (A.2)–(A.5) have the same stability properties as the solutions of system
(2.1)–(2.4). In particular, owing to the symmetry, they have a trivial zero eigenvalue, which must be
taken into account for the appropriate stability and bifurcation analysis of the solutions [17, 40, 45].

The implementation of the above strategy in DDE-BIFTOOL is achieved as follows: in addition
to defining system (A.2)–(A.5) in the form of seven real equations in file sys rhs.m, one also needs
to specify the condition Im(E) = 0 as an extra equation in the separate file sys cond.m. This
implementation works fine as long as E 6= 0.

A.2. Computation and rendering of the EFM-surface. To construct the EFM-surface
in (ωs, dCp, Ns)-space we first compute a number of sections that are uniformly distributed along
the 2π dCp-range considered. Typically, to construct the EFM-surface, for dτ = 0, in Sec. 5, we
use 150 values of dCp that are distributed uniformly along the dCp interval of length 2π. However,
the actual number and distribution of the points along the dCp-axis may be adjusted to the type
of the EFM-surface.
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Recall, that a section through the EFM-surface for fixed dCp consists of the EFM-components,
which are closed curves traced out by the EFMs with changing feedback phase; see Sec. 3.1. To
find all EFM-components we use the boundary equation (4.1) to find for each chosen value of dCp
boundary values of ωs at the left end point of each EFM component; note that for dτ = 0 there
are at most three such boundary values of ωs for each value of dCp. We then set C1

p = 0 and
use Eq. (3.5)–(3.8) to compute initial values of the other state variables. Since C1

p = 0 is only
a guess, we use DDE-BIFTOOL’s correction routine to correct the values of C1

p and of the state
variables to obtain a first point on the EFM-component in question; during this correction step
the values of ωs and dCp are kept fixed. For the purpose of surface rendering, it is advantageous
that all of the EFM-components be computed in one direction, e.g. clockwise. We therefore take
the first point and apply a small positive perturbation to the corrected value of C1

p . We then again
use DDE-BIFTOOL’s correction routine to find this second point on the EFM component, which
can then be continued with DDE-BIFTOOL for increasing C1

p . As the result of this procedure,
we obtain a set of uniformly distributed constant dCp sections through the EFM-surface, each of
which may consist of up to three EFM-components.

To render the EFM surface from these many EFM-components we make use of our knowledge
of the surface type. We first group all the computed EFM-components according to the particular
bands and island of the EFM-surface to which they belong. In case there are holes or bulges, we
identify the associated group of EFM-components. We then consider the intervals of the 2π dCp-
range within which the number of the EFM-components is dCp-independent and generate separate
meshes to render the corresponding local segments of the EFM-surface. More specifically, we first
check that each of the m EFM-components in the local segment is a single closed loop, and we
trim it otherwise (since, C1

p is 2π-periodic it is possible to go along the EFM-component more than
once); here m is the number of EFM-components in the local segment. Next, we rewrite the values
of ωs, dCp and Ns of each point of an EFM-component from the DDE-BIFTOOL solution branch
structure into a 3 × k matrix K, where k is the number of points along the branch. Additionally,
to ensure a smooth rendering of the surface we apply constant arclength interpolation along each
curve defined by K; as a result, we obtain a new 3× l matrix L that consist of l uniformly spaced
mesh points. Finally, we split each of the m matrices L into rows, and construct three separate m×l
mesh matrices, for ωs, dCp and Ns, which are used to plot the local segment of EFM-surface; recall
that, l is the number of mesh points (after arclength interpolation) and m is the number of EFM-
components in the considered group. These meshes for the different groups of EFM-components
are then pieced together into an overall, smooth EFM-surface; this may require the computation
of some additional branches of the EFMs.

The above procedure has been implemented as a Matlab function that automatically generates
a mesh from the local segments of the EFM-components that correspond to a band or an island
of the EFM-surface; the mesh yields a surface when plotted with the built-in Matlab functions
surf and light with appropriate parameters. We process each band or island of the EFM-surface
separately, and later plot them one by one in the same figure. A typical size of the mesh representing
the whole EFM-surface (over a 4π dCp-range) in Sec. 5 is about 3× 300× 1500 points.

A.3. Determining and visualizing EFM-stability. The figures in sections Sec. 5 and 6
showing the EFM-stability regions on the EFM-surface are the result of quite extensive and elab-
orate computations. In fact, the computation with DDE-BIFTOOL of an EFM component with
stability information takes about 20 times longer than that without stability information. There-
fore, the EFM-stability information is computed only for every other of the dCp-slices that are used
to construct the EFM-surface, that is, typically for 75 sliced over the 2π dCp-interval. Moreover,
we limit the number of computed points along each EFM-component to 150. In spite of these
restriction, it took around three hours to calculate the stability information for a single instance of
the EFM-surface.
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We checked the accuracy of the stability computations by checking the alignment of the stable
segments of the EFM-components with their known boundaries, given by saddle-node and Hopf
bifurcation curves. These bifurcation curves are computed separately by two-parameter continua-
tions in C1

p and C2
p ; starting points are conveniently chosen from saddle-node and Hopf bifurcations

found at the computed EFM-components. Curves of Hopf bifurcations can be found and continued
with DDE-BIFTOOL directly in Eqs. (A.2)-(A.5). Saddle-node bifurcations, on the other hand,
cannot be detected and continued with DDE-BIFTOOL due to the presence of an extra eigenvalue 0
(due to equivariance under phase shifts). Instead, curves of saddle-node bifurcations are computed
as turning limit points (folds) of solutions of the transcendental system (3.3)–(3.8).

The computed branches of stable EFMs and the curves of saddle-node and Hopf bifurcations
are plotted with the transparently rendered EFM surface in (ωs, dCp, Ns)-space. In this way, the
EFM-stability regions appear as clearly bounded hatched patches on the EFM surface.
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